Articles | Open Access | DOI: https://doi.org/10.37547/tajiir/Volume06Issue11-22

POTENTIAL ENVIRONMENTAL IMPACTS OF SOLID WASTE MANAGEMENT IN YOGYAKARTA, INDONESIA: A COMPARATIVE STUDY USING LIFE CYCLE ASSESSMENT

Titi Tiara Anasstasia , Department of Environmental Engineering, Faculty of Mineral Technology, UPN Veteran Yogyakarta, Jl. Padjajaran no 104, Sleman, Yogyakarta, Indonesia
Tissa Ayu Algary , Department of Environmental Engineering, Faculty of Mineral Technology, UPN Veteran Yogyakarta, Jl. Padjajaran no 104, Sleman, Yogyakarta, Indonesia
Arika Bagus Perdana , Department of Communication Science, Faculty of Social and Political Science, UPN Veteran Yogyakarta, Jl. Tambak Banyan No. 2 Caturtunggal, Yogyakarta, Indonesia

Abstract

Life Cycle Assessment (LCA) serves as a tool to estimate the potential impacts of a waste management system. Sleman Regency needs a scenario of waste management with a lower environmental impact. The present study aims to determine the potential impact of the existing business as usual (BAU) waste management practice in Sleman Regency and compare it with several alternatives to waste management strategies. The LCA method was applied following ISO 14040 and ISO 14044 standards. The impact was assessed using the CML-1A Baseline and ILCD 2011 Midpoint+ methods, along with data from the Ecoinvent database. In the BAU scenario, the impact values observed in every 1 ton of waste managed were Global Warming Potential (GWP) of 4.90E+03 kg CO2 eq, Acidification Potential (ADP) of 2.78E-03 kg SO2 eq, Eutrophication Potential (EP) of 4.92E-02 kg PO4-eq, Human Toxicity Potential (HTP) of 2.06E+01 kg 1.4 DB eq, and Land Use Potential (LUP) of 4.71E+01 kg C deficit. Processing waste into biomass pellets and Refuse Derived Fuel accompanied by waste reduction could decrease the GWP value to 34.04 kg CO2 eq, ADP to 2.96E-06 kg SO2 eq, EP to 7.33E-05 kg PO4-eq, HTP to 3.70E-04 kg 1.4 DB eq, and LUP to 2.11E-03 kg C deficit. The results of waste management with the lowest impact value can serve as a reference for formulating waste management policies in the study area.

ZENODO DOI :- https://doi.org/10.5281/zenodo.14272645

Keywords

Cradle to grave, environmental impact, life cycle assessment

References

Abdel-Shafy, H. I., & Mansour, M. S. M. (2018). Solid waste issue: Sources, composition, disposal, recycling, and valorization. In Egyptian Journal of Petroleum (Vol. 27, Issue 4, pp. 1275–1290). Egyptian Petroleum Research Institute. https://doi.org/10.1016/j.ejpe.2018.07.003

Ali, S. M., Pervaiz, A., Afzal, B., Hamid, N., & Yasmin, A. (2014). Open dumping of municipal solid waste and its hazardous impacts on soil and vegetation diversity at waste dumping sites of Islamabad city. Journal of King Saud University - Science, 26(1), 59–65. https://doi.org/10.1016/j.jksus.2013.08.003

Anasstasia, T. T., Lestianingrum, E., Cahyono, R. B., & Azis, M. M. (2020). Life Cycle Assessment of Refuse Derived Fuel (RDF) for Municipal Solid Waste (MSW) Management: Case Study Area Around Cement Industry, Cirebon, Indonesia. IOP Conference Series: Materials Science and Engineering, 778(1). https://doi.org/10.1088/1757-899X/778/1/012146

Arushanyan, Y., Ekener, E., & Moberg, Å. (2017). Sustainability assessment framework for scenarios – SAFS. Environmental Impact Assessment Review, 63, 23–34. https://doi.org/10.1016/j.eiar.2016.11.001

