Applied Sciences | Open Access | DOI: https://doi.org/10.37547/tajas/Volume07Issue11-11

Synthesis And Evaluation Of Metal-Doped Rice Husk Silica For Iodine Vapor Capture

Niyazova Dilnoza Bakhtiyorovna , Researcher (PhD), Institute of General and Inorganic Chemistry, ASc RUz, Tashkent, Uzbekistan
Mamajonov Bakhodirjon Madaminovich , Applicant (PhD Seeker), Namangan Institute of Engineering and Technology, Namangan, Uzbekistan
Khoshimov Shakhrom Mansurovich , Doctoral student (DSc), Institute of General and Inorganic Chemistry, ASc RUz, Tashkent, Uzbekistan
Abdikamalova Aziza Bakhtiyarovna , Chief researcher, Institute of General and Inorganic Chemistry, ASc RUz, Doctor of Chemical Sciences, Professor, Uzbekistan
Eshmetov Izzat Dusimbatovich , Chief researcher, Institute of General and Inorganic Chemistry, ASc RUz, Doctor of Chemical Sciences, Professor, Uzbekistan
Mamataliev Nozim Nimadjonovich , Chief researcher, Institute of General and Inorganic Chemistry, ASc RUz, Doctor of Chemical Sciences, Uzbekistan
Alisher Maksetbaevich Kalbaev , Junior Researcher, PhD, Institute of General and Inorganic Chemistry, ASc RUz, Tashkent, Republic of Uzbekistan, Uzbekistan

Abstract

Amorphous silica was synthesized from rice husk and doped with Ag, Cu, Zn, or Bi to develop iodine sorbents. The resulting metal-loaded silica materials, produced via thermal treatment after wet impregnation, were tested for iodine vapor uptake at 25 °C for 1 hour. Bismuth- and copper-modified silica achieved the highest capacities (0.5–0.6 g I2/g), outperforming silver (0.2 g/g) and zinc (0.15 g/g). The enhanced performance stems from chemisorption via metal iodide formation (AgI, CuI, ZnI2, BiI3). These results align with literature values and demonstrate a sustainable route to efficient iodine capture using low-cost rice husk silica combined with targeted metal additives.

Keywords

Rice husk silica, iodine capture, metal-doped sorbents

References

Li B., et al. Molecular iodine capture by covalent organic frameworks // Molecules. – 2022. – Vol. 27. – P. 9045.

Zhang F., et al. Polymorphic covalent organic frameworks: molecularly defined pore structures and iodine adsorption property // Molecules. – 2023. – Vol. 28. – P. 449.

Chen Y., et al. Cu/Bi–NC composites derived from bimetallic MOFs for efficient and selective capture of iodine // Processes. – 2023. – Vol. 13. – P. 2678.

Chen W., et al. Rapid and selective adsorption of iodide and iodate ions by hierarchical porous materials // Nanomaterials. – 2023. – Vol. 13. – P. 576.

Wang Z., et al. Metal–organic framework-polyethersulfone composite membrane for iodine capture // Polymers. – 2020. – Vol. 12. – P. 2309.

Toro P., et al. Transforming rice husk ash into road safety: a sustainable approach to glass microsphere production // Materials. – 2019. – Vol. 8. – P. 93.

Lim W. S., et al. Characterization of rice husk-based adsorbent for iodine and methylene blue removal // Processes. – 2023. – Vol. 13. – P. 2748.

Xu X., et al. High capacity adsorption of iodine gas by Ag⁰@C/SiO2 derived from rice husk // Carbon Letters. – 2021. – Vol. 31. – P. 29–40.

Shi W., et al. Synthesis of silver-impregnated magnetite mesoporous silica composites for removing iodide in aqueous solution // Toxics. – 2021. – Vol. 9. – P. 175.

Li J., et al. Improved utilization of Cu⁰ for efficient adsorption of iodine in gas phase // Chemical Engineering Journal. – 2024. – Vol. 460. – P. 141915.

Li Y., et al. Synthesis and characterization of silver-modified nanoporous silica materials for enhanced iodine removal // Nanomaterials. – 2023. – Vol. 14. – P. 1143.

Zhang Q., et al. Recent advances in the removal of radioactive iodine by bismuth-based materials // Frontiers in Chemistry. – 2023. – Vol. 11. – P. 1122484.

Chen L., et al. Efficient removal of radioactive iodine anions using δ-Bi2O3/MOF-808 through photo-oxidation and adsorption: performance evaluation and mechanistic insights // (Preprint, 2023).

Seitnazarova O., Kalbaev A., Mamataliev N., Abdikamalova A., Najimova N. Structural features of montmorillonite-surfactant systems: influence of surfactant packing density and montmorillonite surface nature // Journal of Chemical Technology and Metallurgy. – 2025. – Vol. 60. – No. 1. – P. 43–62.

Seitnazarova O.M., et al. Organobentonites synthesis and their sorption characteristics research // Palarch’s Journal of Archaeology of Egypt/Egyptology. – 2020. – Vol. 17. – No. 6.

Article Statistics

Downloads

Download data is not yet available.

Copyright License

Download Citations

How to Cite

Niyazova Dilnoza Bakhtiyorovna, Mamajonov Bakhodirjon Madaminovich, Khoshimov Shakhrom Mansurovich, Abdikamalova Aziza Bakhtiyarovna, Eshmetov Izzat Dusimbatovich, Mamataliev Nozim Nimadjonovich, & Alisher Maksetbaevich Kalbaev. (2025). Synthesis And Evaluation Of Metal-Doped Rice Husk Silica For Iodine Vapor Capture. The American Journal of Applied Sciences, 7(11), 100–107. https://doi.org/10.37547/tajas/Volume07Issue11-11