POTENTIAL ENVIRONMENTAL IMPACTS OF SOLID WASTE MANAGEMENT IN YOGYAKARTA, INDONESIA: A COMPARATIVE STUDY USING LIFE CYCLE ASSESSMENT
Titi Tiara Anasstasia , Department of Environmental Engineering, Faculty of Mineral Technology, UPN Veteran Yogyakarta, Jl. Padjajaran no 104, Sleman, Yogyakarta, Indonesia Tissa Ayu Algary , Department of Environmental Engineering, Faculty of Mineral Technology, UPN Veteran Yogyakarta, Jl. Padjajaran no 104, Sleman, Yogyakarta, Indonesia Arika Bagus Perdana , Department of Communication Science, Faculty of Social and Political Science, UPN Veteran Yogyakarta, Jl. Tambak Banyan No. 2 Caturtunggal, Yogyakarta, IndonesiaAbstract
Life Cycle Assessment (LCA) serves as a tool to estimate the potential impacts of a waste management system. Sleman Regency needs a scenario of waste management with a lower environmental impact. The present study aims to determine the potential impact of the existing business as usual (BAU) waste management practice in Sleman Regency and compare it with several alternatives to waste management strategies. The LCA method was applied following ISO 14040 and ISO 14044 standards. The impact was assessed using the CML-1A Baseline and ILCD 2011 Midpoint+ methods, along with data from the Ecoinvent database. In the BAU scenario, the impact values observed in every 1 ton of waste managed were Global Warming Potential (GWP) of 4.90E+03 kg CO2 eq, Acidification Potential (ADP) of 2.78E-03 kg SO2 eq, Eutrophication Potential (EP) of 4.92E-02 kg PO4-eq, Human Toxicity Potential (HTP) of 2.06E+01 kg 1.4 DB eq, and Land Use Potential (LUP) of 4.71E+01 kg C deficit. Processing waste into biomass pellets and Refuse Derived Fuel accompanied by waste reduction could decrease the GWP value to 34.04 kg CO2 eq, ADP to 2.96E-06 kg SO2 eq, EP to 7.33E-05 kg PO4-eq, HTP to 3.70E-04 kg 1.4 DB eq, and LUP to 2.11E-03 kg C deficit. The results of waste management with the lowest impact value can serve as a reference for formulating waste management policies in the study area.
ZENODO DOI :- https://doi.org/10.5281/zenodo.14272645
Keywords
Cradle to grave, environmental impact, life cycle assessment
References
Abdel-Shafy, H. I., & Mansour, M. S. M. (2018). Solid waste issue: Sources, composition, disposal, recycling, and valorization. In Egyptian Journal of Petroleum (Vol. 27, Issue 4, pp. 1275–1290). Egyptian Petroleum Research Institute. https://doi.org/10.1016/j.ejpe.2018.07.003
Ali, S. M., Pervaiz, A., Afzal, B., Hamid, N., & Yasmin, A. (2014). Open dumping of municipal solid waste and its hazardous impacts on soil and vegetation diversity at waste dumping sites of Islamabad city. Journal of King Saud University - Science, 26(1), 59–65. https://doi.org/10.1016/j.jksus.2013.08.003
Anasstasia, T. T., Lestianingrum, E., Cahyono, R. B., & Azis, M. M. (2020). Life Cycle Assessment of Refuse Derived Fuel (RDF) for Municipal Solid Waste (MSW) Management: Case Study Area Around Cement Industry, Cirebon, Indonesia. IOP Conference Series: Materials Science and Engineering, 778(1). https://doi.org/10.1088/1757-899X/778/1/012146
