

AI-ASSISTED TEACHING METHODOLOGY: A PRACTICAL GUIDE TO INTEGRATING ARTIFICIAL INTELLIGENCE INTO ENGLISH LANGUAGE INSTRUCTION

PUBLISHED DATE
25 NOVEMBER 2025

ISBN:- 978-1-957653-58-7

AYGOZEL YAZMURADOVA

2025

AI-ASSISTED TEACHING METHODOLOGY: A PRACTICAL GUIDE TO INTEGRATING ARTIFICIAL INTELLIGENCE INTO ENGLISH LANGUAGE INSTRUCTION

Aygozel Yazmuradova

English Teacher, Seattle, Washington State, USA

Publication Info

**THE AMERICAN JOURNAL OF SOCIAL SCIENCE AND EDUCATION
INNOVATIONS
(ISSN: 2689-100X)**

ISBN: - 978-1-957653-58-7

CROSSREF DOI: - <https://doi.org/10.37547/tajssei/book-01>

PUBLISHED DATE: - 26 November 2025

Table of Contents

Abstract	4
Introduction	4
1. A Map of AI Tools for the English Language Teacher	6
1.1. Classification of AI Applications by Pedagogical Tasks	6
Vocabulary development.....	6
Grammar mastery.....	6
Pronunciation training and remediation	7
Writing development.....	7
Speaking development	7
1.2. Checklist for Selecting Effective and Safe AI Tools	8
2. Protocol for Integrating AI into the Lesson Structure	10
2.1. Step-by-Step Algorithm for Implementing AI Across Lesson Stages	10
Stage 1: Pre-class Preparation	10
Stage 2: In-class Delivery	11
Stage 3: Post-class.....	11
2.2. Blended Learning Models Combining Traditional Methods and AI	12
Flipped Classroom with AI Support.....	12
Station Rotation Model.....	12
Flex Model.....	13
3. Personalization of Learning with AI	14
3.1. Methodology for Using AI to Create Individualized Learning Plans	15
Step 1: Data Collection and Analysis.....	15
Step 2: Learner Profiling	15
Step 3: Adaptive Learning Paths	15
Step 4: Content Recommendation	16
3.2. Application of AI to Automate Routine Checks and Analyze Student Progress	16
Conclusion	17
References	18

Abstract

The methodology articulates a systemic approach to integrating artificial intelligence (AI) into English language teaching, aimed at cultivating teachers' methodological competence in using digital tools to personalize instruction and enhance instructional efficiency. The relevance of this work is conditioned by a widening gap between the theoretical potential of AI and its actual uptake in pedagogical practice. The novelty of the methodology lies in the development of a holistic model of AI-assisted teaching, uniting three interrelated components: (1) a map of AI tools classified by didactic functions and language-skill domains; (2) an authorial checklist for pedagogical, ethical, and technical appraisal of educational applications; (3) a protocol for implementing AI within the lesson structure, aligned with contemporary blended-learning models (flipped classroom, station rotation, flex model). In addition, an original method is presented for constructing individualized learning trajectories based on adaptive AI platforms, along with a system for automating pedagogical routines, from assignment checking to progress analytics. The main conclusions indicate that AI integration does not replace the teacher. Instead, it transforms the teacher's professional role. Artificial intelligence performs algorithmizable operations, data analysis, task generation, and evaluation of typical responses, thereby freeing teacher time for strategic instructional design, facilitating interaction, and developing students' critical thinking. The methodology will be helpful to English language teachers, methodologists, educational program developers, and school leaders seeking to implement AI in the learning process on a scientifically grounded, ethically safe basis.

Keywords: artificial intelligence, English language teaching, learning personalization, blended learning, AI integration, digital didactics, pedagogical transformation.

INTRODUCTION

The integration of artificial intelligence (AI) into education has ceased to be a futuristic concept. It has become an objective reality reshaping the landscape of teaching and learning (Granström & Oppi, 2025). Nevertheless, despite broad public and academic discourse, in practice, there is a considerable gap between the proclaimed potential of AI and its real pedagogical application. Many English language teachers who have heard about AI encounter a lack of systemic understanding of how to apply accessible tools effectively, methodologically, and safely, without turning the lesson into technological turmoil or losing pedagogical value (Aljemely, 2024).

This problem is complex and arises from a constellation of barriers that can be classified along several key dimensions. The most consequential obstacles lie not in the technical but in the psycho-pedagogical plane. Studies show that a significant share of teachers express serious concerns about the consequences of AI adoption. For example, 50% of surveyed teachers fear that AI will diminish the quality and quantity of live interaction between teacher and student, which is the cornerstone of effective learning (Syafrayani et al., 2024). Nearly as many (42.86%) are concerned that technology may undermine traditional educational values and lead to the dehumanization of the learning process; These fears are closely linked to the question

of professional identity: AI is perceived not as a tool but as a potential substitute, calling into question the teacher's established role (Aljemely, 2024). Thus, resistance to AI adoption is often less technological than existential, associated with anxiety about losing control over the pedagogical process.

Second in significance are problems related to insufficient teacher preparation. Furthermore, the lack of teacher training and AI literacy programs has hampered integration efforts. Even motivated teachers face hurdles: one study found that 15.70% of respondents reported difficulties creating effective prompts for AI systems, and 23.50% cited technical challenges such as internet connectivity issues as significant barriers (Ahmed et al., 2025).

A third significant block comprises ethical dilemmas. About 50% of teachers express concern about the privacy of students' personal data collected and processed by many AI platforms (Syafrayani et al., 2024). Equally important are concerns about algorithmic bias, where AI trained on unbalanced data may discriminate against particular student groups, and 14.29% of teachers cite this risk. In a survey of students, 7.14% of respondents expressed concern about spreading misinformation because they cannot recognize false information and do not understand how underlying AI algorithms and data processing work, making the use of AI technology a black box (Selvam & González Vallejo, 2025).

