The therapeutic benefits of berberine and its effectiveness compared to metformin
Karim Chubin , British-Trained Anthropologist. Swiss and German - trained Naturopath and NutritionistAbstract
Berberine is a plant extract that exhibits an impressive array of therapeutic properties, including accelerated weight loss, improved insulin sensitivity, and protection from numerous chronic, degenerative diseases. Berberine exerts its effects in several ways, including by activating AMP- activated protein kinase (AMPK), an enzyme that governs metabolism and maintains whole-body energy homeostasis. Since AMPK influences the ageing process, long-term berberine consumption may extend lifespan by decelerating one’s rate of ageing. Besides its impact on AMPK, berberine also profoundly alters the gut microbiome, specifically in ways that reduce metabolic endotoxemia, a condition that promotes obesity and other metabolic disorders.
Berberine’s physiological effects are similar to those of metformin, but in comparative studies, berberine either matches or outperforms metformin. Considering metformin’s minor side effects, berberine’s absence of side effects, and berberine’s therapeutic potential against neurological degenerative diseases and a host of other chronic conditions, berberine is quickly gaining recognition for being one of the most powerful and most effective nutritional agents for weight loss, disease prevention, anti-ageing, and overall wellness.
Keywords
Activated protein kinase (AMPK), ageing process, long-term berberine consumption
References
Jin Y, et al. (2016). Pharmacological effects of berberine and its derivatives: a patent
Chang W, et al. (Sep 2016). Berberine Pretreatment Confers Cardioprotection Against Ischemia-Reperfusion Injury in a Rat Model of Type 2 Diabetes. J Cardiovasc Pharmacol Ther., 21(5). doi: 10.1177/1074248415627873
Jiang W, et al. (Jun 2015). Therapeutic potential of berberine against neurodegenerative diseases. Sci China Life Sci., 58(6). doi: 10.1007/s11427-015-4829-0
Caliceti C, et al. (2016). Berberine: New Insights from Pharmacological Aspects to Clinical Evidences in the Management of Metabolic Disorders. Curr Med Chem., 23(14). PMID: 27063256
Jin Y, et al. (2016). Pharmacological effects of berberine and its derivatives: a patent update. Expert Opin Ther Pat., 26(2). doi: 10.1517/13543776.2016
O’Neill HM. (Feb 2013). AMPK and Exercise: Glucose Uptake and Insulin Sensitivity.
Diabetes Metab J., 37(1). doi: 10.4093/dmj.2013.37.1.1
Roustan V, et al. (Jun 2016). An evolutionary perspective of AMPK-TOR signaling in the three domains of life. J Exp Bot., 67(13). doi: 10.1093/jxb/erw211
Garcia D, et al. (Jun 2017). AMPK: Mechanisms of Cellular Energy Sensing and Restoration of Metabolic Balance. Molecular Cell, 66(6). doi: 10.1016/j.molcel.2017.05.032
Long YC, et al. (Jul 2006). AMP-activated protein kinase signaling in metabolic regulation. J Clin Invest., 116(7). doi: 10.1172/JCI29044
Young NP, et al. (2016). AMPK governs lineage specification through Tfeb-dependent regulation of lysosomes. Genes Dev., 30(5). doi: 10.1101/gad.274142.115
Thomson DM, et al. (May 2009). AMPK Control of Fat Metabolism in Skeletal Muscle. Acta Physiol (Oxf)., 196(1). doi: 10.1111/j.1748-1716.2009.01973.x
Hardie DG, et al. (Jun 1997). The AMP-Activated Protein Kinase: Fuel Gauge of the Mammalian Cell? FEBS Journal, 246(2). doi: 10.1111/j.1432-1033.1997.00259.x
Ruderman NB, et al. (Jul 2013). AMPK, insulin resistance, and the metabolic syndrome. J Clin Invest., 123(7):2764-2772. doi: 10.1172/JCI67227
Sim ATR, et al. (Jun 1988). The low activity of acetyl-CoA car☐ylase in basal and
glucagon-stimulated hepatocytes is due to phosphorylation by the AMP-activated protein kinase and not cyclic AMP-dependent protein kinase. FEBS Letters, 233(2). doi: 10.1016/0014-5793(88)80445-9
Hardie DG. (Jan 2016). Regulation of AMP-activated protein kinase by natural and synthetic activators. Acta Pharmaceutica Sinica B, 6(1). doi: 10.1016/j.apsb.2015.06.002
Lee YS, et al. (Aug 2006). Berberine, a Natural Plant Product, Activates AMP- Activated Protein Kinase With Beneficial Metabolic Effects in Diabetic and Insulin- Resistant States. Diabetes, 55(8). doi: 10.2337/db06-0006
Griffiths EA, et al. (Apr 2004). In vivo effects of bifidobacteria and lactoferrin on gut endotoxin concentration and mucosal immunity in Balb/c mice. Dig Dis Sci., 49(4).
