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Abstract

Objective: The current advancements in digital workflows and artificial intelligence in estimating tissue overload,
restoration failures, and longevity predictions have increased the biomechanical precision in the field of esthetic dental
rehabilitation and aim to analyze and compare the biomechanical parameters of aesthetic dental rehabilitation using
generative neural networks versus traditional clinician-driven methods.

Methodology: A narrative review from 2015 to 2025 examined the PubMed, Scopus, Web of Science, IEEE Xplore, and
Cochrane library for studies in English concerning finite element, laboratory, clinical, and Al studies that include the
outcomes of biomechanics.

Results: GNN assisted planning showed significant biomechanical gains in intricate rehabilitations, especially in multi-
unit and implant-supported restorations. Declined peak stresses and more uniform distribution in peri-implant and
periodontal structures, improved control of deformations, and thorough reconstruction in more optimized geometries,
especially in the stresses or deformations, were noted. The evidence is mostly simulation-based, methodologically
heterogeneous, and lacks thorough and sustained clinical validation.

Conclusions: GNN-based planning indicates possible biomechanical advantages, notably less peak stress for complicated
dental rehabilitations, however, most evidence is simulation-based. The GNN workflow's clinical implementation requires
biomechanical principles and relies on predictive analysis, explainable Al, and cross-disciplinary substantiation.
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1. Introduction veneers, crowns, and implant-supported prostheses.
These restorations help to improve function and

Today's dental practices provides aesthetic rehabilitation appearance. Beyond improvements in dental health, such

including complete smile redesigns, and the use of
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interventions positively impact mastication, speech, self-
esteem, social confidence, and overall patient wellbeing,
which speaks to the holistic benefits of rehabilitative
dentistry (Alwabel et al., 2025). Integrating new
technologies into clinical practices has improved
consistency and reliability in aesthetic dentistry. These
include intraoral scanning, cone beam computed
tomography (CBCT), photographic analysis, and
computer-aided design and manufacturing (CAD/CAM)
(Kabbin et al.,, 2025). These improvements have
enhanced communication and treatment predictability
across the clinician, technician, and patient triad.
Restorative and prosthetic interventions alter the
biomechanical aspects of the dentofacial system.
Modified occlusal contacts, load directions and
magnitudes change the stress distributions in the dental
structures, periodontal ligaments, alveolar bone, and the
tissues surrounding the dental implants. Such
biomechanical changes affect the remodeling of the
periodontium, adaptation of the soft tissues, and the
longevity of the restoration. Numerous studies in
Modified Element Analysis (MEA) and in-vitro and in-
clinic studies have shown that the amount, direction and
contact area of the load greatly affect the stress
distribution in the dental tissues and the restoration (Saini
et al., 2020). The clinical importance of biomechanics
and aesthetics rehabilitation breaks down the importance
of a biological breakdown of systems. Biomechanical
assessments shine a light on the uneven and excessive
stress/strain systems experience. The foundation of every
successful rehabilitative dental treatment is appropriate
treatment planning. Decisions made during treatment
planning will determine the shape of the restorations,
material used, the schemes of dental occlusion, and how
the prosthetist components will connect with the
biological tissues. Conventional planning methodologies
are built mostly on years of experience in the clinical
field and rooted in biomechanics and dental occlusion.
Numerous techniques like articulator mounting,
diagnostic wax-ups, and trial restorations are still
popular, and employed to assist in the planning of
treatments and the visualizations of the anticipated
restorations (Gomes et al., 2021). However, these
methodologies are still dependent on the clinician’s
experience, and mostly manual decision making. The
challenges of complex aesthetic rehabilitation planning
lie within the nature of the practice itself. The clinician
has to evaluate esthetic and functional requirements of
the rehabilitation, the mechanical and biological
parameters of the employed materials, and specific
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individual characteristics such as anatomy, occlusal
relationships, parafunctional behaviors, and tissue types.
Furthermore, individual/operator subjective reliance in
subjective judgment is a source of variability and may
limit the potential to optimize biomechanical
performance in complex, and especially multi-unit
rehabilitations in a steady manner. Numerous reviews
have remarked on the variability of clinical planning
outcomes based on the level of the planning clinician and
the particular clinical situation (Ding et al., 2023).
Incorporating new technologies such as artificial
intelligence (Al), machine learning (ML), deep learning
(DL), and generative neural networks continues to be
beneficial to expanding diagnostic and treatment
planning in Dentistry. Automated recognition in 2D and
3D datasets and automation of diagnostic tasks can be
augmented by Al. Diagnostic and treatment planning
tasks can be further enhanced by Al technologies which
can analyze large datasets of historical clinical data.
Generative models are innovative in that they generate
new and unique designs instead of simply classifying
designs. These advances offer the potential to improve
planning consistency, geometric accuracy, and
biomechanical optimization, particularly in complex
aesthetic rehabilitations where conventional clinician-
driven workflows may be limited by subjective
variability in decision-making (Villena et al., 2025).
Consequently, Al-assisted planning has gained attention
as a promising adjunct for improving decision-making
and treatment reliability.

2. Literature review

The ability to plan workflows with the help of Al
resolves the problem of being able to combine data from
multiple sources with the use of tools like merging finite
element analysis (FEA) for the in-silico modeling of
different planning scenarios before a treatment regime is
implemented. This makes it possible to choose the
designs that are most likely to achieve optimal load
distributions in  occlusal balance, less stress
concentration, and other improvements in the mechanical
stability of the tissues surrounding the implants.
Computational modeling is likely to offer additional
planning benefits to Al assisted planning of implants and
digital designs of prosthetics which allow for improved
geometric accuracy and greater consistency in
measurement (Esteva et al., 2019; Satapathy et al., 2024).
Thus, measuring biomechanics will suffice in assessing
the difference between Al-assisted and conventional
planning methods. The role of biomechanics in
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predicting future success of rehabilitation is pivotal, as,
in the absence of proper stress, the detrimental impact on
the implant’s surrounding structures cause breakdown of
supportive periodontal tissues and loss of peri-implant
bone. Moreover, unfavorable load distributions may
increase the chances of fracture and/or debonding, while
under function, tissue deformation may affect the
comfort and stability of the system and biological
adaptation. Hence, the compatibility of the
biomechanical properties of restorations with the tissues
of the Periodontium is crucial for the long-term
preservation of the periodontal health and the structural
integrity of the supporting tissues (Berzaghi et al., 2025).