Aziz, R., & Nurunnissa, S. (2022). Comparative Life Cycle Assessment for Improvement of Solid Waste Management System of Pariaman Coastal Tourism Area. Indonesian Journal of Environmental Management and Sustainability, 6(2), 42–52. https://doi.org/10.26554/ijems.2022.6.2.42-52

Badan Pusat Statistik. (n.d.). Rainfall (Ch) per Month based on Monitoring Station 2023. Retrieved August 12, 2024, from https://bantulkab.bps.go.id/indicator/151/53/1/curah-hujan-per-bulan.html

Banar, M., Cokaygil, Z., & Ozkan, A. (2009). Life cycle assessment of solid waste management options for Eskisehir, Turkey. Waste Management, 29(1), 54–62. https://doi.org/10.1016/J.WASMAN.2007.12.006

Buratti, C., Barbanera, M., Testarmata, F., & Fantozzi, F. (2015). Life Cycle Assessment of organic waste management strategies: An Italian case study. Journal of Cleaner Production, 89, 125–136. https://doi.org/10.1016/j.jclepro.2014.11.012

Choden, Y., Pelzang, K., Basnet, A. D. R., & Dahal, K. B. (2022). Modeling of Leachate Generation from Landfill Sites. Nature Environment and Pollution Technology, 21(3), 993–1002. https://doi.org/10.46488/NEPT.2022.v21i03.006

Dangi, M. B., Malla, O. B., Cohen, R. R. H., Khatiwada, N. R., & Budhathoki, S. (2023). Life cycle assessment of municipal solid waste management in Kathmandu city, Nepal – An impact of an incomplete data set. Habitat International, 139. https://doi.org/10.1016/j.habitatint.2023.102895

Dincer, I., & Abu-Rayash, A. (2020). Sustainability modeling. Energy Sustainability, 119–164. https://doi.org/10.1016/B978-0-12-819556-7.00006-1

EPA. (2024, April 11). Overview of Greenhouse Gases. https://www.epa.gov/ghgemissions/overview-greenhouse-gases

Farhan, M., Taha, M. M., Yusuf, Y., Sundi, S. A., & Zakaria, N. H. (2024). Environmental Assessment on Fabrication of Bio-composite Filament Fused Deposition Modeling Through Life Cycle Analysis. Pertanika Journal of Science and Technology, 32(S2), 37–48. https://doi.org/10.47836/PJST.32.S2.03

Fernández-Nava, Y., Del Río, J., Rodríguez-Iglesias, J., Castrillón, L., & Marañón, E. (2014). Life cycle assessment of different municipal solid waste management options: A case study of Asturias (Spain). Journal of Cleaner Production, 81, 178–189. https://doi.org/10.1016/j.jclepro.2014.06.008

Gallardo, A., Edo-Alcón, N., Carlos, M., & Renau, M. (2016). The determination of waste generation and composition as an essential tool to improve the waste management plan of a university. In Waste Management (Vol. 53, pp. 3–11). Elsevier Ltd. https://doi.org/10.1016/j.wasman.2016.04.013

Hajam, Y. A., Kumar, R., & Kumar, A. (2023). Environmental waste management strategies and vermi transformation for sustainable development. In Environmental Challenges (Vol. 13). Elsevier B.V. https://doi.org/10.1016/j.envc.2023.100747

Ibrahim, T. N. T., Mahmood, N. Z., & Othman, F. (2017). Estimation of leachate generation from MSW landfills in Selangor, Malaysia. Asian Journal of Microbiology, Biotechnology and Environmental Sciences, 19(1), 44–49.

Karpan, B., Abdul Raman, A. A., & Taieb Aroua, M. K. (2021). Waste-to-energy: Coal-like refuse derived fuel from hazardous waste and biomass mixture. Process Safety and Environmental Protection, 149, 655–664. https://doi.org/10.1016/j.psep.2021.03.009

Khandelwal, H., Thalla, A. K., Kumar, S., & Kumar, R. (2019). Life cycle assessment of municipal solid waste management options for India. Bioresource Technology, 288(May), 121515. https://doi.org/10.1016/j.biortech.2019.121515