At the institutional level, these barriers include a lack of equipment, insufficient licensed software, and insufficient methodological and administrative support from institutional leadership (Aljemely, 2024).

These barriers show that providing lists of AI tools and technical instructions for their use is not sufficient to solve the problem. What teachers require is not a technological but a methodological guide that restores a sense of pedagogical control and demonstrates how AI can augment, rather than supplant, professional competencies.

This methodology aims to provide a scientifically grounded, step-by-step guide for English language teachers on systematically and pedagogically integrating AI tools into the learning process to personalize instruction and enhance its effectiveness.

To achieve this aim, the following objectives must be accomplished:

1. Systematize and classify current AI tools by their didactic functions for teaching various aspects of English.
2. Develop a practical checklist and protocol for the critical evaluation and selection of AI tools that ensures pedagogical appropriateness, safety, and ethical use.
3. Propose a step-by-step algorithm for integrating AI into different lesson stages, compatible with contemporary blended-learning models.
4. Describe a method for applying AI to construct individualized learning trajectories and to automate routine tasks of checking and analyzing student progress.

The expected outcome of applying this methodology is a transformation of the teacher's role. Freed from routine operations thanks to AI, the teacher can shift the focus of activity from knowledge transmission

to the design of unique learning experiences, deep analytical work with student progress data, mentorship, facilitation, and the development of learners' critical thinking and creativity. Thus, the methodology is intended not merely to teach technology use but to equip teachers with strategies for building a personalized, effective, and motivating educational environment.

1. A Map of AI Tools for the English Language Teacher

Successful integration of artificial intelligence into pedagogical practice begins with a clear understanding of which tools exist and for which didactic tasks they can be applied. Unsystematic use of technology without a clear link to specific learning goals leads to lesson chaos and reduced effectiveness. This chapter offers a taxonomy of AI applications structured by key language skills and presents an authorial framework for their critical evaluation.

1.1. Classification of AI Applications by Pedagogical Tasks

Systematic reviews in recent years indicate that AI tools are successfully applied to develop all key language competencies, except for listening (Syuhra et al., 2025). A classification based on pedagogical tasks enables the teacher to purposefully match technology to a specific lesson stage and instructional objectives.

Vocabulary development

A key task in vocabulary learning is not only initial memorization but also long-term retention of lexical items in the active repertoire. AI tools address this through personalization and automated review. Typical tools include adaptive learning platforms such as Duolingo and Babbel, as well as spaced repetition systems (SRSs), such as Anki and Quizlet, which focus on regular flashcard review and allow flexible scheduling tailored to each user.

The mechanism of these applications relies on adaptive learning algorithms: they analyze user responses and adjust the difficulty of material and the frequency of lexical items based on retention indicators (Thamil & Thirumoorthi, 2024). For example, Duolingo tracks multiple parameters for each word, the frequency of encounters, number of correct responses, usage context, and the time elapsed since the last review, and uses an AI model to forecast recall probability, offering an exercise at the moment of maximal consolidation efficiency (AWS, n.d.).

Grammar mastery

Traditional drill-and-practice of grammar rules requires substantial teacher time for checking exercises. Automated writing evaluation (AWE) and online correctors are a class of programs widely used to check a text for errors and deficiencies and to support its correction and improvement. This class includes both AWE systems and widely used online correctors, such as grammar checkers, spell checkers, and grammar and style editors like Grammarly, QuillBot, and ProWritingAid.

Typically implemented in NLP, these tools often comprise a rule checker, a statistical model, and a

neural network. In real time, they analyze the syntactic and morphological context, lexical-semantic context, and stylistic context to identify grammar errors, including tense agreement, articles, spelling, and punctuation, as well as style and semantic errors (Stevens, 2025).

Their regular use in instruction amplifies the practical value of such systems: automatic hints and corrections accelerate the feedback cycle, and combining AWE-based work with subsequent teacher-debriefing of errors ensures deeper rule acquisition and improved writing skills. Empirical studies indicate that within such a combined model, students demonstrate notable gains in grammatical accuracy and confidence in written production (Magadan & Tulud, 2025).

Pronunciation training and remediation

Pronunciation work is among the most challenging tasks in group settings. AI applications provide a solution by ensuring individualized practice for each student. Tools in this category include applications based on automatic speech recognition (ASR), such as ELSA Speak and Speechace.

The mechanism is as follows: the student pronounces a word or phrase, the system uses ASR to analyze speech at the phonetic level, after which AI compares the production to a native-speaker reference and provides detailed feedback, often in visual form (e.g., highlighting mispronounced sounds), indicating errors in intonation, stress, and rhythm (Syuhra et al., 2025). Empirical research demonstrates the high effectiveness of ELSA Speak in identifying and correcting pronunciation errors and in increasing learners' speaking confidence (Ngân et al., 2024).

Writing development

AI could be used as a tool throughout the writing process, at all stages, including planning, composition, and revision. The envisioned writer support tools are more advanced AWE systems, such as Write & Improve, and generative language models, such as ChatGPT, rather than only grammar checkers.

Unlike simple corrector programs, these tools can provide a comprehensive analysis of the parameters related to the text's structure, coherence, cohesive devices, and style (Macinska & Vinkler, 2024). These can serve as intelligent writing assistants. It helps students brainstorm essays. It allows students to create outlines. It helps students paraphrase content toward clarity and conciseness (Alsaedi, 2024).

Speaking development

One of the principal obstacles to developing fluency is the language barrier and fear of making mistakes. AI chatbots create a safe and accessible environment for practice; tools in this class include conversational AI agents and chatbots, such as ChatGPT, TalkPal, and Mizou.