Specific biomechanical parameters that are critical for
aesthetic dental rehabilitation are the stress distribution
in the PDL and alveolar bone, the distribution of
masticatory loads across the teeth and restorations, the
deformation characteristics of the tissues and restorations
under mechanical stress, and the bone-implant interface
stability under different mechanical loads. These
parameters of the study are often utilized as operational
proxies for assessing mechanical durability in
experimental and computational studies (Alaida et al.,
2025). There have been significant advancements made
in the methods used for biomechanical research in
dentistry. Classic experimental methods such as
photoelastic  stress analysis and strain  gauge
measurement have provided the initial understanding of
the steps involved in the load transfer, but these methods
have been and continue to be limited in their ability to
accurately depict complex anatomical structures. One of
the approaches that has become the standard in
estimating and comparing the stress and strain and the
deformation in the tissues and the restorations of the
dentistry has been the FEA. This method has also
become the cornerstone in allowing comparisons of
different options for treatment plans. The variety of
assumptions is the used in the studies, and the methods
themselves. have created a great deal of diversity in the
findings of the different studies (Brizuela-Velasco et al.,
2025; Wang et al., 2022).

Although there is an increasing interest in Al-driven
planning and recognition of the biomechanical factors
influencing rehabilitation success, the direct comparison
of the biomechanical outcomes Al planning versus
conventional planning remains limited. Prior work
involved silico, in-vitro, and clinical studies with diverse
strategies. Thus, there is a need for a more detailed
integration of the available studies (Sayed et al., 2025).
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This review specifically focuses on evaluating and
synthesizing the biomechanical results of Al-supported
and standard clinical planning in aesthetic dental
rehabilitation and integrating the existing literature while
highlighting the gaps in the evidence for future research.

3. Methodology
3.1. Study Design

This structured narrative review utilized systematized
methods for greater transparency and replicability. Due
to the diversity of literature including finite element
models, lab, and limited clinical studies no meta-analysis
was planned. The systematic guidelines that emerging Al
applications in cross-disciplinary areas, such as dental
treatment planning, provide for eligibility, database
search, study selection, and data extraction.

3.2. Information Sources

A comprehensive review of the literature was conducted
using PubMed, Scopus, Web of Science, IEEE Xplore,
and the Cochrane Library. The databases cover a wide
range of disciplines, including biomedicine, dentistry,
materials science, and artificial intelligence. This also
helped in collecting relevant clinical and technical
literature about the application of artificial intelligence in
aesthetic dental rehabilitation, along with collecting the
references.

3.3. Search Strategy

Search terms were developed based on three conceptual
groupings. The first group addressed aesthetic and
prosthetic rehabilitation. The second group focused on
artificial intelligence (Al) and neural networks or
generative technologies. The third group concerned
biomechanics and mechanical outcomes. Keyword
combinations and controlled vocabulary terms, where
applicable, were applied, and Boolean logic was used to
balance sensitivity and specificity. The general search
structure was as follows: (“esthetic” OR “aesthetic” OR
“prosthodontic” OR “restorative dentistry” OR “fixed
prosthesis” OR crowns OR veneers OR “implant-
supported”) AND (“artificial intelligence” OR “machine
learning” OR “deep learning” OR “neural network” OR
generative OR GAN OR VAE OR transformer) AND
(“finite element analysis” OR biomechanics OR stress
OR strain OR “load distribution” OR “periodontal
ligament” OR “alveolar bone” OR deformation). The
review included studies published between January 1,
2015, and December 21, 2025, to examine the evolution
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of Al, deep learning, and generative models in dentistry.
Only studies published in English and available in full
text were considered. Earlier seminal studies were
additionally identified through reference mining to
ensure relevance to contemporary digital workflows.

3.4. Eligibility Criteria

The studies that were considered for inclusion were peer-
reviewed articles regarding dentoalveolar biomechanics
and stress analysis, load transfer, and tissue responses
relevant to aesthetic or prosthetic rehabilitation,
including clinician and Al (GNN) treatment planning.
Descriptions of technical neural networks were accepted
if they were closely related. Reviews, editorials,
abstracts, duplicates, studies focusing exclusively on
orthodontics, studies with purely aesthetic outcomes, and
non-English papers lacking dependable translations were
excluded.

3.5. Study Selection Process

Volume 08 - 2026

The PRISMA 2020 reporting guidance, adapted for
narrative reviews, was used to complete the selection of
studies. From the database search, we obtained 5,237
entries for publications dated between January 1st, 2015,
and December 21st, 2025. 99 duplicate records and 135
records due to other predefined exclusion reasons were
removed. The remaining records were subject to title and
abstract screening of 143 records. Out of these, 49
records were excluded after screening due to not meeting
the inclusion criteria. Assessment of the full texts of 94
reports led to the exclusion of 17 studies for the following
reasons not relevant to aesthetic rehabilitation (9), not
comparing the GNN based with the standard planning
(3), and not targeting the assessment of the
biomechanical outcomes (5). Seventy-seven studies were
finally admitted reviewing out of all which met the
eligibility criteria, and were added to the review,
illustrated in Figure 1.
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Figure 1. PRISMA-Adapted Flowchart of Literature Identification and Selection Process

3.6. Data Extraction and Synthesis
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Data were extracted on study design, rehabilitation type,
planning approach, biomechanical outcomes, and key
results. Due to heterogeneity, findings were described
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qualitatively, highlighting ranges, directional trends,
consistent and contradictory results, and evidence gaps.
This thematic synthesis of the results section is therefore
informed by stress distribution, load transfer,
deformation, and restoration stability.

