Articles | Open Access | DOI: https://doi.org/10.37547/tajiir/Volume07Issue08-10

High-Performance Polymers for Faster Cars: Advancing Electric Vehicle Battery Systems- A Comprehensive Review

Saloni Agrawal , Staff Supplier Industrialization Engineer, Lucid Motors, California; MBA Candidate, California Institute of Advanced Management

Abstract

The electric vehicle (EV) revolution demands new materials that address performance, safety, and sustainability imperatives. High-performance polymers are emerging as essential replacements for heavy metals and brittle glass in electric vehicle battery systems, where they offer weight reduction, insulation, thermal management, and fire hazard solutions. This paper explores how high-performance polymers can help enhance EV performance by offering lightweight, high-durability, thermally and electrically feasible alternatives to traditional metals and glass. By the analysis of some of the most significant polymer families, such as polyurethanes, epoxies, and glass-filled nylons. A comprehensive analysis of over 40 peer-reviewed papers, industry reports, and technical standards was conducted to analyze and detail their specific applications in thermal management, electrical insulation, and mechanical protection in high-voltage battery systems. The findings emphasize the key role of polymers in the development of faster, safer, and more efficient electric vehicles.

Keywords

Electric vehicles, high-performance polymers, high voltage battery systems, thermal management, lightweight materials

References

Alonso, E., Lee, T. M., Bjelkengren, C., Roth, R., & Kirchain, R. (2021). Evaluating the potential impact of vehicle lightweighting on EV range and lifecycle greenhouse gas emissions. Sustainable Materials and Technologies, 29, e00283. https://doi.org/10.1016/j.susmat.2021.e00283

Arkema. (2023). Material solutions for e-mobility. https://hpp.arkema.com/

Arkema. (2024, October 10). Arkema significantly reduces carbon footprint of its bio-based polyamide 11 range. Arkema. https://www.arkema.com/usa/en/media/news/global/csr/2024/20241010-reduction-carbon-footprint-polyamide-11/

BASF. (2022). Overmolding and hybrid polymer solutions for e-mobility sealing. BASF SE.

BASF. (2022). Sealing and bonding solutions for e-mobility. BASF SE.

CarbonCloud. (n.d.). Rilsan® PA11 – Climate footprint. Retrieved August 12, 2025, from https://apps.carboncloud.com/climatehub/product-reports/id/128828874513

Chen, X., Li, Y., & Wang, Z. (2021). Thermally conductive polymers for electric vehicle battery management systems. Journal of Applied Polymer Science, 138(45), e50729. https://doi.org/10.1002/app.50729

Das, S., Warren, J., West, D., & Schexnayder, S. M. (2020). Global automotive lightweight materials market outlook and trends. Journal of Materials Engineering and Performance, 29(4), 2417–2431. https://doi.org/10.1007/s11665-020-04747-5

Envalior. (2024). Innovative materials for lightweight EV battery enclosures. https://www.envalior.com/

EVReporter. (2023). EV powertrain components and systems [Image]. https://evreporter.com/ev-powertrain-components/

Goli, P., Legedza, S., Dhar, A., Salgado, R., Renteria, J., & Balandin, A. A. (2013). Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries. Nano Energy, 2(4), 814–826. https://doi.org/10.1016/j.nanoen.2013.01.005

Hu, Y., Chen, Z., Yang, B., & Wang, X. (2020). Polymer composites with improved thermal conductivity for thermal management applications. Composites Science and Technology, 188, 107973. https://doi.org/10.1016/j.compscitech.2019.107973

IDTechEx. (2023, November 30). How fire protection for electric 2-wheelers differs from cars. https://www.idtechex.com/en/research-article/how-fire-protection-for-electric-2-wheelers-differs-from-cars/32782

Kakroodi, A. R., Rodrigue, D., & Park, C. B. (2022). Advances in thermoplastic composites for lightweight automotive structures. Composites Part B: Engineering, 239, 109992. https://doi.org/10.1016/j.compositesb.2022.109992

Koronis, G., Silva, A., & Fontul, M. (2013). Green composites: A review of adequate materials for automotive applications. Composites Part B: Engineering, 44(1), 120–127. https://doi.org/10.1016/j.compositesb.2012.07.004

Kulkarni, A., & Maiti, P. (2019). Lightweight polymer composites in automotive applications: A review. Materials Today: Proceedings, 18, 4084–4090. https://doi.org/10.1016/j.matpr.2019.07.371

Kuraray. (2023). Automotive polymers: Elastomer solutions for safety and performance. https://www.elastomer.kuraray.com/in/applications/automotive-polymers/

Lan, H., Wang, Y., & Hu, X. (2023). Advanced polymer applications for electric vehicle battery systems: A review. Journal of Energy Storage, 66, 107499. https://doi.org/10.1016/j.est.2023.107499