The mechanism is that these tools can simulate meaningful, human-like dialogue on a specified topic, enabling students to practice spoken interaction anytime without fear of judgment for errors (Üstünbaş, 2024). The teacher can set concrete communicative scenarios for practice, for example, a dialogue in a restaurant or a job interview, turning abstract practice into targeted training.

It is essential to recognize that the proposed classification is conditional. Many contemporary tools,

especially generative models like ChatGPT, are multifunctional, as shown in Table 1.

Table 1. Comparative analysis of AI tools for pedagogical tasks

Language skill	Teaching objective	Type of AI technology	Example tools	Key advantages	Limitations
Vocabulary	Memorization and active use	Adaptive learning, SRS (Spaced Repetition System)	Duolingo, Memrise, Anki	Personalized pacing; improved long-term retention	Risk of learning out of context; monotony
Grammar	Automation of rule practice	NLP (Natural Language Processing), AWE (Automated Writing Evaluation)	Grammarly, QuillBot	Instant feedback; saves teacher time	Focuses on surface errors; recommendations can be inaccurate
Pronunciation	Correction of phonetic and intonation errors	ASR (Automatic Speech Recognition)	ELSA Speak, Speechace	Individual practice; objective assessment; visualized errors	May miss accent nuances; requires a quiet environment
Writing	Development from structure to style	NLP, Generative AI	Write & Improve, ChatGPT	Comprehensive feedback, helps generate ideas	Risk of plagiarism and overreliance; may reduce creativity
Speaking	Overcoming the language barrier; practice	Conversational AI / Chatbots	ChatGPT, TalkPal, Mizou	Safe practice environment; 24/7 availability; scenario rehearsal	Lacks nonverbal cues; limited empathy

Their pedagogical value is determined less by built-in functionality than by the teacher's creative, methodologically grounded approach to application. The same chatbot can serve as a dialogue trainer, a grammar reference, and a generator of reading texts, which returns the teacher to a central role in instructional design.

1.2. Checklist for Selecting Effective and Safe AI Tools

Selecting a specific AI application should be deliberate, not based on popularity, but on a comprehensive assessment of its alignment with pedagogical goals, safety requirements, and ethical norms. The proposed checklist, shown in Table 2, consolidates recommendations within a single practical framework for teachers.

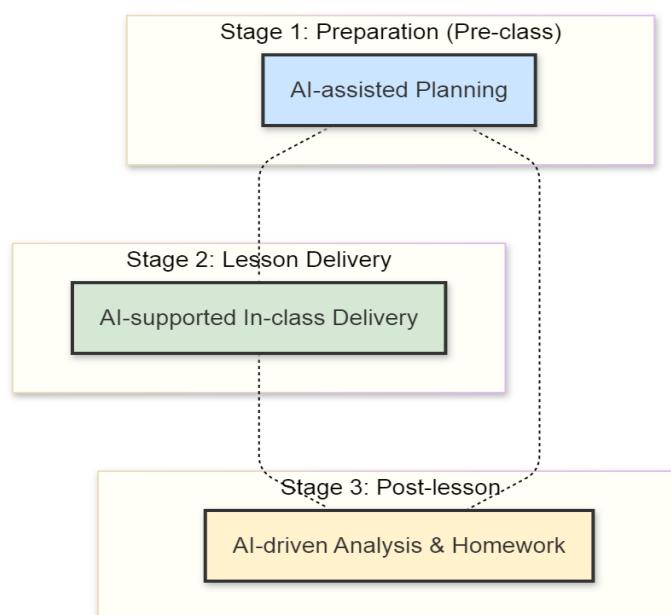
Table 2. Checklist for evaluating an AI tool

Assessment domain	Criterion / Check question	Assessment (Yes / No / Partially)
Pedagogical value	Alignment with objectives. Does the tool's functionality match the specific lesson objectives and curriculum requirements?	
	Scientific basis. Is the tool grounded in evidence-based pedagogical or linguistic theory?	
	Quality of feedback. Does the tool provide constructive, timely, and student-understandable feedback?	
	Adaptivity. Can the tool adapt to an individual learner's level and pace?	
Pedagogical safety	Critical thinking. Does the tool help students evaluate ideas critically instead of accepting them passively?	
	Risk of dependency. Is there a way to prevent students from over relying on it?	
	Academic integrity. Does the tool ease learning in place of making it easy to cheat or plagiarize?	
Data protection & privacy	Policy transparency. Is the privacy policy clear? Is it accessible? Does it use plain language?	
	Legal compliance. Does the tool comply along data-protection legislation?	
	Data minimization. Does the tool collect only the data strictly necessary for its operation?	
	User control. Can users (or their parents) manage their data with the tool?	
Ethics, fairness & inclusivity	Algorithmic bias. Prior to deployment, did the tool face bias testing that checked linguistic bias, gender bias, and other biases?	
	Accessibility. Is it compatible for use with or usable along with assistive technology, such as screen-readers?	
	Digital inequality. Does the tool avoid requiring expensive hardware or charging for subscriptions to create inequality among students/teachers?	
Technical reliability & usability	Stability of operation. Does the app run reliably without frequent restarts?	
	Infrastructure requirements. Does the tool require high-speed internet or powerful devices to function?	

	Interface intuitiveness. Is the interface intuitive for teachers and students with minimal training?	
	Technical support. Does the vendor provide responsive, quality technical support?	

The concept of safety in this context is construed more broadly than mere technical data protection.

It encompasses pedagogical safety as well, an appraisal of potential risks to the learning process itself, such as the formation of dependency, the erosion of critical thinking, and the encouragement of academic dishonesty. This dual approach enables a fuller and more responsible evaluation of a tool.


Using this checklist enables the teacher to move from the role of a passive technology consumer to that of an expert evaluator, making balanced, responsible decisions in learners' best interests.