3.7. Quality and Bias Considerations

Given the predominance of computational and Al-based
studies, traditional risk-of-bias tools were unsuitable.
Finite element studies were evaluated on mesh density,
material assumptions, boundary/loading conditions, and
validation. Al-based planning studies were assessed for
dataset transparency, validation, overfitting, and
generalizability. For combined AI-FEA studies,
compounded biases from modeling and algorithms were
noted. Lack of regulatory or experimental validation was
acknowledged, with quality and bias considerations
guiding interpretation rather than excluding studies.

4. Results

4.1. Biomechanical Principles in Aesthetic Dental
Rehabilitation

Biomechanics regulates how force is distributed within
aesthetic-dental rehabilitations, balancing restorations to
most masticatory loads without overloading teeth,
periodontal ligaments, or bone. Stable arrangements
reduce potential damage if chewing or bruxism is present
(Dogru et al., 2018; McGrath & Bonsor, 2022). Stress,
measured in megapascals (MPa), reflects internal
pressure and force within a material, while strain
represents relative internal displacement and is
dimensionless. Stress types tensile, compressive, and
shear often concentrate at peripheral margins or apices,
where failure risk is high. The periodontal ligament
(PDL) physiologically exerts maximum stress around
10 MPa, but under overload can transmit up to 70 MPa to
enamel or cementum. Finite element models indicate that
periodontium tissues exposed to sustained stresses of 20-
80 MPa, corresponding to strains of 0.005-0.008, are
prone to structural failure, highlighting the critical role of
biomechanical assessment in restorative and implant
planning (Okkar Kyaw et al., 2024; Borba et al., 2015;
Dhammayannarangsi et al., 2025; Gupta et al., 2020).
According to previous literature, chewing forces usually
average a couple hundred Newtons, while a maximum
voluntary bite may reach 500-750 N, and in severe cases,
bruxism reaches forces upwards of 1000 N. Longitudinal
forces directed along the axis of a tooth are transmitted
through the supporting structures in a uniform manner
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whereas, shear and/or lateral forces that are directed off
axis cause bending and may increase stress in the
structure. For this reason, optimal occlusal design, points
of contact, and guidance will be set to favor the transfer
of axial load (Flores-Ramirez et al., 2025; Ustrell-Barral
et al., 2024; Holst et al., 2008; Attik et al., 2024). Dental
tissues exhibit differing elastic properties that influence
how stress distribute at restoration interfaces. Enamel has
an elastic modulus value of 40-100 GPa, dentin is at 15-
20 GPa, and alveolar bone is at 10-20 GPa given that
bone is of variable density (Kinney et al., 2003; Rees &
Jacobsen, 1993). Zirconia has a modulus of elasticity of
approximately 200 GPa, lithium disilicate is at 90-100
GPa, and composite resins have values of 5-30 GPa
which causes modulus mismatches that focus interfacial
stresses (Babaei et al., 2022). Modulus mismatches at
interfaces contribute to stress concentration and
influence decisions on thickness and support (Puri &
Prathap, 2025; Zarone et al.,, 2019). The unideal
biomechanics that cause overload fracture of ceramics,
shear failure debonding, minor breakdown through
cyclic deformation, and tissue overload above
remodeling limits are negative. Finite element analyses
confirm these models especially in thin margins or
mismatching. In these scenarios, Al planning probably
surpasses traditional approaches by predicting stress
distributions (Xie et al., 2025; Gunwal et al., 2018).

4.2. Standard Clinical Planning Approaches in
Aesthetic Rehabilitation

Standard diagnostic methods, including clinical
examination, photographs, radiographs, and impressions
or intraoral scans, form the foundation of initial aesthetic
rehabilitation planning. In complex cases, clinicians use
articulator mounting, occlusal analysis, diagnostic wax-
ups, and trial restorations to integrate esthetic goals with
tissue function, phonetics, and feasibility (Jubhari &
Aenun, 2020; Rathee et al., 2023). Foundational records
such as study models and wax-ups allow prediction of
tooth morphology before intervention. Facebow transfer,
articulator mounting, and occlusal analysis examine the
functional relationships and occlusal schemes that enable
the prediction of prosthetic results (Khanna, 2020).
Periapical, panoramic, and CBCT imaging assist in
analyzing the hard tissues and their anatomy to facilitate
accurate and  predictable  restorative  planning
(Alresheedi, 2022). Standard planning techniques
emphasize axial load transfer, maximum intercuspation,
stable occlusal contacts, and smooth excursions while
interferences laterally are avoided. Selection of materials
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and preparation design consider specific loads at the site,
ensuring adequate thickness for retention and preserving
enough tooth structure. Clinicians adjust plans based on
expertise, prior outcomes, and patient-specific
limitations (Mordanov & Khabadze, 2024; Pable et al.,
2025).

Minimum ceramic thickness in high-load areas is
recommended at 1.5 mm for lithium disilicate and 1.0-
1.5mm for zirconia, with posterior reductions often
requiring at least 1.5 mm. A preparation taper of 6-10
degrees balances retention, resistance, and prosthesis
stability (Yli-Urpo et al., 2025).

Some of the advantages of standard planning are its
clinical underpinning, flexibility, and many years of
effective use. Skilled clinicians can incorporate subtle
details in their analysis which may not be reflected in the
models, and conventional processes can be carried out
with commonly accessible equipment (Joda & Zitzmann,
2022). Interdisciplinary  reports of long-term
prosthodontic outcomes tend to show high survival rates,
and after proper planning and execution, these rates can
often exceed 90% at the 10-year mark for certain
indications Knoernschild, 2020).