Loh, Y. R., et al. (2020). Adhesive bonding in electric vehicles: materials, design, and performance. Journal of Adhesion Science and Technology, 34(18), 1967–1987. https://doi.org/10.1080/01694243.2020.1748142

Lu, X., Yang, Z., & Chen, M. (2021). Multi-material molding and integration strategies for high-voltage battery components. Polymer Engineering & Science, 61(12), 3124–3135. https://doi.org/10.1002/pen.25804

MDPI. (2023). Advances in thermal runaway prevention using polymer materials in EV batteries. Energies, 16(17), 6223. https://doi.org/10.3390/en16176223

OECD. (2022). Global plastics outlook: Policy scenarios to 2060. OECD Publishing. https://doi.org/10.1787/aa1edf33-en

Parker Hannifin. (2022). EPDM elastomers for automotive sealing. Parker Seals Division.

Patil, R., Sharma, V., & Kumar, P. (2023). Bio-based flame-retardant polymers: Sustainable solutions for electric vehicle applications. Renewable and Sustainable Energy Reviews, 176, 113218. https://doi.org/10.1016/j.rser.2023.113218

Pil, L., Bensadoun, F., Pariset, J., & Verpoest, I. (2016). Why are designers fascinated by flax and hemp fibre composites? Composites Part A: Applied Science and Manufacturing, 83, 193–205. https://doi.org/10.1016/j.compositesa.2015.11.004

PlasticsEurope. (2014). Eco-profiles of the European plastics industry. PlasticsEurope. https://plasticseurope.org/

RadiciGroup. (2024). Advanced engineering polymers for lightweight e-mobility solutions. https://www.radicigroup.com/en/products/e-mobility

RadiciGroup. (2024). Engineering polymers for electric vehicle battery systems. https://www.radicigroup.com/

Saeed, M., Ali, I., & Khan, M. (2019). Use of glass fiber reinforced polypropylene for battery enclosures. Polymer Testing, 76, 173–180. https://doi.org/10.1016/j.polymertesting.2019.03.019

Singh, D., & George, A. (2021). High-performance elastomers for electric vehicle applications. Rubber Chemistry and Technology, 94(2), 183–200. https://doi.org/10.5254/rct.21.80371

Sustainable Polymers EV. (2024). Sustainable polymers for lightweight battery enclosures in electric vehicles. https://www.sciencedirect.com/

Thermtest. (2024). Most common plastics in automotive battery components. https://thermtest.com/common-battery-plastics-in-automotive

U.S. Department of Energy. (2022). Lightweight materials for automotive applications. https://www.energy.gov/eere/vehicles/lightweight-materials

Wacker Chemie AG. (2022). Silicone sealants for electromobility. Wacker Technical Brochure.

Wang, F., Li, X., & Zhao, Y. (2021). Thermal conductivity enhancement in polymer composites for EV battery applications. Journal of Applied Polymer Science, 138(20), e50248. https://doi.org/10.1002/app.50248

Wang, Y., Zhao, H., & Zhou, M. (2023). Material compliance strategies for high-voltage EV systems. IEEE Transactions on Transportation Electrification, 9(1), 101–112. https://doi.org/10.1109/TTE.2023.3234011

Wu, T., Liang, S., & Xu, M. (2021). Carbon footprint of common plastics: A global perspective. Environmental Science & Technology, 55(19), 13069–13079. https://doi.org/10.1021/acs.est.1c02150

Yan, L., Chouw, N., & Jayaraman, K. (2014). Flax fibre and its composites – A review. Composites Part B: Engineering, 56, 296–317. https://doi.org/10.1016/j.compositesb.2013.08.014

Zhang, H., Sun, J., & Luo, T. (2022). Tailoring thermal conductivity and dielectric properties of polymer composites for advanced thermal management. Progress in Polymer Science, 129, 101548. https://doi.org/10.1016/j.progpolymsci.2022.101548

Zhang, J., & Zhou, Y. (2020). Advanced polymer encapsulants for lithium-ion battery safety. ACS Applied Energy Materials, 3(12), 12456–12467. https://doi.org/10.1021/acsaem.0c02015

Zhang, Q., et al. (2022). Application of adhesives in EV battery pack manufacturing. International Journal of Adhesion and Adhesives, 112, 103022. https://doi.org/10.1016/j.ijadhadh.2021.103022

Zhou, L., Kumar, R., & Lee, C. (2023). Polymer integration in energy storage systems: Future trends and sustainability outlook. Composites Communications, 38, 101301. https://doi.org/10.1016/j.coco.2023.101301

Article Statistics

Downloads

Download data is not yet available.

Copyright License

Download Citations

How to Cite

Saloni Agrawal. (2025). High-Performance Polymers for Faster Cars: Advancing Electric Vehicle Battery Systems- A Comprehensive Review. The American Journal of Interdisciplinary Innovations and Research, 7(8), 85–96. https://doi.org/10.37547/tajiir/Volume07Issue08-10