PMID: 15185861
Wang Z, et al. (Sep 2006). The role of bifidobacteria in gut barrier function after thermal injury in rats. J Trauma., 61(3). doi: 10.1097/01.ta.0000196574.70614.27
Erridge C, et al. (Nov 2007). A high-fat meal induces low-grade endotoxemia: evidence of a novel mechanism of postprandial inflammation. Am J Clin Nutr., 86(5). PMID: 17991637
Boutagy NE, et al. (May 2016). Metabolic endotoxemia with obesity: Is it real and is it relevant? Biochimie., 124. doi: 10.1016/j.biochi.2015.06.020
Cani PD, et al. (Jul 2007). Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes, 56(7). doi: 10.2337/db06-1491
Xu JH, et al. (May 2017). Berberine protects against diet-induced obesity through regulating metabolic endotoxemia and gut hormone levels. Mol Med Rep., 15(5). doi: 10.3892/mmr.2017.6321
Zhu L, et al. (Jan 2018). Berberine treatment increases Akkermansia in the gut and improves high-fat diet-induced atherosclerosis in Apoe-/- mice. Atherosclerosis, 268. doi: 10.1016/j.atherosclerosis.2017.11.023
Yin J, et al. (May 2008). Efficacy of Berberine in Patients with Type 2 Diabetes.
Metabolism, 57(5). doi: 10.1016/j.metabol.2008.01.013
Wei W, et al. (Jan 2012). A clinical study on the short-term effect of berberine in comparison to metformin on the metabolic characteristics of women with polycystic ovary syndrome. Eur J Endocrinol., 166(1). doi: 10.1530/EJE-11-0616
Dujic T, et al. (Apr 2016). Organic cation transporter 1 variants and gastrointestinal side effects of metformin in patients with Type 2 diabetes. Diabet Med., 33(4). doi: 10.1111/dme.13040
Chen C, et al. (2014). Effects of berberine in the gastrointestinal tract - a review of actions and therapeutic implications. Am J Chin Med., 42(5). doi: 10.1142/S0192415X14500669
Gu L, et al. (Jun 2011). Berberine ameliorates intestinal epithelial tight-junction damage and down-regulates myosin light chain kinase pathways in a mouse model of endotoxinemia. J Infect Dis., 203(11). doi: 10.1093/infdis/jir147
Zhang X, et al. (Dec 2014). Continuation of metformin use after a diagnosis of cirrhosis significantly improved survival of patients with diabetes. Hepatology, 60(6). doi: 10.1002/hep.27199
Kita Y, et al. (2012). Metformin prevents and reverses inflammation in a non-diabetic mouse model of nonalcoholic steatohepatitis. PLoS One, 7(9). doi: 10.1371/journal.pone.0043056
Wei X, et al. (2016). The Therapeutic Effect of Berberine in the Treatment of Nonalcoholic Fatty Liver Disease: A Meta-Analysis. Evid Based Complement Alternat Med., 2016. doi: 10.1155/2016/3593951
Guo T, et al. (Mar 2016). Berberine Ameliorates Hepatic Steatosis and Suppresses Liver and Adipose Tissue Inflammation in Mice with Diet-induced Obesity. Sci Rep., 6. doi: 10.1038/srep22612
Yuan X, et al. (2015). Berberine ameliorates nonalcoholic fatty liver disease by a global modulation of hepatic mRNA and lncRNA expression profiles. J Transl Med., 13(24). doi: 10.1186/s12967-015-0383-6
Aroda V, et al. (Apr 2016). Long-term Metformin Use and Vitamin B12 Deficiency in the Diabetes Prevention Program Outcomes Study. J Clin Endocrinol Metab., 101(4). doi: 10.1210/jc.2015-3754
Enia G. (1997). Lactic acidosis induced by phenformin is still a public health problem in Italy. British Medical Journal, 315. PMID: 9418116
Kim MJ, et al. (Mar 2015). Metformin-Associated Lactic Acidosis: Predisposing Factors and Outcome. Endocrinol Metab (Seoul)., 30(1). doi: 10.3803/EnM.2015.30.1.78
Bridges HR, et al. (Sep 2014). Effects of metformin and other biguanides on oxidative phosphorylation in mitochondria. Biochem J., 462(Pt 3). doi: 10.1042/BJ20140620
Almirall J, et al. (Jul 2008). Metformin-associated lactic acidosis in type 2 diabetes mellitus: incidence and presentation in common clinical practice. Nephrol Dial Transplant.,