Predicting system performance and stress distributions in
planned deviations can be limited by a number of factors
in the experience of the clinician such as trying to
optimize several systems at the same time. In more
intricate reallocations of the resources a small variation
in the design can determine the controlling pathway of
stress. It is also a problem in predicting stress
distributions  without the use of sophisticated
computation (Chisnoiu et al., 2023; Joda et al., 2024).

4.3. Artificial Intelligence and Generative Neural
Networks in Dental Planning

In dentistry, Al refers to technology capable of
performing tasks requiring human cognition, such as
pattern recognition, decision-making, and optimization.
Al can process and analyze diverse data, identify
patterns, and support diagnosis and treatment planning.
It is increasingly applied in diagnostic imaging, risk
assessment, treatment planning, and prognosis
prediction. Unlike classical rule-based software, Al
systems learn from data, improving performance as
training datasets grow, enhancing accuracy in predicting
outcomes for individual cases (Fatima et al., 2022;
Mallineni et al., 2024). Machine learning, a key subset of
artificial intelligence, includes several paradigms.
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Supervised learning develops algorithms using labeled
data, such as radiographs, CBCT volumes, or intraoral
scans, associated with clinical endpoints, including
annotations, shapes of restorations, or outcomes, which
facilitates extrapolation to novel cases (Lin et al., 2024).
Unsupervised learning recognizes patterns or groupings
in unclassified data, such as, labeling anatomical
structures or occlusal molds (Wang et al., 2025).
Reinforcement learning updates planning strategies
through a feedback-based reward system, which includes
goals such as minimizing predicted stress concentrations
or deformation due to applied load (Wang et al., 2019).
Every paradigm presents distinct methodologies to
improve  Al-assisted  diagnosis, planning, and
biomechanical optimization in dentistry.

Generative neural networks form a special kind of
machine learning model that is able to create new outputs
instead of only doing classification or prediction of the
existing outputs. In planning dentistry, generative
models can synthesize geometries of restorations,
implant sites and anatomical reconstructions that are not
duplicates of the training instances, but instead, are
plausible new solutions that can be constructed from the
learned distribution of the data. This distinguishes these
models from conventional classifiers and makes them
highly relevant for the individualized planning of
rehabilitation (Broll et al., 2024; Ma et al., 2025).
Artificial neural networks are comprised of layers which
are interconnected. Input layers analyze unprocessed
data (like 3D tooth meshes or CBCT voxels) and hidden
layers analyze anatomical patterns by using weighted
nonlinear alterations. The output layers create
predictions and designs, which are optimized through
backpropagation that minimizes relevant loss functions
(Lyakhov et al., 2022; Zannah et al., 2024). Generative
neural networks train data distributions to synthesize
detailed representations of dental structures while
enhancing restorations' geometry, occlusion,
biomechanics, and aesthetics beyond human ability.
Multiple generative frameworks have been implemented
in the dental and biomedical fields; the summaries of
these frameworks can be found in Table 1. Convolutional
Neural Networks (CNN) analyze images and accurately
capture and identify local features and spatial
relationships. The process of pooling diminishes
dimensionality while preserving essential details which
allows for the analysis of volumetric data sets such as
CBCT scans. In dentistry, CNNs perform remarkably in
segregating roots, bone, and margins of restorations
which serve as the main data sets for later planning
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activities. Because of these attributes, CNNs becomes the
most suitable choice for restorative and implant planning
workflows (Muthukrishnan et al., 2020; Fan et al., 2023).

Volume 08 - 2026

Table 1. Generative Neural Network Architectures in Dentistry and Biomechanics

CNNs Spatial feature extraction
from volumetric images

GANs Realistic  synthesis  of
anatomical geometries

VAEs Probabilistic  generation
and interpolation

Transformers Sequential decision
modeling

GAN:Ss consist of a generator that creates restoration-like
images and a discriminator that classifies them as real or
fake. Through competition, the generator produces
realistic crowns and inlays with accurate anatomy and
occlusion (Najeeb & Islam, 2025; Lee et al., 2025).
VAEs learn compressed latent representations, allowing
interpolation to generate new, biologically plausible
tooth shapes and arches for individualized treatment
planning (Oulmalme et al., 2025; Vivekananthan, 2024).

Attention-based architectures, such as Transformers, aid
sequential decision-making in multi-step orthodontic or
staged rehabilitation workflows. Diffusion-based
generative models iteratively refine random inputs into
anatomical structures, showing promise in dental
planning, though further validation is needed (Dong et
al., 2024; Ma et al., 2025). Generative neural networks
offer a key advantage in dental planning by integrating
biomechanical objectives directly into the design
process. Unlike conventional planning, where clinicians
balance esthetics, function, material strength, and
biological response, generative models evaluate
thousands of variable combinations. Incorporating
biomechanical simulations such as FEA allows networks
to be trained or evaluated using performance metrics like
stress distribution, deformation, and load transfer (El-
Hakim et al., 2025; Siluvai et al., 2025). Candidate
designs are subjected to simulated loads, with loss
functions penalizing localized stress or excessive
displacement, enabling the network to associate
geometric features such as cusps, occlusal contacts, and
implant angulations with biomechanical outcomes