Kossakowska, K., & Grzesik, K. (2019). Life cycle assessment of the mixed municipal waste management system based on mechanical-biological treatment. Journal of Ecological Engineering, 20(8), 175–183. https://doi.org/10.12911/22998993/111323

Kusumaningrum, W. B., & Munawar, S. S. (2014). Prospect of bio-pellet as an alternative energy to substitute solid fuel based. Energy Procedia, 47, 303–309. https://doi.org/10.1016/j.egypro.2014.01.229

Mio, A., Fermeglia, M., & Favi, C. (2022). A critical review and normalization of the life cycle assessment outcomes in the naval sector. Bibliometric analysis and characteristics of the studies. Journal of Cleaner Production, 371. https://doi.org/10.1016/j.jclepro.2022.133268

Mohan, R. K., Sarojini, J., Rajak, U., Verma, T. N., & Ağbulut, Ü. (2023). Alternative fuel production from waste plastics and their usability in light duty diesel engine: Combustion, energy, and environmental analysis. Energy, 265. https://doi.org/10.1016/j.energy.2022.126140

Muralikrishna, I. V., & Manickam, V. (2017). Air Pollution Control Technologies. Environmental Management, 337–397. https://doi.org/10.1016/B978-0-12-811989-1.00014-2

Muthmainah, L. (2007). Encouraging Participation and Building Synergy: Moving Away from Ecological Stagnation in Waste Management. Jurnal Ilmu Sosial Dan Ilmu Politik, 11(2), 153–286. https://doi.org/https://doi.org/10.22146/jsp.11000

Pérez, J., Lumbreras, J., & Rodríguez, E. (2020). Life cycle assessment as a decision-making tool for the design of urban solid waste pre-collection and collection/transport systems. Resources, Conservation and Recycling, 161. https://doi.org/10.1016/j.resconrec.2020.104988

Radyan Danar, O., Rohmasari, A., & Amelia Novita, A. (2019). Inovasi Pelayanan dalam Pengelolaan Sampah: Studi pada Bank Sampah. In Asti Amelia Novita/ JIAP (Vol. 5, Issue 3).

Rajendran, N. A., Jimi, Q. L. A., & Sharaai, A. H. (2021). Contribution of Life Cycle Knowledge towards Environmental Performance of ISO 14001 Certified Malaysian Companies: Analysis of ISO 14001 and Selected Life Cycle Management Tools. Pertanika Journal of Social Sciences and Humanities, 29(4), 2189–2205. https://doi.org/10.47836/pjssh.29.4.05

Rezania, S., Oryani, B., Nasrollahi, V. R., Darajeh, N., Lotfi Ghahroud, M., & Mehranzamir, K. (2023). Review on Waste-to-Energy Approaches toward a Circular Economy in Developed and Developing Countries. In Processes (Vol. 11, Issue 9). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/pr11092566

Rimantho, D., Hidayah, N. Y., Pratomo, V. A., Saputra, A., Akbar, I., & Sundari, A. S. (2023). The strategy for developing wood pellets as sustainable renewable energy in Indonesia. Heliyon, 9(3). https://doi.org/10.1016/j.heliyon.2023.e14217

Salvia, G., Zimmermann, N., Willan, C., Hale, J., Gitau, H., Muindi, K., Gichana, E., & Davies, M. (2021). The wicked problem of waste management: An attention-based analysis of stakeholder behaviours. Journal of Cleaner Production, 326. https://doi.org/10.1016/j.jclepro.2021.129200

Sharma, A., Ganguly, R., & Gupta, A. K. (2023). Life cycle assessment of municipal solid waste generated from hilly cities in India – A case study. Heliyon, 9(11). https://doi.org/10.1016/j.heliyon.2023.e21575

Shekoohiyan, S., Hadadian, M., Heidari, M., & Hosseinzadeh-Bandbafha, H. (2023). Life cycle assessment of Tehran Municipal solid waste during the COVID-19 pandemic and environmental impacts prediction using machine learning. Case Studies in Chemical and Environmental Engineering, 7. https://doi.org/10.1016/j.cscee.2023.100331

