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Abstract 

Objective: The current advancements in digital workflows and artificial intelligence in estimating tissue overload, 

restoration failures, and longevity predictions have increased the biomechanical precision in the field of esthetic dental 

rehabilitation and aim to analyze and compare the biomechanical parameters of aesthetic dental rehabilitation using 

generative neural networks versus traditional clinician-driven methods. 

Methodology: A narrative review from 2015 to 2025 examined the PubMed, Scopus, Web of Science, IEEE Xplore, and 

Cochrane library for studies in English concerning finite element, laboratory, clinical, and AI studies that include the 

outcomes of biomechanics. 

Results: GNN assisted planning showed significant biomechanical gains in intricate rehabilitations, especially in multi-

unit and implant-supported restorations. Declined peak stresses and more uniform distribution in peri-implant and 

periodontal structures, improved control of deformations, and thorough reconstruction in more optimized geometries, 

especially in the stresses or deformations, were noted. The evidence is mostly simulation-based, methodologically 

heterogeneous, and lacks thorough and sustained clinical validation. 

Conclusions: GNN-based planning indicates possible biomechanical advantages, notably less peak stress for complicated 

dental rehabilitations; however, most evidence is simulation-based. The GNN workflow's clinical implementation requires 

biomechanical principles and relies on predictive analysis, explainable AI, and cross-disciplinary substantiation. 

Keywords: aesthetic dental rehabilitation; biomechanical parameters; artificial intelligence; generative neural networks; 

finite element analysis. 
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1. Introduction 

Today's dental practices provides aesthetic rehabilitation 

including complete smile redesigns, and the use of 

veneers, crowns, and implant-supported prostheses. 

These restorations help to improve function and 

appearance. Beyond improvements in dental health, such 
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interventions positively impact mastication, speech, self-

esteem, social confidence, and overall patient wellbeing, 

which speaks to the holistic benefits of rehabilitative 

dentistry (Alwabel et al., 2025). Integrating new 

technologies into clinical practices has improved 

consistency and reliability in aesthetic dentistry. These 

include intraoral scanning, cone beam computed 

tomography (CBCT), photographic analysis, and 

computer-aided design and manufacturing (CAD/CAM) 

(Kabbin et al., 2025). These improvements have 

enhanced communication and treatment predictability 

across the clinician, technician, and patient triad. 

Restorative and prosthetic interventions alter the 

biomechanical aspects of the dentofacial system. 

Modified occlusal contacts, load directions and 

magnitudes change the stress distributions in the dental 

structures, periodontal ligaments, alveolar bone, and the 

tissues surrounding the dental implants. Such 

biomechanical changes affect the remodeling of the 

periodontium, adaptation of the soft tissues, and the 

longevity of the restoration. Numerous studies in 

Modified Element Analysis (MEA) and in-vitro and in-

clinic studies have shown that the amount, direction and 

contact area of the load greatly affect the stress 

distribution in the dental tissues and the restoration (Saini 

et al., 2020). The clinical importance of biomechanics 

and aesthetics rehabilitation breaks down the importance 

of a biological breakdown of systems. Biomechanical 

assessments shine a light on the uneven and excessive 

stress/strain systems experience. The foundation of every 

successful rehabilitative dental treatment is appropriate 

treatment planning. Decisions made during treatment 

planning will determine the shape of the restorations, 

material used, the schemes of dental occlusion, and how 

the prosthetist components will connect with the 

biological tissues. Conventional planning methodologies 

are built mostly on years of experience in the clinical 

field and rooted in biomechanics and dental occlusion. 

Numerous techniques like articulator mounting, 

diagnostic wax-ups, and trial restorations are still 

popular, and employed to assist in the planning of 

treatments and the visualizations of the anticipated 

restorations (Gomes et al., 2021). However, these 

methodologies are still dependent on the clinician’s 

experience, and mostly manual decision making. The 

challenges of complex aesthetic rehabilitation planning 

lie within the nature of the practice itself. The clinician 

has to evaluate esthetic and functional requirements of 

the rehabilitation, the mechanical and biological 

parameters of the employed materials, and specific 

individual characteristics such as anatomy, occlusal 

relationships, parafunctional behaviors, and tissue types. 