2. Protocol for Integrating AI into the Lesson Structure

Possessing a map of tools is a necessary but insufficient condition for their practical use. The teacher's key task is not merely to employ AI, but to interweave it organically into the didactic fabric of the lesson, subordinating technology to pedagogical logic. This chapter proposes a universal protocol for AI integration that structures teacher actions at all stages of a class session and considers its application within validated blended learning models.

2.1. Step-by-Step Algorithm for Implementing AI Across Lesson Stages

This algorithm is a reproducible sequence of steps that enables the systematic embedding of AI tools at different points in the learning process (from preparation to analysis of results), and it is important to highlight the continuous, circular nature of this process. The information analysts gain informs the adjustment and planning of the next instruction stage, and the cycle continues. Figure 1 shows the algorithm within this process.

Figure 1. Cyclical model of AI integration into the educational process

Stage 1: Pre-class Preparation

At this stage, AI functions as a methodological assistant, helping the teacher automate routine tasks and enrich instructional materials, reducing preparation time and increasing the adaptability of lessons to group needs.

Lesson plan generation is performed with AI assistants such as Brisk, Khanmigo, or Eduaide.ai: entering the topic, group level, goals, and lesson duration suffices for the system to propose a lesson skeleton with activities and timing, which the teacher then adapts to the class's style and needs.

Creation and differentiation of materials are carried out with tools like Diffit or Twee, which enable adaptation of any authentic text or video (e.g., a news article or a TED talk) for different proficiency levels. AI can simplify lexis, restructure syntax, generate a glossary, and, based on the material, create a set of tasks, comprehension questions, multiple-choice tests, and gap-fill exercises.

Development of assessment materials includes rapid generation of test items and control questions, as well as the formation of detailed rubrics for evaluating written or oral work, thereby enhancing the objectivity and transparency of assessment criteria.

Stage 2: In-class Delivery

AI can also be used in the lesson itself, such as when it serves as a tutor or tutor partner to practice skills being learned. In the Warm-up/Engage phase of the lesson, AI generators make short interactive quizzes, a word cloud, or discussion icebreakers about the topic of the lesson. In the Presentation/Explore phase of the lesson, teachers could use generative models to provide further examples or illustrations of the topic being studied or to provide on-demand responses to student questions.

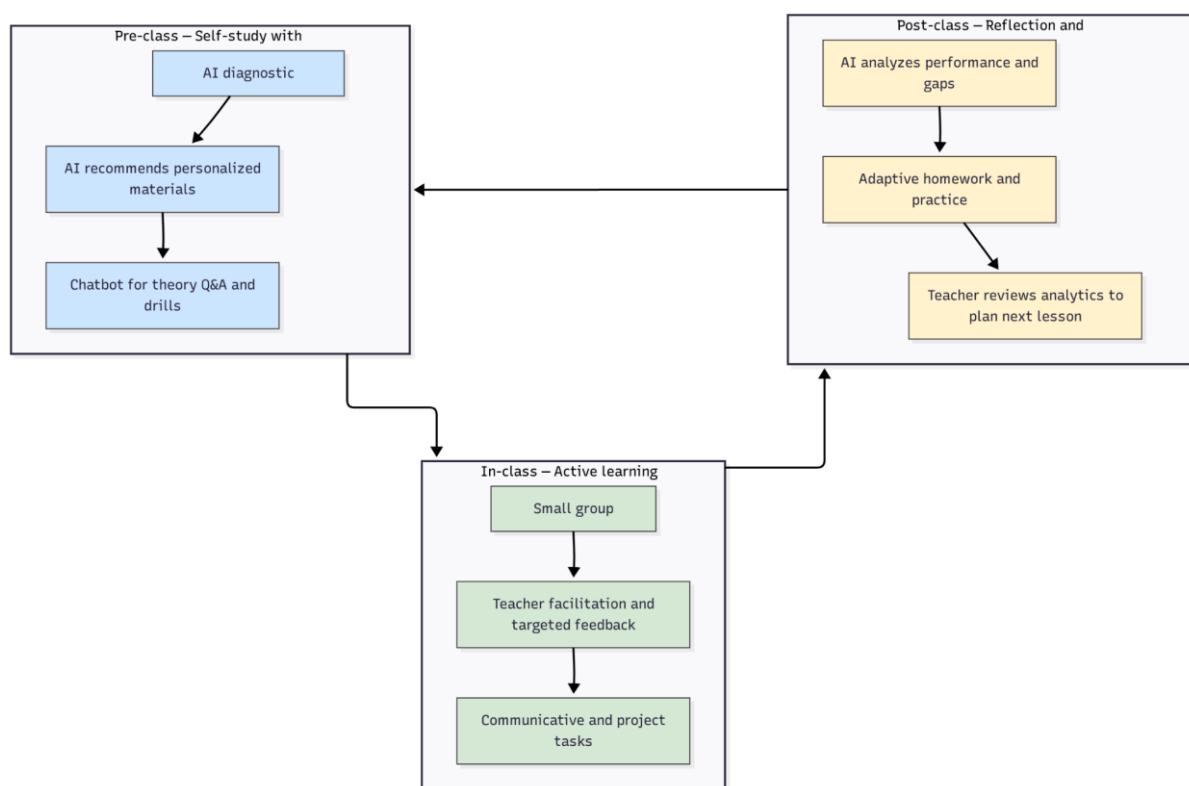
This could be the use of an AI application on an individual or pair basis, such as ELSA Speak to practice pronunciation, Grammarly to check a sentence for grammatical errors, or a chatbot to practice a dialogue on a specific topic.

In the Production/Evaluate phase, users can challenge the AI to perform the same task that the user completed, for example, writing a short text, and then compare that text to a text produced by an AI model (e.g., ChatGPT) to assess whether the AI was able to complete the task.

