
THE USA JOURNALS

THE AMERICAN JOURNAL OF SOCIAL SCIENCE AND EDUCATION INNOVATIONS (ISSN- 2689-100X)
VOLUME 06 ISSUE07

 137

https://www.theamericanjournals.com/index.php/tajssei

PUBLISHED DATE: - 28-07-2024
DOI: - https://doi.org/10.37547/tajssei/Volume06Issue07-15 PAGE NO.: - 137-150

THE DYNAMICS OF OPEN SOURCE

SOFTWARE DEVELOPMENT AND CODER

COMMUNITIES

Vinas Khalid Kadhim
University of Karbala, College of Administration and Economics, Iraq

1. INTRODUCTION

Open source software development is the most

visible form of collective action on the internet. Its

development codebases, and tools come with

many different lexemes, but all share the same

principles and values. One of the main aspects of

the Open Source Definition (OSD) is about the

process or flexibility. Users should be free to adapt

and distribute copies to whoever is in need. The

reason the developer has a lot of flexibility is

because the freedom is kept. The user can

download the software for free. This aspect of open

source software development is often overlooked.

The word 'software' is a term of art because there

is no universal definition in all aspects of the

problem that the concept alert configuration is in

the way the word is used. Nevertheless, the

definition that we have developed into this book is

quite far from the real thing, it is easy to enlarge or

shrink and that is with new addition or trying what

must be encompassed. However, the definition we

offer should be sufficiently accurate to convey the

outline of a relatively new phenomenon known as

Open Source Software, or Open Source, which is

responsible for many collaborative activities in

software development. In the sense of open source,

open-source software can be defined as software

whose source codes are freely available, can be

modified, and can be reproduced by anyone.

1.1. Definition and Principles of Open Source

Software

Open source software is a special instance of OSSD.

Although the terms are often used

interchangeably, they are not quite identical.

Harris and Bwalya describe open source software

as "software systems that are freely distributed to

anyone who wants to use them". According to

RESEARCH ARTICLE Open Access

Abstract

https://www.theamericanjournals.com/index.php/tajssei
https://www.theamericanjournals.com/index.php/tajssei
https://www.theamericanjournals.com/index.php/tajiir
https://www.theamericanjournals.com/index.php/tajiir
https://doi.org/10.37547/tajssei/Volume06Issue07-15
https://doi.org/10.37547/tajssei/Volume06Issue07-15

THE USA JOURNALS

THE AMERICAN JOURNAL OF SOCIAL SCIENCE AND EDUCATION INNOVATIONS (ISSN- 2689-100X)
VOLUME 06 ISSUE07

 138

https://www.theamericanjournals.com/index.php/tajssei

Hammelman, "open source software is software

that is, at the least, freely available to any

individual who obtains a copy of the software".

Okerson and O'Donnell regard open source

software as software that "is often free, and many

open source software products, including the

operating system Linux and the computer

language Perl, are provided without charge". The

scientific community often chooses free software

because any participant can install it on his or her

own computer. Software distributions of any kind

cannot be used unless installed by the end user.

The Debian Free Software Guidelines (DFSG) are

considered to be the definitive principles and

definition for open source software. The enforced

original description of free software was explained

within the General Public License, whose 1st

version appeared in 1984. The basic premise of the

DFSG was that all software should be distributable

when its source is also distributed. The

implications of this are that anyone can provide the

software to anyone and can expect that anyone will

be able to use the software.

2. Historical Evolution of Open Source

Movement

The historical evolution of the open source

movement is usually dated back to the practical

philosophy of the hacker during the late 1950s at

MIT. The free sharing and constant improvement

of source code became a strong part of the U.S.

technical culture when the Homebrew Computer

Club was founded in 1974. During the 1970s and

1980s, many companies and organizations

provided strong economic and legal incentives for

the non-free appropriation of information.

Nevertheless, commercial use and communication

through networks of merged free and non-free

systems and programs became an attractive

alternative for groups of programmers who shared

a computer at a non-commercial level.

Several pioneering open source projects were

started in the 1970s and 1980s by groups of

researchers who were building a new kind of toy

they called a 'personal computer'. In the 1970s,

when proprietary operating systems were

developed, programmers involved in the hardware

design of computers shared the source code for the

operating systems (OS) on their machines with

each other. This way, they could all combine the

best available operating system features in their

OS versions with minimal programming efforts.

They could also identify and develop changes in

the source code that would improve the operation

of the OS in the hardware environment they

shared. During the mid-1980s, an open source

UNIX descendant was developed with the idea that

systems programmers and computer users could

receive the combined efforts of the contributors

based on the personal interest and ability of people

who worked on and with the system. It was then,

as some of you probably remember, that BSD and

Linux-based systems were used primarily by

research-based organizations outside the world of

UNIX proprietary commercial computing.

2.1. Early Pioneers and Projects

This chapter is organized to discuss, in subsequent

subsections, the history of open source

development up to the present day, the

characteristics of the social organizations that

build open source software, and conclude with a

discussion of an issue of terminology relating to

the enhancement of open source software.