Arushanyan, Y., Ekener, E., & Moberg, Å. (2017). Sustainability assessment framework for scenarios – SAFS. Environmental Impact Assessment Review, 63, 23–34. https://doi.org/10.1016/j.eiar.2016.11.001
Aziz, R., & Nurunnissa, S. (2022). Comparative Life Cycle Assessment for Improvement of Solid Waste Management System of Pariaman Coastal Tourism Area. Indonesian Journal of Environmental Management and Sustainability, 6(2), 42–52. https://doi.org/10.26554/ijems.2022.6.2.42-52
Badan Pusat Statistik. (n.d.). Rainfall (Ch) per Month based on Monitoring Station 2023. Retrieved August 12, 2024, from https://bantulkab.bps.go.id/indicator/151/53/1/curah-hujan-per-bulan.html
Banar, M., Cokaygil, Z., & Ozkan, A. (2009). Life cycle assessment of solid waste management options for Eskisehir, Turkey. Waste Management, 29(1), 54–62. https://doi.org/10.1016/J.WASMAN.2007.12.006
Buratti, C., Barbanera, M., Testarmata, F., & Fantozzi, F. (2015). Life Cycle Assessment of organic waste management strategies: An Italian case study. Journal of Cleaner Production, 89, 125–136. https://doi.org/10.1016/j.jclepro.2014.11.012
Choden, Y., Pelzang, K., Basnet, A. D. R., & Dahal, K. B. (2022). Modeling of Leachate Generation from Landfill Sites. Nature Environment and Pollution Technology, 21(3), 993–1002. https://doi.org/10.46488/NEPT.2022.v21i03.006
Dangi, M. B., Malla, O. B., Cohen, R. R. H., Khatiwada, N. R., & Budhathoki, S. (2023). Life cycle assessment of municipal solid waste management in Kathmandu city, Nepal – An impact of an incomplete data set. Habitat International, 139. https://doi.org/10.1016/j.habitatint.2023.102895
Dincer, I., & Abu-Rayash, A. (2020). Sustainability modeling. Energy Sustainability, 119–164. https://doi.org/10.1016/B978-0-12-819556-7.00006-1
EPA. (2024, April 11). Overview of Greenhouse Gases. https://www.epa.gov/ghgemissions/overview-greenhouse-gases
Farhan, M., Taha, M. M., Yusuf, Y., Sundi, S. A., & Zakaria, N. H. (2024). Environmental Assessment on Fabrication of Bio-composite Filament Fused Deposition Modeling Through Life Cycle Analysis. Pertanika Journal of Science and Technology, 32(S2), 37–48. https://doi.org/10.47836/PJST.32.S2.03
Fernández-Nava, Y., Del Río, J., Rodríguez-Iglesias, J., Castrillón, L., & Marañón, E. (2014). Life cycle assessment of different municipal solid waste management options: A case study of Asturias (Spain). Journal of Cleaner Production, 81, 178–189. https://doi.org/10.1016/j.jclepro.2014.06.008
Gallardo, A., Edo-Alcón, N., Carlos, M., & Renau, M. (2016). The determination of waste generation and composition as an essential tool to improve the waste management plan of a university. In Waste Management (Vol. 53, pp. 3–11). Elsevier Ltd. https://doi.org/10.1016/j.wasman.2016.04.013
Hajam, Y. A., Kumar, R., & Kumar, A. (2023). Environmental waste management strategies and vermi transformation for sustainable development. In Environmental Challenges (Vol. 13). Elsevier B.V. https://doi.org/10.1016/j.envc.2023.100747
Ibrahim, T. N. T., Mahmood, N. Z., & Othman, F. (2017). Estimation of leachate generation from MSW landfills in Selangor, Malaysia. Asian Journal of Microbiology, Biotechnology and Environmental Sciences, 19(1), 44–49.