Stage 3: Post-class

After the lesson, AI verifies knowledge consolidation, personalizes the homework to be assigned, and provides useful data for teacher analysis, optimizing both the lesson and teacher time. Additionally, learners receive individualized homework via adaptive technologies such as Duolingo or Knewton, which set work appropriate to each learner's level and gaps, replacing the customary homework of identical tasks for all learners.

As the exams or written work can be automatically graded using software such as Gradescope, educators have more time to prepare and teach the next lesson or offer more tutoring for individual students. Educational AI learning systems can also provide analytics to teachers, such as common mistakes, individualized student progress, and recommendations for the next lesson and the specific topic to teach.


2.2. Blended Learning Models Combining Traditional Methods and AI

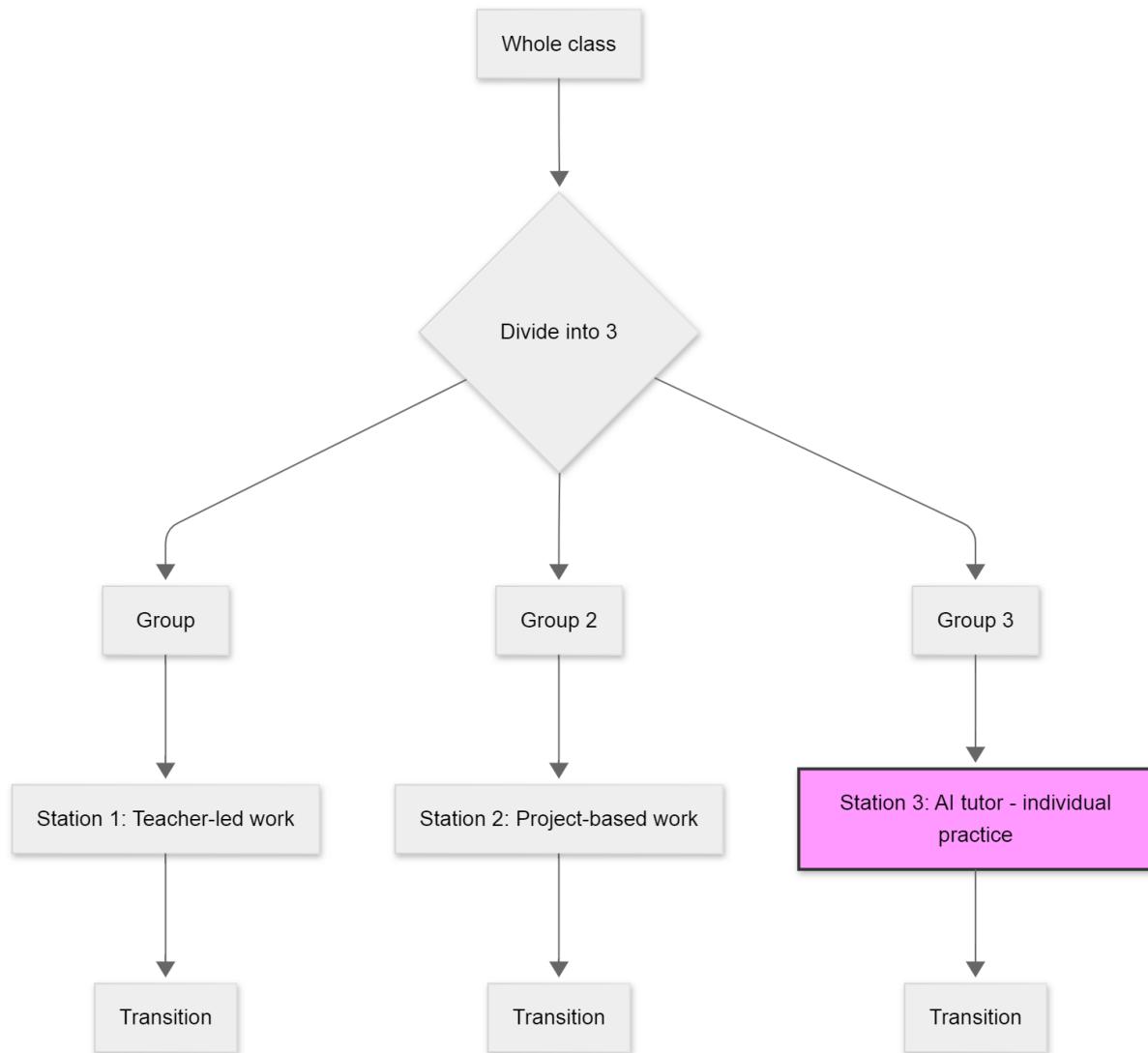
Attempts to insert AI tools that presuppose individual work into the rigid frame of a traditional frontal lesson model are doomed to fail. Systemic and effective AI integration requires reconfiguration of the instructional organization itself. Blended learning models provide the requisite structural frame within which traditional methods and AI technologies can coexist harmoniously and complement one another (Kero & Bogale, 2023).

Flipped Classroom with AI Support

The essence of the model is that students study theoretical material independently at home, while classroom time is devoted to practical activities, collaborative work, and discussion under teacher guidance. This approach redistributes instructional emphasis and increases the efficiency of contact time.

The role of AI at the home stage is to recommend personalized learning materials, videos, articles, and other resources, based on preliminary diagnostics of knowledge. At the same time, chatbots are used to answer basic theoretical questions or for initial practice of lexis and grammar. This ensures individualized preparation and the possibility of repeated practice before the session. The model is shown in Figure 2.

Figure 2. Flipped Classroom Model


As a result, students arrive for the in-person session better prepared, and the teacher can focus on communicative and creative tasks, facilitate discussions, and conduct targeted practice that requires direct interaction.