Many people contributed to the movement that is

called "open source." Many were associated with

early electronic networks, which is something that

people outside of computer science disciplines had

only begun to use in the late 1980s. Others ran

decisions of computer science academic

conferences. These so-called pioneer conferences

were accompanied by electronic versions of

conference papers and had influential mailing lists,

which discussed the conferences and a number of

https://www.theamericanjournals.com/index.php/tajssei
https://www.theamericanjournals.com/index.php/tajiir

THE USA JOURNALS

THE AMERICAN JOURNAL OF SOCIAL SCIENCE AND EDUCATION INNOVATIONS (ISSN- 2689-100X)
VOLUME 06 ISSUE07

 139

https://www.theamericanjournals.com/index.php/tajssei

related issues. These conferences included "The

First Workshop on Electronic Texts" held at

Princeton University in May 1989, "Release 1.0"

held in August 1990, "The Second Workshop on

Electronic Texts" held at Princeton in September

1990, "The Third Workshop on Electronic Texts"

held in May 1992, and the "First Ethicomp

Conference" held in March 1996. Terry Bynum has

referred to the people who addressed "core ethical

issues" within this network as "coders and

philosophers." Terry Winograd refers to "the AI

community" and "others serious about exploring

this new form of interaction." Bynum and

Winograd have noted the emergence of a "virtual

networked community." Generally, the people who

discussed together about computer-

communication systems, networked computer

networks, software tools, and related subjects

have a good claim to be considered digital media

pioneers.

3. Key Concepts in Open Source Development

The open development and diffusion of computer

code have become increasingly influential in many

industrial sectors. In scholarly and popular

literature, terminology and concepts derived from

free and open source software, such as free, reveal

generalizations and the tacit assumption that all

stages of open source activities are equally

participatory. Open source literature is also

lacking a good inventory of key concepts and tools

useful for understanding and differentiating

between open source activities and the sectors and

communities that support them. While attention to

broader social and organizational contexts is

increasing in open source studies, resources for

understanding the computing activity and the

software being developed are lacking. This text is

an outline of a lecture course by Laura Forlano and

Patrick Haas in which they present a set of key

concepts for the study of open source software

development (OSSD).

For open source free software to circulate, and

thus to function, it must be properly licensed. In

this case, the group is often legally called a

'canonical community.' A canonical community

sets the legal framework that allows licensed

software that travels in certain channels within the

community to maintain a critical degree of

openness. Should any member of the community

tough (either accidentally or maliciously) get

proprietary software and fail to properly open

their modified source, the software might then

cease to be free/open for some reason and the

process might wither and die. There are often

several possible cans, but in any given community,

one is usually the official one and is the one in

which you will see references in the copyright

headers or licenses in the original documentation

and source code.

3.1. Licensing and Legal Frameworks

It is essential that those actively participating,

uninterested observers, potential users, and

indeed all market participants understand first the

legal framework that underpins open source

software. This means appreciating clearly the legal

rights that are granted to others in relation to the

software, the duties and obligations of those who

create such code, and the legal risks for users and

dependent software projects.

Secondly, it is useful to understand the social

reasons why open designers select the specific

types of licenses that they may use. And finally,

understanding what obligations apply to partners

and others, including traditionally unincorporated

coder groups within that legal framework.

Most software produced, purchased, or licensed

today is 'proprietary'; that is, its source code is

protected by copyright and/or trade secret law.

Exclusive rights attached to copyright in software

means that it is illegal to create modified, 'derived

works of the primary code, or openly redistribute

the software without first seeking and obtaining a

https://www.theamericanjournals.com/index.php/tajssei
https://www.theamericanjournals.com/index.php/tajiir

THE USA JOURNALS

THE AMERICAN JOURNAL OF SOCIAL SCIENCE AND EDUCATION INNOVATIONS (ISSN- 2689-100X)
VOLUME 06 ISSUE07

 140

https://www.theamericanjournals.com/index.php/tajssei

license from the original copyright holder.

In response to the increasing levels of investment

in software projects, individuals and firms began to

reassess the advantages offered by making their

code open. One solution has been the concept of

open source software, and the development in

abbreviated open software licenses or OSLs that

grant rights of use to third parties free of charge

while retaining protections on the code.

4. Roles and Contributions in Open Source

Projects

When being a member of an open source project,

an individual plays different roles, depending on

his or her level of involvement. Acton (2004)

classifies the different groups of active members

(based on the amount of time invested in the

project and the formal authority) of an open source

project into three categories: developers,

maintainers, and project leaders. With more than

90% of active participation, developers make up

the major part of open source projects.

Development corresponds to contributions in the

form of testing, bug reports, code, and

enhancements. While the passive part of the

community is not visible at all, the developer active

part is even further divided into the sub-roles of

contributors and maintainers.

Acton (2004) also discusses the two-fold goal of

every observer or participant in otherwise, a

member of an open source project: the goal of

pursuing organizational output by the self (in the

form of, no matter which activity) and the goal of

obtaining social rewards from the members of that

organization, the fellow participants. Both goals

are pursued by an individual in order to enhance

his or her social standing in the larger field of open

source developer community. Conventional

organizations are typically characterized as

consisting of members who form teams due to

limited resources and goals that require collective

action in order to be achieved. However, there are

no tit-for-tat transactions associated with

contributions to open source projects. "Sync

releases", "set and maintain coding standards", and

"improve and maintain links to the project from

other websites." "Pvp" feels the need to "ensure

that all switches and sockets are in slots '1' or slots

'2'.". Each developer waits for contributions and

interacts with a variety of other developers in a

range of roles. The primary role of the developer,

of course, is "general development". Other roles

include "make and report bugs and other issues",

"provide help and support to other users of the

project", "perform tests", "submit patches", and

"improve, maintain, and create new

documentation". This example shows a project

characterized by the fact that any developer can

significantly enhance the project.