(7). doi: 10.1093/ndt/gfn152
Kajbaf F, et al. (Nov 2014). Mortality rate in so-called “metformin-associated lactic acidosis”: a review of the data since the 1960s. Pharmacoepidemiol Drug Saf., 23(11). doi: 10.1002/pds.3689
Eppenga WL, et al. (Aug 2014). Risk of lactic acidosis or elevated lactate concentrations in metformin users with renal impairment: a population-based cohort study. Diabetes Care, 37(8). doi: 10.2337/dc13-3023
Almani SA, et al. (May 2017). Berberine protects against metformin-associated lactic acidosis in induced diabetes mellitus. Iran J Basic Med Sci., 20(5): doi: 10.22038/IJBMS.2017.8675
Li Z, et al. (Aug 2017). Protective effect of berberine on renal fibrosis caused by diabetic nephropathy. Mol Med Rep., 16(2). doi: 10.3892/mmr.2017.6707
Kishimoto A, et al. (Sep 2015). Effects of Berberine on Adipose Tissues and Kidney Function in 3T3-L1 Cells and Spontaneously Hypertensive Rats. Nat Prod Commun., 10(9). PMID: 26594754
Qiang W, et al. (2007). Aging impairs insulin-stimulated glucose uptake in rat skeletal muscle via suppressing AMPKα. Experimental C Molecular Medicine, 39. doi: 10.1038/emm.2007.59
Salminen A, et al. (Apr 2012). AMP-activated protein kinase (AMPK) controls the aging process via an integrated signaling network. Ageing Res Rev., 11(2). doi: 10.1016/j.arr.2011.12.005
Kalalian-Moghaddam H, et al. (Jan 2013). Hippocampal synaptic plasticity restoration and anti-apoptotic effect underlie berberine improvement of learning and memory in streptozotocin-diabetic rats. Eur J Pharmacol., 698(1-3). doi: 10.1016/j.ejphar.2012.10.020
Bhutada P, et al. (Jun 2011). Protection of cholinergic and antioxidant system contributes to the effect of berberine ameliorating memory dysfunction in rat model of streptozotocin-induced diabetes. Behav Brain Res., 220(1). doi: 10.1016/j.bbr.2011.01.022
Kulkarni SK, et al. (Mar 2010). Berberine: a plant alkaloid with therapeutic potential for central nervous system disorders. Phytother Res., 24(3). doi: 10.1002/ptr.2968
Kulkarni SK, et al. (Jul 2008). On the mechanism of antidepressant-like action of berberine chloride. Eur J Pharmacol., 589(1-3). doi: 10.1016/j.ejphar.2008.05.043
Camarena B, et al. (2002). Serotonin transporter gene and obese females with impulsivity. Mol Psychiatry., 7(8). DOI: 10.1038/sj.mp.4001096
Hu Y, et al. (Oct 2012). Berberine and evodiamine influence serotonin transporter (5- HTT) expression via the 5-HTT-linked polymorphic region. Pharmacogenomics J., 12(5). doi: 10.1038/tpj.2011.24
Ahmed T, et al. (Oct 2015). Berberine and neurodegeneration: A review of literature.
Pharmacol Rep., 67(5). doi: 10.1016/j.pharep.2015.03.002
Cai Z, et al. (2016). Role of berberine in Alzheimer’s disease. Neuropsychiatr Dis Treat.,
doi: 10.2147/NDT.S114846
Jiang W, et al. (Jun 2015). Therapeutic potential of berberine against neurodegenerative diseases. Sci China Life Sci., 58(6). doi: 10.1007/s11427-015-4829-0 Spinney L. (Jun 4, 2014). Alzheimer’s disease: The forgetting gene. Nature, 510(7503). doi: 10.1038/510026a
Reuters. (Jan 8, 2018). Pfizer Is Ending Research Into New Drugs for Alzheimer’s and Parkinson’s Diseases. Fortune.
Article Statistics
Copyright License
Copyright (c) 2025 Karim Chubin

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain the copyright of their manuscripts, and all Open Access articles are disseminated under the terms of the Creative Commons Attribution License 4.0 (CC-BY), which licenses unrestricted use, distribution, and reproduction in any medium, provided that the original work is appropriately cited. The use of general descriptive names, trade names, trademarks, and so forth in this publication, even if not specifically identified, does not imply that these names are not protected by the relevant laws and regulations.