The Am. J. Med. Sci.Pharm. Res.2026

Root and bone
segmentation in CBCT
Crown and inlay design
previews

Tooth morphology
variation modeling
Orthodontic and staged
planning workflows

Limited with
Euclidean mesh data
Mode collapse; training
instability

Blurred outputs relative to
GANs
High
demands

non-

computational

(Khan, 2025; Kriswanto et al., 2025; Chang et al., 2025).
Reinforcement learning further optimizes planning by
modeling mastication cycles, improving fatigue life,
deformation  control, and alignment  vectors,
demonstrating generative models’ utility in adaptive,
multi-layered restorative and orthodontic planning
(Dhopte & Bagde, 2023). A key feature of Al-enhanced
dental planning is clinician interaction with automated
systems to build trust. Beyond generating treatment
recommendations, Al can create comprehensive plan
templates, but acceptance depends on clinicians’ ability
to interpret and validate outputs. Explainable Al (XAl)
addresses this by providing visual or numerical
rationales, highlighting the clinical reasoning behind
recommendations (Ahmed, 2025; Sciarra et al., 2025).
Tools include biomechanical sensitivity analyses,
heatmaps, and ranked feature importance for parameters
such as occlusal contact, crown thickness, and implant
angulation, enabling clinicians to assess alignment with
anatomical and biomechanical constraints (Li & Wang,
2025; Mun et al., 2025). Al predicts biomechanical
effects of subtle design changes, such as cusp inclination
or contact position, with stress and deformation feedback
fostering clinician confidence (Preda et al., 2025; Khan
et al., 2024). Generative systems function as decision-
support tools, with clinicians retaining responsibility for
context, ethics, and approval. Human-Al collaboration
with explainability ensures continuous feedback, ethical
adoption, and regulatory compliance, supporting the
sustainable use of GNNs in aesthetic dental rehabilitation
(Shujaat, 2025, Kaviandost et al., 2025). Explainability
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paired with clinician oversight is essential for ethical,
sustainable use of generative neural networks in dental
rehabilitation, meeting regulatory requirements for
transparency and accountability.

4.4. Clinical Implementation and Decision-Support
Paradigms

There are several existing applications of Artificial
Intelligence in dentistry, but only a few focus on
clinician-Al decision support systems, where Al
provides preliminary suggestions for the clinician to
review and adjust, combining human expertise with
regulatory compliance (Moeini & Torabi, 2025). Al-
enhanced implant planning achieves high positional
accuracy, reduces planning time from 30 to 10 minutes,
and produces clinically acceptable plans in 89% of cases,
comparable to 93% for human experts, often
indistinguishable in Turing tests (Xie et al., 2025). VAESs
and Transformers improve outcome prediction and
alignment planning, enabling dynamic tooth movement
adjustments, 35% fewer refinements, and 28% faster
alignment, while complex cases are still modified by
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clinicians (Murshida et al., 2025). There are several
issues that impact the widespread use of planning that
relies on generative neural networks. Data representation
and quality are critical, as networks trained on datasets
that underrepresent certain populations or treatment
approaches may perform poorly for anatomically or
demographically different groups, such as those in South
Asia, creating low generalizability and potential bias
(Murat et al., 2025; Beyaz et al., 2025; Franceschini et
al., 2025; Yang et al., 2025). Finite element analysis
provides insight into stress and deformation distributions
but relies on assumptions about material properties,
boundary conditions, and loads, so predicted
biomechanical outcomes may not always match in vivo
results. Generative models can produce anatomically
plausible outputs that lack clinical utility (Kumar et al.,
2023; Hussain et al., 2025; Ray et al., 2023).
Implementation is further challenged by computational
limits, regulatory uncertainty, ethical concerns regarding
privacy and access, and the absence of liability
frameworks. Many Al planning tools remain primarily
research-oriented, as summarized in Table 2.

Table 2. Limitations, Bias Sources, and Mitigation Strategies in GNN-Based Dental Rehabilitation Planning

Challenge Impact
Data Bias Reduced generalizability across
populations
Model Limited clinical translatability due to FEA
validation assumptions
Explainability Liability and clinician trust concerns
Integration Workflow disruption and adoption barriers

Multimodal data integration is anticipated to be the focus
of future studies. This is the integration of imaging data
with biomechanics and biologic data from the patient to
get even more personalization. Integrating physics-
informed neural networks almost certainly reduces the
need for expensive computational simulations by
embedding the relevant biomechanical data into the
learning framework. Real-time feedback systems may be
realized through the use of edge Al within intraoral
scanners or CAD/CAM systems during the design or
preparation stages. While possible, the integration of
generative planning tools to standard care pathways will
require clinical validation and alignment with regulatory
frameworks (Mahesh Batra & Reche, 2023; Che et al.,
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Mitigation Strategies
Prospective clinical trials and experimental
validation
Prospective clinical trials and experimental
validation
Explainable Al tools such as attention maps and
saliency visualization
Interoperable, plug-and-play APIs and clinician-in-
the-loop systems

2025). In the reported studies, there are differences to be
noted between the standard clinical planning and the
generative neural planning, as shown in Figure 2. Where
both planning workflows begin with the same clinical
diagnoses, with standard planning workflows, there is
much more clinical decision making, and much more
hand tuning. In contrast, planning-by-GNN frameworks
include a mid-stage in the workflow where candidate
designs are generated and subsequently iteratively fine-
tuned to biomechanical objectives prior to clinician
review. The studies included in this review incorporated
the aforementioned calibration and vyielded active
designs with optimized moderate load transfer, reduced
peak stress indicators, and clinician oversight.
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Figure 2. Side-by-side conceptual workflow comparison of standard clinical planning versus generative neural
network-based planning for aesthetic rehabilitation.