4.1. Developers, Maintainers, and Contributors

Besides being the generic term for individuals

writing computer programs, in the context of a

specific open source project, "developers" are the

individuals who are actively designing,

implementing, and testing new features. Moving

from the simple definition of a developer to that of

the set of all developers working on an open source

project does not allow us to define the

development phase of open source projects

directly. This is due to the lack of a straightforward

answer to the question of who these developers

are and what their programming tasks are. In

recent years, some scholars have pointed out that

a relevant part of open source developers' activity

pertains to testing and maintaining. Maintainers,

frequently also called coordinators, select and

integrate programmers' proposals. The ordinary

activity of these individuals is not limited to the

selection of patches and the evaluation of quality

with the aim of registering a contribution in the

software, but also extends to refactoring,

developing libraries and APIs, the writing of

documentation, designing patches, etc. Theoretical

https://www.theamericanjournals.com/index.php/tajssei
https://www.theamericanjournals.com/index.php/tajiir

THE USA JOURNALS

THE AMERICAN JOURNAL OF SOCIAL SCIENCE AND EDUCATION INNOVATIONS (ISSN- 2689-100X)
VOLUME 06 ISSUE07

 141

https://www.theamericanjournals.com/index.php/tajssei

analyses within the software engineering

literature describe coordinators as those who

allocate tasks to developers, verify the work done

by the developers, and distribute the output.

Moreover, there are "submitters" who come to the

project site and post bug reports or feature

requests. This categorization scheme thus analyzes

activity in terms of the outcome. At the top of the

hierarchy are maintainers who maintain the

coordinator wisdom; they select and integrate

submitted patches, write and/or maintain

documentation, add new features, etc. Below them

are developers who submit patches and work on

the project. Finally, we have users who are the

submitters of bug reports and feature requests.

This categorization makes sense in an

environment where everybody has the right to

submit patches. In this environment, being a

hardware developer simply refers to submitting

patches and then convincing the maintainers of the

value of the patches.

5. Communication and Collaboration in Open

Source

One of the "software construction" tasks is to draw

the "big picture" that emerges from those mostly

local "artificial symbiosis" collaborations through

which open source software (OSS) gets

constructed. An important aspect of this is the

communication and collaboration structure and

dynamics, or in the words of the field of

coordination theory, the (dyadic and triadic)

communication and coordination graphs that are

typically only partially (and never completely)

observed.

Recent work has looked at "communication

dynamics", "issue dynamics", as well as (in a

development of that) "coordination dynamics" in

the development of various OSS projects. The use

of version control systems (VCS) is one largely

opaque form of communication - important

because of the increasing use of distributed VCS

(DVCS) for high-scale OSS development and the

new insights such large-scale data are starting to

provide. Many software developers engage with

DVCS (such as Git, Mercurial) during their

involvement with free and open source projects.

This section elaborates on statistics gathered from

five different DVCS-based repositories from source

forge. All five projects are at different stages of

their lifetime.

For each additional month of the life of open source

coding projects, the rate of issues (change

requests) being raised by the user community

increases by 20% of the number of issues raised in

the preceding month, but the closure rate of issues

to date with the code base increases over time by

only 13.5%. Hence users are exceeding capacity to

iron out faults and defects in OSS coding projects.

Code speed (rate of revision to date) continues to

increase with project age at a constant rate of 4.2%

for every additional month of the coding project.

5.1. Version Control Systems and Issue

Tracking

Open source software projects generate and

employ a large amount of developer code and

metadata such as user and bug documentation,

web pages, and other auxiliary documentation.

Ensuring that all developers can access and use

this information is just as important as

contributing to projects at the code level. Typically,

XML and database technologies (SQL) are

employed to maintain this metadata. Automation

of tasks such as metadata harvesting and cross-

referencing are enabled using scripting languages

such as Python, Perl, and Ruby. Yet, a key aspect of

any collaborative project involves effective

communication and collaboration that leads to

profound progress and effective solutions. Version

control systems provide a powerful way for

developers to coordinate their work, solve

problems, and distribute their code.

Many open source projects use CVS because of its

https://www.theamericanjournals.com/index.php/tajssei
https://www.theamericanjournals.com/index.php/tajiir

THE USA JOURNALS

THE AMERICAN JOURNAL OF SOCIAL SCIENCE AND EDUCATION INNOVATIONS (ISSN- 2689-100X)
VOLUME 06 ISSUE07

 142

https://www.theamericanjournals.com/index.php/tajssei

broad user base and extensive documentation. CVS

(Concurrent Versions System) is a central

repository version control system - the definitive

version of the software is maintained in a central

database while complete working copies are

maintained on the developers' workstations where

the code is modified. Tools are provided for

comparing and merging changes, managing

compatibility, renaming files, merging the

collective changes of multiple developers, and

reversing changes. Bugs and enhancement

requests can be submitted to the Bug Parade; for

hands-on help for patch sets, become a member of

the Patch Review Group. To manage issues

between the developer, quality assurance member,

and project manager, some open source projects

utilize issue or bug tracking systems such as

Bugzilla, Jitterbug, and GNATS. These tools provide

project and scheduling information for managers,

developers, and even users. A problem report can

be assigned to a developer or a specific release.