Karpan, B., Abdul Raman, A. A., & Taieb Aroua, M. K. (2021). Waste-to-energy: Coal-like refuse derived fuel from hazardous waste and biomass mixture. Process Safety and Environmental Protection, 149, 655–664. https://doi.org/10.1016/j.psep.2021.03.009
Khandelwal, H., Thalla, A. K., Kumar, S., & Kumar, R. (2019). Life cycle assessment of municipal solid waste management options for India. Bioresource Technology, 288(May), 121515. https://doi.org/10.1016/j.biortech.2019.121515
Kossakowska, K., & Grzesik, K. (2019). Life cycle assessment of the mixed municipal waste management system based on mechanical-biological treatment. Journal of Ecological Engineering, 20(8), 175–183. https://doi.org/10.12911/22998993/111323
Kusumaningrum, W. B., & Munawar, S. S. (2014). Prospect of bio-pellet as an alternative energy to substitute solid fuel based. Energy Procedia, 47, 303–309. https://doi.org/10.1016/j.egypro.2014.01.229
Mio, A., Fermeglia, M., & Favi, C. (2022). A critical review and normalization of the life cycle assessment outcomes in the naval sector. Bibliometric analysis and characteristics of the studies. Journal of Cleaner Production, 371. https://doi.org/10.1016/j.jclepro.2022.133268
Mohan, R. K., Sarojini, J., Rajak, U., Verma, T. N., & Ağbulut, Ü. (2023). Alternative fuel production from waste plastics and their usability in light duty diesel engine: Combustion, energy, and environmental analysis. Energy, 265. https://doi.org/10.1016/j.energy.2022.126140
Muralikrishna, I. V., & Manickam, V. (2017). Air Pollution Control Technologies. Environmental Management, 337–397. https://doi.org/10.1016/B978-0-12-811989-1.00014-2
Muthmainah, L. (2007). Encouraging Participation and Building Synergy: Moving Away from Ecological Stagnation in Waste Management. Jurnal Ilmu Sosial Dan Ilmu Politik, 11(2), 153–286. https://doi.org/https://doi.org/10.22146/jsp.11000
Pérez, J., Lumbreras, J., & Rodríguez, E. (2020). Life cycle assessment as a decision-making tool for the design of urban solid waste pre-collection and collection/transport systems. Resources, Conservation and Recycling, 161. https://doi.org/10.1016/j.resconrec.2020.104988
Radyan Danar, O., Rohmasari, A., & Amelia Novita, A. (2019). Inovasi Pelayanan dalam Pengelolaan Sampah: Studi pada Bank Sampah. In Asti Amelia Novita/ JIAP (Vol. 5, Issue 3).
Rajendran, N. A., Jimi, Q. L. A., & Sharaai, A. H. (2021). Contribution of Life Cycle Knowledge towards Environmental Performance of ISO 14001 Certified Malaysian Companies: Analysis of ISO 14001 and Selected Life Cycle Management Tools. Pertanika Journal of Social Sciences and Humanities, 29(4), 2189–2205. https://doi.org/10.47836/pjssh.29.4.05
Rezania, S., Oryani, B., Nasrollahi, V. R., Darajeh, N., Lotfi Ghahroud, M., & Mehranzamir, K. (2023). Review on Waste-to-Energy Approaches toward a Circular Economy in Developed and Developing Countries. In Processes (Vol. 11, Issue 9). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/pr11092566
Rimantho, D., Hidayah, N. Y., Pratomo, V. A., Saputra, A., Akbar, I., & Sundari, A. S. (2023). The strategy for developing wood pellets as sustainable renewable energy in Indonesia. Heliyon, 9(3). https://doi.org/10.1016/j.heliyon.2023.e14217
Salvia, G., Zimmermann, N., Willan, C., Hale, J., Gitau, H., Muindi, K., Gichana, E., & Davies, M. (2021). The wicked problem of waste management: An attention-based analysis of stakeholder behaviours. Journal of Cleaner Production, 326. https://doi.org/10.1016/j.jclepro.2021.129200
Sharma, A., Ganguly, R., & Gupta, A. K. (2023). Life cycle assessment of municipal solid waste generated from hilly cities in India – A case study. Heliyon, 9(11). https://doi.org/10.1016/j.heliyon.2023.e21575
Shekoohiyan, S., Hadadian, M., Heidari, M., & Hosseinzadeh-Bandbafha, H. (2023). Life cycle assessment of Tehran Municipal solid waste during the COVID-19 pandemic and environmental impacts prediction using machine learning. Case Studies in Chemical and Environmental Engineering, 7. https://doi.org/10.1016/j.cscee.2023.100331