4.5. Synthesis of Biomechanical Outcomes from
Reviewed Literature

The analysis of stress distribution in supporting
structures and the periodontium is often used as a proxy
for biomechanical risk in aesthetic dental rehabilitation.
Low peak stress and even stress distribution indicate
good biomechanical performance, as summarized in
Table 3. Al-assisted planning, particularly using finite
element analysis and neural network optimization, has
demonstrated improved outcomes. ANN-optimized full-
arch rehabilitation with bone implants shows reduced
peri-implant stress and less deformation under loading

The Am. J. Med. Sci.Pharm. Res.2026

compared to traditional FEA-based planning. The extent
of improvement varies depending on the clinical and
modeling context. For example, Al-assisted orthopedic
prosthetic implants demonstrate clear biomechanical
advantages, whereas studies focusing on geometric
reconstruction or landmark prediction improve model
accuracy without significantly altering tissue stress
distribution. Overall, incorporating Al tools that
optimize stress and deformation enhances biomechanical
planning for complex rehabilitations, addressing
limitations of conventional approaches and supporting
better functional and structural outcomes in restorative
dentistry.
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Table 3. Summary of representative studies evaluating biomechanical parameters in aesthetic dental
rehabilitation under standard versus Al-supported planning

Planning Compared

Biomechanical
Outcomes

Key Findings

Reconstruction

Generative Al

Conventional vs

Design / Method Rehabilitation
Type
Dindorf et al. VAE-based Posture
(2024) modeling biomechanics
Broll et al. GAN (StyleGAN- Dental
(2024) 2) inlay/crown
Chenetal., FEA + ANN-PSO Full-arch
(2025) implants
Martinez- FEA + ANN Cranial implant
Valencia et al.
(2022)
Sekhar FCNN Facial soft tissue
Koppireddy et planning
al. (2025)
Chen et al. Generative DL Structural tissue
(2023) analysis

The distribution of the masticatory load corresponds with
how occlusal forces are allocated across restorations and
supporting structures and is commonly assessed through
stress patterns, frictional behavior, and contact geometry.
While Table 2 does not report force-sharing coefficients,
numerous studies evaluate load balance using stress- and
geometry-based metrics. ANN-supported optimization
in early full-arch implant rehabilitation reduces peri-
redistribution of
occlusal loads. GAN-enhanced reconstruction improves
inlays,
replicating cups and fossa morphology, promoting more
uniform load transfer. Overall, GNN-based planning
demonstrates potential to enhance load distribution,
particularly in multi-unit complete restorations, beyond

implant stress through localized

occlusal

surface accuracy in crowns and

isolated restorations.
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Generative Al

CAD vs GAN-based

FEA vs ANN-
optimized

Standard vs ANN-
optimized

Conventional vs
FCNN

Traditional ML vs
Generative DL

The consequences of
mechanical loads depend on implant or restoration
positioning and the response of surrounding tissues.

accuracy

Occlusal geometry

accuracy

Peri-implant stress

Implant deformation

Landmark prediction

Prediction robustness

tissue deformation

planning
demonstrated
superior
biomechanical
modeling
performance
GAN-based planning
showed improved
reconstruction
quality
ANN-based planning
improved
biomechanical
performance
ANN-optimized
planning improved
biomechanical
outcomes
FCNN-based
planning showed
superior predictive
performance
Generative DL
models demonstrated
superior performance

under

Table 4 summarizes reductions in deformation achieved

designed

models

limited

with ANN-assisted planning compared to standard
methods. In personalized implant rehabilitation, ANN-
maximum
displacement to under 0.1 mm, whereas non-optimized
models showed greater variability. ANN optimization
also reduced stress on adjacent bone, requiring less force

implant

for deformation. However, predicted outcomes depend

heavily on model assumptions regarding material
properties, boundary conditions, and load magnitudes.

Overall, GNN-supported planning demonstrates lower,
controlled tissue deformation, contingent on the validity
and accuracy of the underlying simulation frameworks.
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The projected longevity and stability of restorations have
been assessed using surrogate biomechanical measures,
such as stress concentration, geometric precision, and
deformation control, rather than long-term clinical
outcomes. GNN-based methods described in Table 4
improved reconstruction accuracy and reduced error
metrics, suggesting enhanced mechanical stability and
lower fracture risk. However, the long-term clinical
survival of these improvements remains unknown.
Consequently, conclusions  regarding  restoration
longevity are extrapolated from models or laboratory
studies, warranting caution when applying these results
in real-world clinical settings.

Table 4 illustrates that across several biomechanical
fields, GNN-based planning shows significant benefits

Volume 08 - 2026

relative to standard clinical planning in the areas of lower
stress, stable deformation, and better
geometric/predictive accuracy, and improvement is most
pronounced in more complicated, multifaceted
rehabilitation cases, like those involving full-arch
implant-supported prostheses or substantial multi-
parameter optimization. On the other hand, simpler cases
only see benefits in modeling accuracy and don’t see
large biomechanical risk mitigation. Overall, results
demonstrate the promise of GNN-supported planning to
improve biomechanical performance, and while there are
still no long-term clinical predictions and the benefits
reported are situational in nature, the gaps still need to be
acknowledged.

Table 4. Synthesized comparison of biomechanical outcomes for standard clinical planning versus generative
neural network-based planning

Biomechanical
Parameter

Standard

GNN-Based Planning

Comparative
Direction

Consistency

Planning

Dindorf et Posture Test MSE 0.13
al. (2024) reconstruction using real data
error (MSE) only
Broll et al. Occlusal surface Higher
(2024) reconstruction geometric
error (RMSE, deviation in
mm) CAD designs;
subjective
ratings 0.0-4.0
Chen et al. Peri-implant Higher stresses
(2025) stress (von Mises | in conventional
[ principal stress, | FEA; maxima
MPa) up to 157 MPa
Martinez- Implant 0.011-0.239
Valencia et displacement mm across non-
al. (2022) under load (mm) optimized
designs
Sekhar Soft-tissue Higher
Koppireddy geometric prediction
et al. (2025) | prediction error errors in
(RMSE, MAE, conventional
SSIM) approaches
Chenetal. | Structural feature | Lower accuracy
(2023) prediction and higher error

accuracy (%)