Instructions for reporting a bug can be found in the

Feature Request HOW-TO.

6. Community Dynamics in Open Source

Projects

This section explores in detail how communities

are structured in open source projects. Having

understood that the dynamics of the governance of

open source projects are best understood by

looking closely at either project management or at

developer communities, we will focus here mainly

on the visible, tangible community layer.

Understanding this part of the process dynamics is

crucial to understanding conflict and decision-

making patterns in open source communities. All

important decisions in an open source project are

made by a community. Community interests may

overlap or conflict. Contributors generating part of

a project frequently have a stronger interest in a

healthy community than do one-shot submitters of

bug reports.

3.1 Community Structure: "Core Teams",

"Kernels", and "Networks" There is a long

tradition, in sociology and political science, of

studying the structure of reference, opinion or

advice networks. Mapping the formal or informal

networks sheds new light on the boundaries and

centers of the community. Decision networks can

also be used as a proxy for the existence standard

of "core" developers. While association-role

division based, for example, on the number of lines

of code contributed, usable patches submitted or

enough patches submitted are insufficient for

identifying the decision-making positions in an

OSS project, the respondents in a survey might be

wholly unaware of the formal status of developers

as "core" contributors. The appropriate

specifications for "core" development differ

significantly from project to project. The

intersection of the members in the specified role

networks results in so-called communities' core.

6.1. Governance Models and Decision-Making

Processes

The functioning of the described communities

might be based on different governance models.

Some communities establish a foundation or

association that provides them with sufficiently

exclusive resources, e.g., for domain or internet

address disputes. More recent studies on GPL

software protect resources from relocation to

proprietary ends. In other cases, informal tribal

models of leadership and a meritocratic

organization are used. These models put a

relatively strong emphasis on the individual

developer's skills, efforts, and standing in his or

her community. Finally, the three communities use

AoA decision-making models to formally channel

collective decision-making processes. In the AEGIS

collective made in the Free Software Foundation,

the FSF article 2 "empowers" the membership of

the FSF to make decisions regarding the direction

of the Association. This indicates that some AoA

https://www.theamericanjournals.com/index.php/tajssei
https://www.theamericanjournals.com/index.php/tajiir

THE USA JOURNALS

THE AMERICAN JOURNAL OF SOCIAL SCIENCE AND EDUCATION INNOVATIONS (ISSN- 2689-100X)
VOLUME 06 ISSUE07

 143

https://www.theamericanjournals.com/index.php/tajssei

formed communities may have very "inclusive"

decision-making processes.

In a study on software patches, O'Mahony

identifies "code" as the most important resource.

This and other resources relevant for collectively

making decisions are shown in table 5.1. The

decision-making process in open source software

projects is resolved in several ways, consulting a

variety of resources. Some of these resources allow

all participants of a project to participate in

decision-making processes, or are considered

"objective" and binding. For example, Linus

Timeness was used, as it formally states the release

manager's responsibilities and decision-making

powers. As Lerner and Tirole put it, the decision

whether or not to propose a committer with write-

access to the heart of a source tree is a collective

decision that is resolved by a simple majority.

7. Economic Models and Sustainability in Open

Source

Economic models for sustainability: One of the

most pressing questions in any community

centered around the future of the collective/open

project (like open source) relates to economic

sustainability. Open source projects are driven by

donations and grants to the project as a whole or

facilitated by fiscal sponsors. There are also a

limited number of revenue streams possible. The

first and most obvious is via the platform through

advertisements or via a platform's cryptocurrency

(for example, via Steem). For open source projects,

access to code is often free, though support may be

paid for. One study of the Apache web server

showed that, because OSS undercut commercial

dominance of the sector, commercial players

exited the market, and it ended up creating

positive externalities for the company. The need

for a 'help' staff was underscored when Apache got

used by large corporations.

The notion of economic transactions between

support and development communities was the

subject of one study examining how automatic

tools can be useful in locating potentially

commercial positive externalities of an application

software. There are a number of different funding

mechanisms possible: direct donations, fiscal

sponsorship, bake sales, and grants. Each of these

can be differentiated on two dimensions. The first

is by who is involved. This includes who moves the

money, who seeks it, who oversees it, and who

keeps track of the money coming and going. The

second dimension has to do with contracts. Most

funding mechanisms come with a grant proposal

process, a contract between the person or

organization moving the money and the person or

organization seeking it, and some sort of funding

agreement when more than one person or

organization is involved in getting the funds.

7.1. Funding and Revenue Streams

Despite the role of code as a free general-purpose

script, open source developers often hope to be

compensated for their labor. provide empirical

evidence that this holds true not just for for-profit,

but also for non-profit communities. Moreover,

given that coding is a generally marketable activity,

it appears plausible that a substantial part of open

source developers expects to receive

remuneration for their services.