Siddiqua, A., Hahladakis, J. N., & Al-Attiya, W. A. K. A. (2022). An overview of the environmental pollution and health effects associated with waste landfilling and open dumping. In Environmental Science and Pollution Research (Vol. 29, Issue 39, pp. 58514–58536). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s11356-022-21578-z
Srinvasa Reddy.N, V., Satyanarayana. S., & G., Sudha. (2017). Bio Gas Generation from Biodegradable Kitchen Waste. International Journal of Environment, Agriculture and Biotechnology, 2(2), 689–694. https://doi.org/10.22161/ijeab/2.2.15
Tchobanoglous, G., & Kreith, F. (2019). Handbook of Solid Waste Management. In Environmental Health, Third Edition (2nd ed.). McGraw-Hill Companies. https://doi.org/10.1036/0071356231
Toha, M., & Rahman, M. M. (2023). Estimation and prediction of methane gas generation from landfill sites in Dhaka city, Bangladesh. Case Studies in Chemical and Environmental Engineering, 7. https://doi.org/10.1016/j.cscee.2023.100302
Torkayesh, A. E., Rajaeifar, M. A., Rostom, M., Malmir, B., Yazdani, M., Suh, S., & Heidrich, O. (2022). Integrating life cycle assessment and multi criteria decision making for sustainable waste management: Key issues and recommendations for future studies. In Renewable and Sustainable Energy Reviews (Vol. 168). Elsevier Ltd. https://doi.org/10.1016/j.rser.2022.112819
Vaverková, M. D. (2019). Landfill impacts on the environment— review. In Geosciences (Switzerland) (Vol. 9, Issue 10). MDPI AG. https://doi.org/10.3390/geosciences9100431
Vidal-Legaz, Beatriz., Antón, A. ., Maia De Souza, Danielle., Sala, Serenella., Nocita, Marco., Putman, Ben., & Teixeira, R. F. M. . (2016). Land-use related environmental indicators for life cycle assessment : analysis of key aspects in land use modelling. Publications Office.
Wei, Z., Cheng, Z., & Shen, Y. (2024). Recent development in production of pellet fuels from biomass and polyethylene (PE) wastes. In Fuel (Vol. 358). Elsevier Ltd. https://doi.org/10.1016/j.fuel.2023.130222
Werkneh, A. A. (2022). Biogas impurities: environmental and health implications, removal technologies and future perspectives. In Heliyon (Vol. 8, Issue 10). Elsevier Ltd. https://doi.org/10.1016/j.heliyon.2022.e10929
Winaningsih, I., Suramta, S., & Mala, Y. (2023). Karakterisasi Pelet Pupuk Organik Berbahan Eco Enzyme. KOVALEN: Jurnal Riset Kimia, 9(3), 258–265. https://doi.org/10.22487/kovalen.2023.v9.i3.16541
Wu, J., Ebadian, M., Kim, K. H., Kim, C. S., & Saddler, J. (2022). The use of steam pretreatment to enhance pellet durability and the enzyme-mediated hydrolysis of pellets to fermentable sugars. In Bioresource Technology (Vol. 347). Elsevier Ltd. https://doi.org/10.1016/j.biortech.2022.126731
Yazdani, M., Monavari, M., Omrani, G. A., Shariat, M., & Hosseini, M. (2015). Municipal solid waste open dumping Municipal solid waste open dumping, implication for land degradation Municipal solid waste open dumping. Solid Earth Discuss, 7, 1097–1118. https://doi.org/10.5194/sed-7-1097-2015
Article Statistics
Downloads
Copyright License
Copyright (c) 2024 Titi Tiara Anasstasia, Tissa Ayu Algary, Arika Bagus Perdana
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain the copyright of their manuscripts, and all Open Access articles are disseminated under the terms of the Creative Commons Attribution License 4.0 (CC-BY), which licenses unrestricted use, distribution, and reproduction in any medium, provided that the original work is appropriately cited. The use of general descriptive names, trade names, trademarks, and so forth in this publication, even if not specifically identified, does not imply that these names are not protected by the relevant laws and regulations.