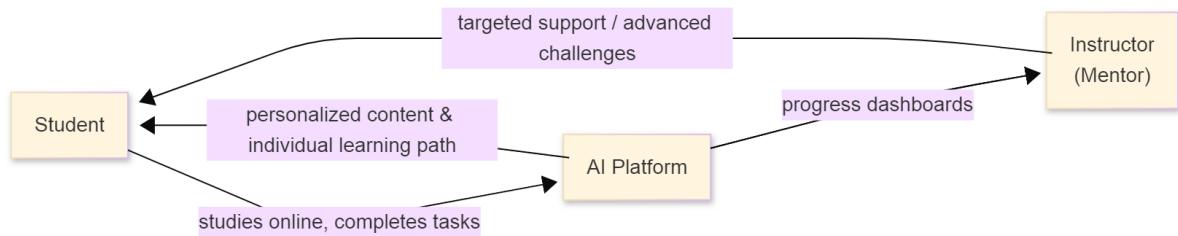
Station Rotation Model

The essence of the model is that the class is divided into several groups that, over the course of the lesson, rotate among different learning stations, thereby combining diverse work formats and efficiently

allocating time and resources within the classroom.

The role of AI in this model appears through a mandatory digital or AI station, at which students individually or in pairs engage with AI applications to practice specific skills: one group may work on pronunciation in ELSA Speak, another may complete grammar exercises on an adaptive platform, a third may practice dialogue with a chatbot; other stations may include work with the teacher, group project activity, or reading traditional texts. The model algorithm is shown in Figure 3.

Figure 3. Station Rotation Model


Thus, a rotation model with a digital AI station enables all students to practice on their own, using digital modules at their own level, while other parts of the class engage in group work and projects. This supports student autonomy, relieves the teacher from having to monitor students, and gives them time to ease into, differentiate, and lead communicative and creative tasks. Data from AI tools allows for tracking progress and a more personalized, accurate path toward the end goal.

Flex Model

The essence of the model is that it affords learners maximal flexibility: the primary learning occurs online, using adaptive AI platforms that construct an individualized educational trajectory for each student.

AI functions as the system's core. It continuously analyzes a learner's progress data and, in real time,

adjusts the learning plan, offering necessary materials and tasks. The teacher's role transforms into that of mentor-consultant, who tracks progress via analytical dashboards and conducts targeted individual or small-group sessions for those requiring additional support or, conversely, more complex challenges. The model algorithm is shown in Figure 4.

Figure 4. Flex Model

The comparison of blended learning models for AI integration is shown in Table 3.

Table 3. Comparison of blended learning models for AI integration

Aspect / Model	Flipped Classroom	Station Rotation	Adaptive Model
Core principle	Theory studied at home; practice in class	Alternating activities in small groups	Individual online learning paths with in-person support
Role of AI	Provide and enable initial practice with materials before class (personalized content, chatbots)	Acts as an individual tutor at one station for skill practice (AI tutor)	Core of the learning process: diagnostics, pathway construction, content delivery, and real-time adjustment
Role of the teacher	Facilitator and organizer of in-class practical activities	Instructor/consultant at one station; observer for other stations	Mentor/consultant who runs targeted individual or small-group sessions as needed
Advantages	More efficient use of contact time; better student preparedness	Ability to give attention to each group; variety of activities	Maximum personalization, promotes learner autonomy

Thus, blended learning models constitute a necessary condition for successful and systematic AI integration, since they create an organizational structure that legitimizes and systematizes individualized work with digital tools within the overall instructional process.

3. Personalization of Learning with AI

Personalization is one of the principal advantages that artificial intelligence brings to education. Unlike the traditional model oriented toward an average student, AI enables the construction of instruction that accounts for individual characteristics, pace, and needs. This chapter explicates a methodology for building individualized learning plans with AI. It examines the use of technologies to automate routine processes, thereby freeing teacher time for more consequential pedagogical work.

3.1. Methodology for Using AI to Create Individualized Learning Plans

Creating a genuinely individualized educational trajectory is a complex, multi-stage process that AI can automate and scale. The methodology for its implementation comprises four sequential steps shown in Figure 5.