7 Funding and Revenue Streams Open source as an

economic activity The fact that many, possibly the

majority of open source developers, seek

compensation or benefits from their contributions

indicates a particular form of commercial

regulative. It further indicates an orientation

towards operational, rather than financial

sustainability, given that both commonly involve

the translation of resources from the outside world

into group benefits. Hence, in the remainder of this

paper, the terms funding and revenue streams are

used with the meaning provided in this section.

In turn, financial sustainability as understood by

Lerner and Tirole "goes beyond balancing the

https://www.theamericanjournals.com/index.php/tajssei
https://www.theamericanjournals.com/index.php/tajiir

THE USA JOURNALS

THE AMERICAN JOURNAL OF SOCIAL SCIENCE AND EDUCATION INNOVATIONS (ISSN- 2689-100X)
VOLUME 06 ISSUE07

 144

https://www.theamericanjournals.com/index.php/tajssei

books: it requires both having enough money to

fulfill the organization's mission and developing

the strategies and resources needed to sustain

income over time." (2002, p. 1495). Loosely

following , a distinction must therefore be made

between two kinds of financial inflow: Firstly, that

continuously accumulated through the

organizational setup and at least coordinatively

maintained, such as membership fees in a club.

Here, the "value proposition", to use the Business

Model Canvas term, is a stable product. Secondly,

and in a perhaps more natural open source context,

there could be flows from value propositions based

on the continual labor inputs of core group

members, the receipt of which allows these to

perform product maintenance. Valuation, here,

involves the continuous reassessment of value

propositions and the maintenance of core group

members in the organization. Given this, a

sustainable organization consists of a replicable

construction of revenue-generating value

propositions and a proliferating coordination of

incumbents. Thus, even when no profits are

generated nor desired, substantial exchanges

between the business firm and its environment are

still decisive of its success or failure.

8. Case Studies of Successful Open Source

Projects

The Linux Kernel - Started in 1991 by Linus

Torvalds, Linux is now one of the most successful

open source projects. It is licensed under the GPL

and is used by most computer companies.

Although the development of the Linux Kernel is

mainly in the hands of the core team led by Linus,

thousands of people all over the world contribute

to the main Linux kernel and to various add-on

programs, utilities, and modules. A well-

administered FTP server with the sources is run by

the Open Systems Lab at Scandinavia University so

that vendors and individuals may obtain Linux.

More information is available on the web through

various forums and FAQs.

Apache Web Server - A web server is a mechanism

for viewing multimedia documents. Apache is a

web server that originated at the NCSA National

Center for Supercomputing Applications at the

University of Illinois. Apache is an open-source

project and part of the "official" client bandwidth

of the National Science Foundation. Apache's

market share has garnered considerable interest in

the software technology and business press.

Apache still runs 54% of the websites, performs 20

million requests per day, and is widely distributed

with a contribution from over 1000 independent

developers.

Examples of Open Source Commercial Projects -

Some examples of Open Source Projects which are

being supported in a commercial fashion are: 1)

Ghostscript - A project started and run by Aladdin.

It is now supported by the cooperation of several

commercial developers such as Accel Graphics,

Unix System Laboratories, Informix, and others. 2)

TeX project at Stanford, now moved to the

European side (yes, Knuth created TeX). 3) τ - An

Adaptive Revaluation Tool - Now a commercial

project by Alvey. (τ was developed under the

GPSSS initiative). 4) X Windows Commands - X

window manager and clients - Cooperatively by

the vendors. 5) Joss Morgan's Distributed System

Software - From Xerox in the 80s and now a

commercial product by Data General.

Open Source Commercial Projects are doing very

well. It should be noted that both Sendmail and

Perl are in the Top Ten of the Top GB/Net Software

tools.

8.1. Linux Kernel and Apache Web Server

The Linux Kernel and Apache Web Server

Our objective in this section is to start specifying

some caveats and issues that arise in large or long-

running open source projects by providing case

studies of the two most successful open-source

https://www.theamericanjournals.com/index.php/tajssei
https://www.theamericanjournals.com/index.php/tajiir

THE USA JOURNALS

THE AMERICAN JOURNAL OF SOCIAL SCIENCE AND EDUCATION INNOVATIONS (ISSN- 2689-100X)
VOLUME 06 ISSUE07

 145

https://www.theamericanjournals.com/index.php/tajssei

projects to date: the Linux Kernel and the Apache

Web Server. While many other projects are also

very substantial, these two projects are substantial

enough that one can do longitudinal studies of

them. They are also fairly unusual in terms of OSS,

in that they have substantial corporate

sponsorship, but are nonetheless very open in

terms of their development process.

2.1. The Linux Kernel

Although Open Source Software is usually thought

of as being costless, producing the greatest open

source project in history - the Linux Kernel -

required substantial resources. The development

of Linux took almost 400 person-years and $31

billion up until 2005. Approximately 97% of this

development was performed by paid developers.