Siddiqua, A., Hahladakis, J. N., & Al-Attiya, W. A. K. A. (2022). An overview of the environmental pollution and health effects associated with waste landfilling and open dumping. In Environmental Science and Pollution Research (Vol. 29, Issue 39, pp. 58514–58536). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s11356-022-21578-z

Srinvasa Reddy.N, V., Satyanarayana. S., & G., Sudha. (2017). Bio Gas Generation from Biodegradable Kitchen Waste. International Journal of Environment, Agriculture and Biotechnology, 2(2), 689–694. https://doi.org/10.22161/ijeab/2.2.15

Tchobanoglous, G., & Kreith, F. (2019). Handbook of Solid Waste Management. In Environmental Health, Third Edition (2nd ed.). McGraw-Hill Companies. https://doi.org/10.1036/0071356231

Toha, M., & Rahman, M. M. (2023). Estimation and prediction of methane gas generation from landfill sites in Dhaka city, Bangladesh. Case Studies in Chemical and Environmental Engineering, 7. https://doi.org/10.1016/j.cscee.2023.100302

Torkayesh, A. E., Rajaeifar, M. A., Rostom, M., Malmir, B., Yazdani, M., Suh, S., & Heidrich, O. (2022). Integrating life cycle assessment and multi criteria decision making for sustainable waste management: Key issues and recommendations for future studies. In Renewable and Sustainable Energy Reviews (Vol. 168). Elsevier Ltd. https://doi.org/10.1016/j.rser.2022.112819

Vaverková, M. D. (2019). Landfill impacts on the environment— review. In Geosciences (Switzerland) (Vol. 9, Issue 10). MDPI AG. https://doi.org/10.3390/geosciences9100431

Vidal-Legaz, Beatriz., Antón, A. ., Maia De Souza, Danielle., Sala, Serenella., Nocita, Marco., Putman, Ben., & Teixeira, R. F. M. . (2016). Land-use related environmental indicators for life cycle assessment : analysis of key aspects in land use modelling. Publications Office.

Wei, Z., Cheng, Z., & Shen, Y. (2024). Recent development in production of pellet fuels from biomass and polyethylene (PE) wastes. In Fuel (Vol. 358). Elsevier Ltd. https://doi.org/10.1016/j.fuel.2023.130222

Werkneh, A. A. (2022). Biogas impurities: environmental and health implications, removal technologies and future perspectives. In Heliyon (Vol. 8, Issue 10). Elsevier Ltd. https://doi.org/10.1016/j.heliyon.2022.e10929

Winaningsih, I., Suramta, S., & Mala, Y. (2023). Karakterisasi Pelet Pupuk Organik Berbahan Eco Enzyme. KOVALEN: Jurnal Riset Kimia, 9(3), 258–265. https://doi.org/10.22487/kovalen.2023.v9.i3.16541

Wu, J., Ebadian, M., Kim, K. H., Kim, C. S., & Saddler, J. (2022). The use of steam pretreatment to enhance pellet durability and the enzyme-mediated hydrolysis of pellets to fermentable sugars. In Bioresource Technology (Vol. 347). Elsevier Ltd. https://doi.org/10.1016/j.biortech.2022.126731

Yazdani, M., Monavari, M., Omrani, G. A., Shariat, M., & Hosseini, M. (2015). Municipal solid waste open dumping Municipal solid waste open dumping, implication for land degradation Municipal solid waste open dumping. Solid Earth Discuss, 7, 1097–1118. https://doi.org/10.5194/sed-7-1097-2015

Article Statistics

Downloads

Download data is not yet available.

Copyright License

Download Citations

How to Cite

Titi Tiara Anasstasia, Tissa Ayu Algary, & Arika Bagus Perdana. (2024). POTENTIAL ENVIRONMENTAL IMPACTS OF SOLID WASTE MANAGEMENT IN YOGYAKARTA, INDONESIA: A COMPARATIVE STUDY USING LIFE CYCLE ASSESSMENT. The American Journal of Interdisciplinary Innovations and Research, 6(11), 255–273. https://doi.org/10.37547/tajiir/Volume06Issue11-22