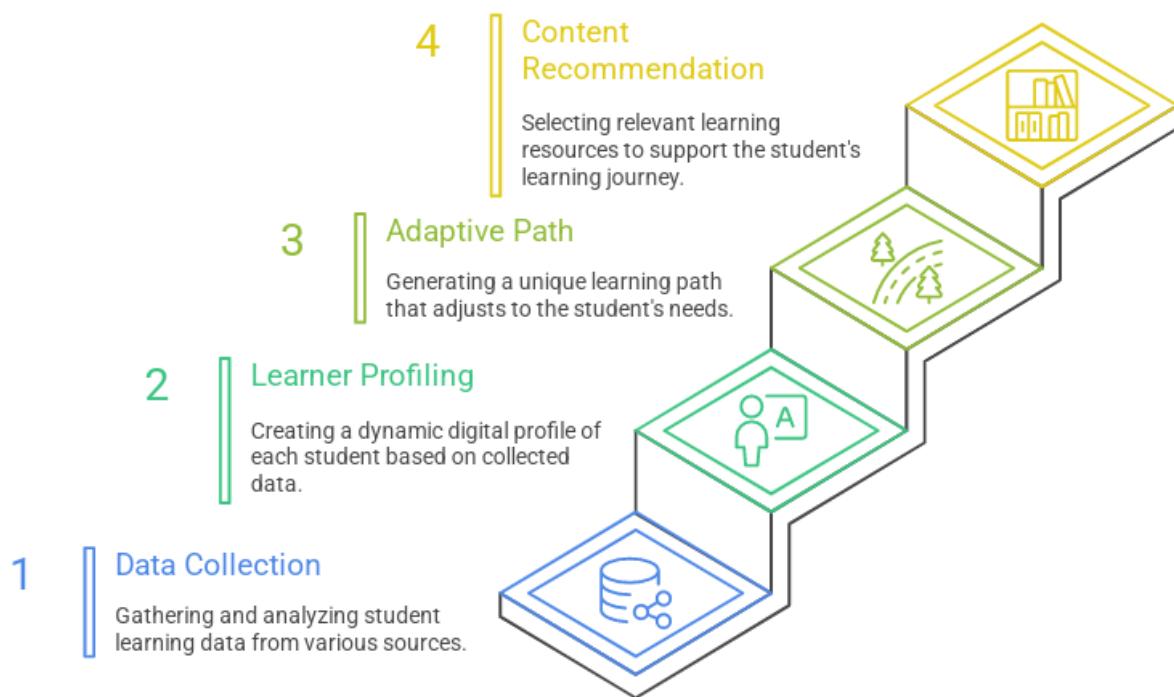


Figure 5. The process of creating a personalized curriculum using AI

Step 1: Data Collection and Analysis

Customized learning is based on collecting and analyzing data about a learner's learning behavior. AI-based platforms continuously collect performance, behavioral, and demographic and baseline data from acquisition and placement tests. Performance data includes test scores, percentage of correct answers in exercises, and type of error. Behavioral data includes time on task, number of attempts, transition sequence among learning modules, and hint usage. Demographic data includes the learner's age, first language, and baseline data such as the learner's level of expertise assessed by a placement test. For example, Duolingo's application records the count of times the student saw a word, the expertise with which they used it in a number of contexts (writing, speaking, and listening), and the amount of time elapsed since they last saw a particular word (AWS, n.d.).

Step 2: Learner Profiling

AI algorithms can build an up-to-date digital learner profile based on the collected data. This profile would be a multi-dimensional model of knowledge (what the learner knows), knowledge gaps, strengths and weaknesses, such as having strong grammar skills but poor listening comprehension, and the learner's preferred pace and style of learning. The profile is continuously updated in real time.

Step 3: Adaptive Learning Paths

Using the learner profile, the AI system constructs a unique learning route. Adaptive learning is one

example in which content is presented in sequence and at a difficulty level that matches a student's demonstrated skill level. Content may become more difficult or vary in type if a student shows confidence in a particular area. It can suggest further consolidation, revisit the core concepts, or provide additional resources if weaknesses are noted.

Step 4: Content Recommendation

In parallel with pathway construction, AI recommender systems select the most relevant learning resources aligned with the learner's current needs and interests. For instance, if AI identifies problems with gerund usage, the system may recommend a short explanatory video, an article with examples, and several interactive exercises on the topic.

However, in crafting high-efficiency personalized trajectories, AI may engender an educational filter bubble, analogous to social media. A student risks receiving only content perfectly matched to the current level and becoming isolated from more complex, atypical, or interdisciplinary material necessary for the development of creativity and critical thinking. Under these conditions, the teacher's role shifts to that of a manager of educational diversity, who must deliberately pierce this bubble by offering tasks that go beyond AI recommendations and by organizing collaborative work among students following different trajectories.

3.2. Application of AI to Automate Routine Checks and Analyze Student Progress

One of the most concrete benefits for teachers is that artificial intelligence can reduce laborious, repetitive work, allowing them to engage in exploratory, higher-order thinking.

Automated assessment includes proprietary grade management services such as Gradescope, Pipplet, and Hallo, as well as integrated features of modern learning management systems (LMS). AI-powered systems can also score closed-response tests, such as multiple-choice and fill-in-the-blank exams, in real time. Many more advanced systems can also score constructed-response assessments, such as written essays or oral responses, using natural language processing (NLP) and automatic speech recognition (ASR).

The advantages of this type of automated assessment are that it is fast, objective, and consistent; it never tires, is not biased, applies the same criteria to all work, giving consistent results, and saving the teacher time.

In addition to scoring, an AI can also give students detailed automated feedback, which is important for learning. Such feedback may be corrective (directly indicating an error and proposing a correct variant, as in Grammarly's correction functions), explanatory (not only correcting but explaining the relevant grammatical rule, e.g., the Explain my Answer function in Duolingo Max, powered by GPT-4 (OpenAI, n.d.)), or metalinguistic (hints and guiding questions that encourage students to locate and rectify errors themselves and develop reflection). Research confirms that immediate, personalized, and constructive feedback delivered by AI systems significantly accelerates the acquisition of material and the remediation of errors (Syafrayani et al., 2024).

AI platforms will act as a dashboard for teachers, presenting graphs of the whole-group and individual-student progress in real time. Teachers can then use these reports for identifying students who perform poorly, and offer assistance to them. They can identify difficult topics for the group and address those topics in the next class. They can group students with similar or complementary knowledge gaps. The reallocation of teacher time through AI automation is presented in Table 4.

Table 4. Restructuring of teacher time through AI automation

Routine task	AI tool	Time freed	Where that time can be reinvested
Grading homework and tests	Gradescope, Formative AI, built-in LMS features	3–5 hours/week	One-on-one consultations with students who need extra support
Selecting and adapting materials	Diffit, Twee, Brisk	2–4 hours/week	Designing creative, project-based, and communicative tasks that AI cannot perform
Providing grammar feedback	Grammarly, Write & Improve	2–3 hours/week	Giving feedback on content, structure, and argumentation in students' writing
Monitoring progress	Dashboards and analytics in AI platforms	1–2 hours/week	Deep data analysis for strategic lesson planning and differentiation
Total (approx.)		~8–14 hours/week	Shift focus from routine operations to mentoring, facilitation, and creative pedagogy

This means that automation is used to reorganize pedagogical time, creating space for aspects of teaching that cannot be achieved by AI (personal interaction, soft skills, in-depth discussions, emotional and motivational support). AI is used as an assistant to perform repetitive tasks, allowing the teacher to focus on his/her role as mentor and on individual support.