The development dynamics of open source

systems can be surprisingly different from those in

the commercial world. Raymond captured some of

the thinking underlying this difference in part of a

valued public speech - The Cathedral and the

Bazaar - that he turned into an essay. This section

of the IEEE Computer Magazine article presents a

high-level summary of his insights on evolving a

successful open-source project, which appeared in

the book that was published of The Cathedral and

the Bazaar. It's useful to be aware of his

background and personal idiosyncrasies. His

perspective favors a loose, non-progressive view of

the world that doesn't particularly admire

engineering, social sciences, or science more

generally.

2.2. The Apache Web Server

The Apache server is now the most widely used

web server in the world. The software has become

a nested combination of products that support

both Unix and Windows NT systems. Someone else

performed a substantial amount of the

programming work noted above. The NCSA team

before the Apache group produced the beta

version, and much of the development of the

products on top of Apache was performed by

others. Moreover, there were, at the time we were

doing our study, several commercial-grade web

servers available, ranging in price from $70 to

$1250, and several free alternatives to

Apache/Linux, including variations on Windows

NT systems as well as development server systems

from Microsoft.

As of early 2001, roughly a year into their work

between one and two thirds of the roughly 60

official developers were working out of channels

that didn't exist prior to Apache, and in the

meantime, they had over 600 non-core developers,

some of whom released code back into the system.

One reliable estimate is that as of 2005, "these

volunteers contribute at least as much code under

less than 10% of the time (number of clock hours)

than the paid workers contribute. Volunteered

code therefore accounts for less than 10% of all the

developers in Apache but nearly 30% of the total

software." Code from those non-core developers

was executed on more than half of all the servers

in the Internet and about two thirds of the Web

servers. This conclusion was reached using

collection methods that might produce

overestimates since some of the supposedly

Apache server-side code might be buried in

combinations of servers. Even so, Apache's market

performance through 2000 tends to support our

possible high estimate of user contributions:

Apache went from zero in early 2001 to owning

one half of the worldwide server market by 2004.

Since then, Apache usage has leveled, making it a

very viable choice for server solutions.

9. Challenges and Future Directions in Open

Source Development

Open source development: New horizons; new

risks?

While open source development continues to

evolve and support exciting new ways to conduct

https://www.theamericanjournals.com/index.php/tajssei
https://www.theamericanjournals.com/index.php/tajiir

THE USA JOURNALS

THE AMERICAN JOURNAL OF SOCIAL SCIENCE AND EDUCATION INNOVATIONS (ISSN- 2689-100X)
VOLUME 06 ISSUE07

 146

https://www.theamericanjournals.com/index.php/tajssei

science, manage communities, and generate

knowledge, it is not without challenges. In this

paper, we discuss a number of challenges for open

source, drawing on reflections of several

researchers who have worked extensively in open

source, including some who shared their insights

with more junior collaborators as part of the

Human and Social Dynamics of Open Source

Software (HSD) and the Climate Model

Intercomparison Project (CMIP).

1. Security-minded development and

responsibility One recent and growing challenge

for open source is the ongoing threat of security

flaws and bugs with large, organizational impacts.

Research has begun to explore what trust means

for open source communities, and how to measure

trust in these communities, raising the central

importance of trust to distributed communities of

volunteer workers. But while the mode of

production of open source software is ideally

suited to quickly identify and address security

flaws, the pervasiveness of open source in the

stacks of some of the world's most important

caching and application architecture tools invites

increased attention from malicious actors.

Furthermore, because of ubiquitous web

technologies, many modern open source projects

are now effectively part of the Internet, vastly

expanding the potential attack surfaces. In this

light, we queried participants in the Climate Model

Intercomparison Project (CMIP) about their

perspectives on what issues confront open source

development, based on their experiences

maintaining and using one of the most important

pieces of comprehensive scientific infrastructure

these days: CMIP6. Some responses to our queries

tackled factors of software quality generally

implicated in large software projects.

9.1. Security and Trust Issues

With the widespread use of open source code, new

forms of trust and trust interaction emerge. What

is particularly interesting is the interaction

between the user and non-expert developer, as

well as the development crew who need to trust

each other in a simple and cost-effective

engineering model ("just run the code locally").

Open source development is vibrant with lively

debates, shared knowledge, and collective problem

solving. There are regular real-world examples of

lifelong collaborative coding communities, which

are similar to Amish and Kulu v.1 in terms of

openness and contextualization of code. These

communities draw in a wide variety of users – 89%

of whom work in areas of IT, which are widely

considered to create moments of trust such as

transactions. Users become part-time co-

developers, either by reporting errors or making

contributions. By doing so, they are placed within

the circulation of conversation and coded value,

acquiring a personalized sense of communal

surety familiar to any credit union member, Amish

baker, secure transaction between bank customer

and banker, or social security bounty. In this model

of collaborative networks, the user-developer with

a trust attitude allows for the exchange of code as

a time- and space-transformable non-exclusive

non-transferable good. Those with a limited trust

attitude can judge it for empirical authenticity

because they believe "it 'fits' with the other

knowledge they have at the time, and would

heavily depend on the reputation, culture, and

understanding of the person who did the work".

10. The Role of Coder Communities in Open

Source

A successful open source project is one that has a

large, flexible, and hard-working community. That

project may begin with only a single programmer

or small group of developers, but to sustain it for

any length of time, they usually need a larger team.