rates with
traditional ML

The Am. J. Med. Sci.Pharm. Res.2026

Test MSE 0.03-0.07 with Lower error High
VAE-augmented data with GNN-
based modeling
RMSE 0.02-0.08 mm Lower High
(simple preps), 0.16-0.18 | reconstruction
mm (complex preps) error with GNN
designs
Mean stress reduced by | Reduced stress High
11.08 + 6.43%; maxima with GNN-
108 MPa supported
planning
Constrained to <0.1 mm Reduced and High
(0.084-0.099 mm) controlled
displacement
with GNN
optimization
RMSE 3.70-4.31; MAE Reduced error High
1.42-1.58; accuracy up and improved
to 0.63 prediction with
GNN planning
Accuracy improvements Improved Medium
5-15% with generative predictive
models performance
with GNN
approaches
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The biomechanical results from the reviewed studies are
illustrated in Figure 3, which also visually explains
workflow planning differences summarized in Figure 2.
The most favorable biomechanical outcomes were
achieved through stress-constrained iterative
optimization incorporated in GNN-based planning.
Across  studies, these approaches consistently
demonstrated lower peak stress, more uniform stress
distribution, and reduced periodontal and peri-implant
tissues. In contrast, conventional clinical workflows,
where biomechanical feedback is superficially or
retroactively applied, showed localized high stress at

cervical and apical regions and greater deformation
variability. Figure 3 highlights differences in planning
rationales and their impact on tissue-restoration interface
biomechanics, integrating coordinate systems to
represent stress and deformation patterns. This
visualization demonstrates how GNN workflows
optimize load transfer and tissue stability. Synthesizing
these trends across studies clarifies how different
planning approaches influence biomechanical outcomes,
validating reported indicators and explaining the
observed patterns in tissue deformation, stress
distribution, and restoration integration.

Figure 3. Conceptual schematic of favorable and unfavorable stress distribution patterns within a rehabilitated
tooth-restoration complex

5. Discussion

The current narrative review contrasts biomechanical
outcomes of aesthetic dental rehabilitation achieved with
conventional planning and graph neural network—
supported strategies. By integrating biomechanical
theory, classical planning concepts, and artificial
intelligence, the analysis illustrates how different
paradigms affect stress distribution, load transfer, tissue
deformation, and presumed restoration stability.
Biomechanical constraints operate globally, suggesting
that optimization quality, rather than planning modality
alone, primarily determines mechanical performance.
Available literature indicates that GNN-assisted

The Am. J. Med. Sci.Pharm. Res.2026

planning can reduce peak stress in periodontal and peri-
implant tissues by approximately 15-30% in complex,
multi-unit  rehabilitations. In simpler restorations,
biomechanical gains appear marginally, while evidence
remains largely computational or short-term.

The artificial neural networks predicting biomechanical
parameters during planning can provide greater benefits
than traditional methods, yielding lower maximum stress
and improved stress distribution in complex prosthetic
rehabilitation cases. Clinically, stress concentrations that
cause biomechanical failures often occur at restoration
margins, interfaces, and surrounding implant bone, as
documented in multiple studies. Al enhances prosthetic
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design to reduce these stresses, aligning with recent
research. A study demonstrated that crowns generated
using 3D deep learning (3D-DCGAN) distributed
functional stresses similarly to natural teeth, with
biomechanical fatigue assessments confirming superior
performance compared to traditional crowns (Ding et al.,
2023).

Similarly, one more study had noted that Al-created
crowns, which had a morphology of stress distribution,
had predicted fatigue life characterized by retention of
natural dentition and lived stress biomechanics beyond
the boundary of mere geometric precision (He, 2025).
These results underscore once more that the principle of
bio-mechanic conditions continues to stand, i.e. axial
load transfer continues to be the most favorable, while
even small changes to the configuration of the load
toward oblique loading results in exceedingly greater
tensile and shear stresses.

Implant dentistry systematic literature reviews indicating
the use of Al continue to support these trends as well.
The study indicates that Al-driven design implants, using
FEA and design optimization loops, can reduce interface
stress, and in some cases, even reduce it significantly
(Revilla-Ledn et al., 2023). Although previous studies
focused on the diagnostic/classification side of the
problem, these applications related to the optimization of
biomechanical parameters indicate a shift toward design
augmentation and Al predictive models, which is
consistent with the findings of the present study.

A key outcome of this synthesis was the superior
geometric precision, reduced reconstruction error, and
enhanced predictive performance of GNN-based
planning. Even minor geometric inaccuracies, often
imperceptible in manual workflows, can substantially
alter stress trajectories and deformation patterns under
functional loading. Recent implant-planning studies
support the high capability of Al in anatomical
recognition and measurement from diagnostic images.
Meta-analyses report means accuracies of approximately
96% for identifying mandibular edentulous regions and
about 83% for maxillary recognition on CBCT images
(Alqutaibi et al., 2025). These diagnostic capabilities
substantiate that Al can construct highly detailed
anatomical frameworks essential for biomechanical
modeling, planning, and precise reconstruction. Meta-
analyses of object recognition models for intraoperative
implant positioning demonstrated that several Al-based
tools surpass manual planning in accuracy and reliability
(Roongruangsilp et al., 2025). This review indicates that
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Al-guided geometric precision yields real biomechanical
advantages, with GNN-based planning outperforming
traditional CAD/CAM and machine learning methods.

Among many advancements, one of the most remarkable
contributions of the literature reviewed and the present
study is merging FEA and Al methodologies. FEA is a
staple in the biomechanical analysis in dentistry. Recent
literature discussing new trends FEA’s application in
studying the stress and strain in removable partial
dentures and implantable prosthesis and influencing the
design using computational design models (Zhu et al.,
2025). This study contributes to the literature in showing
that the integration of FEA within generative design
systems, biomechanical enhancement moves
optimization from a reactive stance to active design
guidance.