Conclusion

The presented methodology offers a comprehensive, systemic approach to integrating artificial intelligence into English instruction. It is structured as a coherent system that guides the teacher from informed tool selection (Chapter 1) through its integration into pedagogical practice (Chapter 2) to the attainment of one of the highest aims of contemporary education: deep personalization of learning (Chapter 3).

The key conclusion is the inevitability of transforming the teacher's role in an AI-assisted educational environment. Artificial intelligence, by assuming routine, algorithmizable tasks such as initial skills practice, grading of standard assignments, and progress data collection, does not diminish but instead elevates and complicates the teacher's role. The role of the teacher shifts from that of a sage on the stage, broadcasting knowledge, to learning experience architect, in which the teacher designs the educational settings,

configures and selects the digital instruments, makes evidence-based decisions, promotes collaborative activities, but above all where he or she humanizes the learning experience, mentors the students and develops cross-cutting competencies such as critical thinking skills, creativity and communication skills.

AI implementation should not be a one-off event. AI implementation is a process. For a successful transition, teachers must will themselves to continue developing professionally and learning new tools and approaches. Hence, schools need to train teachers and cultivate an environment that encourages innovation and experiments.

At the same time, the universal availability of AI requires further education and the implementation of clear ethical frameworks for AI in education. Data privacy, algorithmic fairness, digital inequality, and digital safety in pedagogy must remain at the center of all technology selection, development, and application in education.

Longitudinal studies on the impact of AI-assisted language learning on the cognitive and socio-emotional dimensions of language learners are required. Nevertheless, it is already evident that a skilled, methodologically sound use of artificial intelligence certainly offers new opportunities to make the English language learning process more effective, accessible, and personalized, and to increase the motivation and productivity of every language learner.

References

Ahmed, J., Soomro, A. K., & Fatima Naqvi, S. H. (2025). Barriers to AI Adoption in Education: Insights from Teachers' Perspectives. *International Journal of Agriculture & Sustainable Development*, 7(1), 411–421. <https://doi.org/10.33411/ijist/202571411421>

Aljemely, Y. (2024). Challenges and best practices in training teachers to utilize artificial intelligence: a systematic review. *Frontiers in Education*, 9, 1470853. <https://doi.org/10.3389/feduc.2024.1470853>

Alsaedi, N. (2024). ChatGPT and EFL/ESL Writing: A Systematic Review of Advantages and Challenges. *English Language Teaching*, 17(5), 41. <https://doi.org/10.5539/elt.v17n5p41>

AWS. (n.d.). AWS AI - Duolingo. AWS. Retrieved October 7, 2025, from <https://aws.amazon.com/ru/machine-learning/customers/innovators/duolingo/>

Granström, M., & Oppi, P. (2025). Assessing teachers' readiness and perceived usefulness of AI in education: an Estonian perspective. *Frontiers in Education*, 10, 1622240. <https://doi.org/10.3389/feduc.2025.1622240>

Kero, C. A., & Bogale, A. T. (2023). A systematic review of resource-based view and dynamic capabilities of firms and future research avenues. *International Journal of Sustainable Development and Planning*, 18(10), 3137–3154. <https://doi.org/10.18280/ijsdp.181016>

Macinska, S., & Vinkler, A. (2024). The Role of AI in Language Learning: Research Evidence and Strategies for Success. https://www.cambridge.org/sites/default/files/media/documents/The_Role_of_AI_in_Language_L

[earning_Research_Evidence_and_Strategies.pdf](#)

Magadan, C. T., & Tulud, D. M. (2025). Grammarly as a Computer-Mediated Tool for Enhancing Writing Instruction. *Indonesian Journal of Education Research*, 6(2), 154–167. <https://doi.org/10.37251/ijoer.v6i2.1477>

Ngân, P. T. B., Thùy, L. T., Nguyệt, N. T. M., & Hân, T. P. B. (2024). The Application of Elsa Speak Software in English Teaching at Can Tho University of Technology – A Case Study. *International Journal of Social Science and Human Research*, 7(10). <https://doi.org/10.47191/ijsshr/v7-i10-29>

OpenAI. (n.d.). Duolingo. OpenAI. Retrieved October 15, 2025, from <https://openai.com/index/duolingo/>

Selvam, M., & González Vallejo, R. (2025). Ethical and Privacy Considerations in AI-Driven Language Learning. *LatIA*, 3, 328. <https://doi.org/10.62486/latia2025328>

Stevens, J. P. (2025). Artificial Intelligence in the Teaching of English Grammar. *International Journal of Research and Innovation in Applied Science*, 10(6), 878–896. <https://doi.org/10.51584/ijriias.2025.10060066>

Syafrayani, P. R., Ayunda, R., Molina, M. L., Hutasuhut, M. L., & Siregar, M. (2024). Teachers' Perspectives on AI Integration in EFL Teaching: Perceived Benefits and Challenges. *Linguistik Terapan*, 21(1), 27–40. <https://doi.org/10.24114/lt.v21i1.64873>

Syuhra, M. N., Chandra, N. E., & Rosalina, E. (2025). Artificial Intelligence in English Language Teaching: A Systematic Literature Review of Tools, Impact, and Challenges. *Voices of English Language Education Society*, 9(1), 193–205. <https://doi.org/10.29408/veles.v9i1.29745>

Thamil, V. S., & Thirumooorthi, K. (2024). Applications and Analyses of Artificial Intelligence in Enhancing English Vocabulary. *Recent Research Reviews Journal*, 3(2), 333–345. <https://doi.org/10.36548/rrrj.2024.2.002>

Üstünbaş, Ü. (2024). Hey, GPT, Can We Have a Chat?: A Case Study on EFL Learners' AI Speaking Practice. *International Journal of Modern Education Studies*, 8(1), 91–107. <https://doi.org/10.51383/ijonmes.2024.318>