Building and continuing to build an open source

community is part of the development and

maintenance process. The community, and the

https://www.theamericanjournals.com/index.php/tajssei
https://www.theamericanjournals.com/index.php/tajiir

THE USA JOURNALS

THE AMERICAN JOURNAL OF SOCIAL SCIENCE AND EDUCATION INNOVATIONS (ISSN- 2689-100X)
VOLUME 06 ISSUE07

 147

https://www.theamericanjournals.com/index.php/tajssei

non-coding user/advocate community, helps the

project grow and mature both in size and in

influence. The community around an open source

project can have a great deal of influence on its

"success." For coder communities specifically,

rising membership and increased interest are

often seen as evidence of a project's growing

success, but increased membership does not

automatically translate into a higher level of

involvement from that community. Not only does a

thriving community often make the work of

development easier, the community itself can be

the main foundation for the long-term success of a

project.

Coder communities and a successful project form

themselves in part around the development

process. Some open source projects, like Linux and

Apache, have become destination spots not

because they do anything particularly new, but

because of how they do development. Hosting an

open source project is about providing users with

the tools and resources they need to participate in

that project. As with the development of the

camping trip, users should not have to "work" very

hard to participate. If they have to download five

version control systems and eight bug reporting

systems before they can even get to writing one

line of code, chances are they never will. Providing

simple ways to get involved and contribute to a

project is one way to foster community

involvement. Once involved, members of a project

may perceive their situation as participating in

what is called a "hobby community." These people

are giving their time for fun, with full knowledge of

what they are doing. This is different from a "work

community" and a "community of practice." In

these situations, most people are giving their time

not only to further a goal or ideal but also for some

type of compensation.

10.1. Building and Nurturing a Community

What is considered a bit of luck often is the

consequence of hard work. Especially in earlier

years, open source software development was

often dominated by a small group of committed

developers. Over time, they have not only

addressed important technical issues but have also

made the social processes within the community

transparent. This article takes a closer look at

community strategies and the mechanisms that

have enabled the development of a fruitful coder

community in the various open source projects.

However, the social processes driving open source

development are not only driven by hard work and

consistency. Designers of successful projects have

also learned how to foster and nourish a thriving

project community.

Many open source software projects have lower

barriers to entry, ranging from simple interfaces to

comprehensive documentation, making it easy for

dedicated developers to join an open source

project. Moreover, the collective review approach

already attracts developers to the project during

project development. Successful project founders

treat newcomers in an open manner, and other

developers also help newcomers to come to terms

with the new project. Knowledge is shared within

the community, and entry thresholds are

communicated in a transparent manner. Complete

newcomers, who still have to familiarize

themselves with the overall architecture and

design, will first be assigned to small, isolated tasks

to avoid causing a lot of follow-up work or even

errors. Once these newcomers have adapted to the

project code and architecture and successfully

submitted their first patch, they feel a great

commitment to others in the project community. It

is also common for a mentorship to be established

that guides the developer over the long term,

helping him or her enter the project and further

progress.

11. CONCLUSION

The open source software projects we surveyed

https://www.theamericanjournals.com/index.php/tajssei
https://www.theamericanjournals.com/index.php/tajiir

THE USA JOURNALS

THE AMERICAN JOURNAL OF SOCIAL SCIENCE AND EDUCATION INNOVATIONS (ISSN- 2689-100X)
VOLUME 06 ISSUE07

 148

https://www.theamericanjournals.com/index.php/tajssei

show both the lasting continuities and the

emergent changes we have attempted to capture in

this paper. Even as the open source universe

continues to grow, further underscoring its

strength and viability as an approach to software

development, significant quantitative and

qualitative changes in the characteristics of the

open source world are beginning to take shape.

The eventual impact of these emergent post-boom

trends on the open source world meets our iron

law; at best, we can discern somewhat tenuous

hypotheses about emergent long-term changes. As

van Wendyl and Hallchrist de-Meuran (2001)

colorfully put it:

It is worth examining the ebbs and flows of open

source development—the changes and

continuities in this survey and the assumptions we

have used to shape our comparative analysis. Some

assumptions, like the unchanging nature of

managerial need or the irrelevance of nationalism

in an increasingly globalized world, have stood the

test of time. The failure of these and a host of other

assumptions, however, counsels humility as we

look to the future of open source.

What, then, do our findings from the 2001

comparative survey suggest about the prospects

for open source in the twenty-first century? What

directions is the movement currently following,

and where is it likely to go in the future? In this

conclusion of our comparative survey, we pull

together several strands of our quantitative and

qualitative analysis. In particular, we consider the

emerging trends, the directions that contemporary

open source appears to be following, and the major

open research questions in open source that

remain unanswered.

11.1. Emerging Trends in Open Source

Development

In this section, we explore some of the most

important recent trends in open source

development and describe how they relate to the

case studies presented elsewhere in the book. We

have divided these trends into three categories:

institutional environments, organization of OSS

development, and the innovation outcomes of OSS.

2.1 Institutional environments

One of the most obvious changes in OSS

development in recent years has been the

increasing range of institutional settings and

structures within which the work is carried out,

and which pay for workers to work on projects.