Notwithstanding, the FEA-based findings must consider
the varying methodologies in the studies that have been
done. In dental biomechanics, finite element models
typically consider the bone and tissues as isotropic and
homogeneous, irrespective of the differences between
individuals in the sample due to factors such as age, bone
density (e.g. D3 vs D4 bone types), elastic moduli at
1300 MPa vs 1100 MPa, and measurement methodology
that may lead to 20-30% stress prediction inaccuracies
(Prados-Privado et al., 2020). Also, considerable
differences in mesh density, which contains anywhere
from 10,000 to over 500,000 elements, can impact the
resolution of stress and numerical instability in the mesh
and hence, cause differences between studies (Desai et
al., 2023). These differences in methodologies explain
somewhat the contradictory conclusions presented in
literature and inhibit direct quantitative comparability.
Incorporating the results from FEA into the training
processes of Al ensures that generative models are not
only able to imitate specific anatomical configurations,
but respond to the specific biomechanical demands as
well, which is the pattern this study is demonstrating and
which has recently begun to be the focus of other in-silico
studies. One such example is the combination of Al,
mesh optimization, and stress evaluation, where multi-
objective optimization in a model has been shown to
reduce the maximum cortical stresses in the model for
various implant configurations, while also being able to
accommodate the unique anatomical details of a patient
better than other methods (Al-Matrafi et al., 2025). This
aligns with the present findings with increased order
Stress distribution and load transfer with GNN-attached
planning this supports the vision that physics-informed
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Al models are a rational advance of biomechanical
planning rather than a substitute of fundamental
principles.

The review indicates that GNN-based planning may
enhance restoration stability and longevity, particularly
in complex, multi-unit rehabilitations, despite the lack of
direct clinical evidence. Conventional planning is often
streamlined due to cognitive limits rather than expertise.
Literature shows that Al improves precision, decision
rationality, and diagnostic consistency (Arjumand,
2024). Automated landmark detection and bone
segmentation using Al can surpass human performance,
supporting superior generative model outputs (Wang et
al., 2025). Although not directly linked to biomechanical
outcomes, these advances provide detailed anatomical
data crucial for improving planning accuracy,
corroborating the observed benefits of GNN-assisted
restorative and implant planning.

Restoration stability and longevity were mainly inferred
from surrogate biomechanical metrics rather than
longitudinal clinical data. Improvements in geometry
precision, stress reduction, and deformation control
predict mechanical reliability, suggesting that GNN-
based planning may enhance longevity, especially in
extensive reconstructions. However, whether these
biomechanical changes translate to lower complication
rates or improved survival remains uncertain.
Biomechanics is one of several factors including
aesthetics, patient preferences, biological compatibility,
and cost that influence clinical outcomes (Ghafari et al.,
2020). Given the lack of long-term validation,
assumptions rely on simulations or lab studies. Future
research should prioritize integrating Al-based
biomechanical optimization with prospective clinical
outcome studies.

6. Clinical Integration, Limitations, and Future
Directions

This review emphasizes clinician-in-the-loop integration
over full automation, with Al serving as a decision aid
that complements, rather than replaces, clinical judgment
while enhancing biomechanical understanding. Real-
world implementation of GNN-based planning requires
specialized software, costly hardware, clinician training,
and embedding into existing digital workflows, all of
which face high licensing fees, long learning curves, and
regulatory approval through safety and efficacy studies.
Widespread adoption is expected to be gradual over the
next 5-10 years.
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Challenges include limited data from marginalized
populations, model opacity, and overreliance on
simplified biomechanical assumptions, which reduce
generalizability and accuracy. Solutions involve diverse
datasets, explainable Al, and integration of physics-
based modeling. Prospective clinical trials with 100-200
patients per group and >5-year follow-up are needed to
compare Al-assisted versus traditional rehabilitation
outcomes. Multi-objective optimization balancing
biomechanics, aesthetics, and biology is crucial. GNN-
based planning shows promise but requires clinician
oversight and long-term validation.

7. Conclusion

This review evaluated whether GNN-based planning
demonstrated biomechanical benefits over customary
clinical planning protocols for dental reconstructive
surgery. The reviewed monopoly  suggested
biomechanical patents of GNN workflows were more
favorable in comparison to conventional techniques. This
was evidenced most consistently by the reduction of peak
proclivities of stress within periodontal or peri-implant
tissues. The more optimal the focus of the stress or
deformation the more favorable the stream pattern of the
stress was. The relative difference noticed improved in
complex-multi unit and implant-supported
rehabilitations and was most evident where conventional
planning was limited by the cognitive predictive ability
of the planner. Additionally, the body of evidence was
still largely dominated by simulation studies and finite
element modelling. Direct evidence for clinical outcomes
remains lacking. Observed stress reductions and
provisional load-balancing improvements may inform
clinical considerations but should be viewed as indicators
for refinement rather than validated surrogate evidence
for actual clinical performance.

Current evidence emphasizes that biomechanics-driven
restoration is essential for sustainable aesthetic
rehabilitation, as high localized stresses cause non-
physiological deformation of restorations and supporting
tissues. Clinicians can apply these principles without
advanced computational tools by designing restorations
that ensure axial load transfer, balanced occlusion,
proper contacts, and adequate restorative thickness,
while avoiding thin margins prone to failure. Selecting
the material and preparation will always be one of the
most critical factors to consider as well as maintaining
adequate restorative thickness is dictated based on the
clinical indication and its associated mechanical
behavior.
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In the future, GNN-based planning should complement,
not replace, clinical judgment. Its clinical translation will
require large, diverse datasets, prospective studies, and
explainable, traceable Al. Integration of clinicians,
biomechanical scientists, computer scientists, and
regulatory experts is essential to ensure that GNN-
assisted planning is ethical, clinically meaningful, and
improves patient outcomes, including function,
aesthetics, and restoration longevity.
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