Although our histories of OSS projects run from the

late 1980s, owe a great deal to lone individuals

coding away in their spare time, over the last

decade, we have seen the emergence of a number

of new forms of project organization and support.

These range from stand-alone projects run by a

single company for its advantage, through

community-based or predominantly community-

based projects, to obligatory enterprises based on

large amounts of software, some of it OSS or

technically open source, packaged up and sold to

organizations who wish to use it.

In our cases, we find a variety of different forms of

project principle, from foundation-run projects

such as the Apache Software Foundation itself to

companies such as MySQL or Vignette, which use

and distribute LAMP or Lucene. XP and Eclipse are

both software projects with something of an

obligatory element, in the sense that the

communities and companies around the Eclipse

simultaneous release are able to achieve

significant economies of scale and the widespread

confusion attendant upon the release-time

delivery of many interrelated software

components as a single upgrade pack, packages

that would be impossible but for the distributed

global community-building activities that result

from everyone hitting the same deadline. Some of

these products, however, are also being written for

fun or simply to see the technology pushed

forward, as with GM Rush if not GM. In many cases,

https://www.theamericanjournals.com/index.php/tajssei
https://www.theamericanjournals.com/index.php/tajiir

THE USA JOURNALS

THE AMERICAN JOURNAL OF SOCIAL SCIENCE AND EDUCATION INNOVATIONS (ISSN- 2689-100X)
VOLUME 06 ISSUE07

 149

https://www.theamericanjournals.com/index.php/tajssei

developers have offshoots of the main project

within the institutional space in terms of the

projects or packages OSS developers work with for

clients.

12. REFERENCES

1. Baker, Alexander, Michel Avital, and Eri

Kesalainen (2015), Digital Infrastructure: A

Content Analysis of the Issues of Open Source,

Cloud, and 5G ISP, 21st Americas Conference

on Information Systems

2. Bonaccorsi, Andrea, Omar Compagnone, and

Luca Spataro (2011), Participation in Open

Community: A Model of Motivation for New

Participants as Moderators of Conflicts and

Exclusion in the OSS Development

Communities, Premium Technologies and

Infonomics

3. Deessen, Andreas (2013), Designing a

Supporting Open Source Platform for Shared

Content Creation, Hamburg University of

Applied Sciences

4. Deussen, Andreas, and Mathew Henry (2015),

The Many Benefits of Being an Open Source

Evangelist, University of Leipzig

5. Ghosh, Rishab Aiyer (2003), Understanding

Open Source Software Hackers through the

Internet, International Journal of Technology,

Policy, and Management

6. Iacovou, Charalambos, Cyrill Liu, and Yong Liu

(2014), Time to Degree Events in Open Source

Software Development: A Comparative Study

of Premium/Open Access Journals,

Information Systems Management

7. Jungherr, Marcel, Harald Schoen, Oliver

Posegga, and Pascal Jürgens (2017), Digital

Trace Data in the Study of Public Opinion: An

Indicator of Attention Toward Politics Rather

Than Political Support, Social Science

Computer Review

8. Markus, M. Lynne, Jacqueline Sherris, and Jeff

Turner (2005), Social Structures of Email

Networks, Journal of Management Information

Systems

9. Nan, Ning, She-I Chang, Tianli Wang, Michael

Chi Yuan Lee, Jinwei Liu, and Yanna Wu (2017),

Analyzing the Relationship Between

Productivity and Code Quality in Open Source

Software Development, Journal of

Management Information Systems

10. Neus, Andreas, Frank Schäfer, Günter Jacobs,

and Jan Prasch (2014), Do Open Source

Platforms Substitute Firms? An Empirical

Analysis of the Relationship between Open

Source Platforms and Firms, Journal of

Management Information Systems

11. Pan, Shimei, Xuequn Wang, and Jianhua Hou

(2015), Capturing Genetic Data on Open

Source Software Development,

Communications of the Association for

Information Systems

12. Picot, Arnold, and Matthias Achter (2001), The

Startup-ecosystem as Clans in a Virtual High-

Tech Community: Spect, Future Imperatives

for Management Information Systems

13. Schackmann, Frank, Andre Carrel, Yusuke

Sugano, and Ivo Krka (2014), Guidelines for

Reporting Open Source Software Engineering

Processes (and Annika Repschläge from 2006

to 2011), Information and Software

Technology

14. Weiss, Maik, and Astried Moaba (2015),

Studying Privacy Policy Statements for Mobile

Apps at Scale Using Heterogeneous Data,

Journal of the Association for Information

Systems

15. Yeh, Ching-Yi, and Che-Wei Wang (2013),

Analyzing Co-experience in a 3.0 Approach

with Open Source Ones: A Study on Wikipedia,

Drugstore.com Too Antab, International

https://www.theamericanjournals.com/index.php/tajssei
https://www.theamericanjournals.com/index.php/tajiir

THE USA JOURNALS

THE AMERICAN JOURNAL OF SOCIAL SCIENCE AND EDUCATION INNOVATIONS (ISSN- 2689-100X)
VOLUME 06 ISSUE07

 150

https://www.theamericanjournals.com/index.php/tajssei

Journal of Technology and Human Interaction.

https://www.theamericanjournals.com/index.php/tajssei
https://www.theamericanjournals.com/index.php/tajiir