Furthermore, individual/operator subjective reliance in 

subjective judgment is a source of variability and may 

limit the potential to optimize biomechanical 

performance in complex, and especially multi-unit 

rehabilitations in a steady manner. Numerous reviews 

have remarked on the variability of clinical planning 

outcomes based on the level of the planning clinician and 

the particular clinical situation (Ding et al., 2023). 

Incorporating new technologies such as artificial 

intelligence (AI), machine learning (ML), deep learning 

(DL), and generative neural networks continues to be 

beneficial to expanding diagnostic and treatment 

planning in Dentistry. Automated recognition in 2D and 

3D datasets and automation of diagnostic tasks can be 

augmented by AI. Diagnostic and treatment planning 

tasks can be further enhanced by AI technologies which 

can analyze large datasets of historical clinical data. 

Generative models are innovative in that they generate 

new and unique designs instead of simply classifying 

designs. These advances offer the potential to improve 

planning consistency, geometric accuracy, and 

biomechanical optimization, particularly in complex 

aesthetic rehabilitations where conventional clinician-

driven workflows may be limited by subjective 

variability in decision-making (Villena et al., 2025). 

Consequently, AI-assisted planning has gained attention 

as a promising adjunct for improving decision-making 

and treatment reliability. 

2.  Literature review 

The ability to plan workflows with the help of AI 

resolves the problem of being able to combine data from 

multiple sources with the use of tools like merging finite 

element analysis (FEA) for the in-silico modeling of 

different planning scenarios before a treatment regime is 

implemented. This makes it possible to choose the 

designs that are most likely to achieve optimal load 

distributions in occlusal balance, less stress 

concentration, and other improvements in the mechanical 

stability of the tissues surrounding the implants. 

Computational modeling is likely to offer additional 

planning benefits to AI assisted planning of implants and 

digital designs of prosthetics which allow for improved 

geometric accuracy and greater consistency in 

measurement (Esteva et al., 2019; Satapathy et al., 2024). 

Thus, measuring biomechanics will suffice in assessing 

the difference between AI-assisted and conventional 

planning methods. The role of biomechanics in 
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predicting future success of rehabilitation is pivotal, as, 

in the absence of proper stress, the detrimental impact on 

the implant’s surrounding structures cause breakdown of 

supportive periodontal tissues and loss of peri-implant 

bone. Moreover, unfavorable load distributions may 

increase the chances of fracture and/or debonding, while 

under function, tissue deformation may affect the 

comfort and stability of the system and biological 

adaptation. Hence, the compatibility of the 

biomechanical properties of restorations with the tissues 

of the Periodontium is crucial for the long-term 

preservation of the periodontal health and the structural 

integrity of the supporting tissues (Berzaghi et al., 2025). 

Specific biomechanical parameters that are critical for 

aesthetic dental rehabilitation are the stress distribution 

in the PDL and alveolar bone, the distribution of 

masticatory loads across the teeth and restorations, the 

deformation characteristics of the tissues and restorations 

under mechanical stress, and the bone-implant interface 

stability under different mechanical loads. These 

parameters of the study are often utilized as operational 

proxies for assessing mechanical durability in 

experimental and computational studies (Alaida et al., 

2025). There have been significant advancements made 

in the methods used for biomechanical research in 

dentistry. Classic experimental methods such as 

photoelastic stress analysis and strain gauge 

measurement have provided the initial understanding of 

the steps involved in the load transfer, but these methods 

have been and continue to be limited in their ability to 

accurately depict complex anatomical structures. One of 

the approaches that has become the standard in 

estimating and comparing the stress and strain and the 

deformation in the tissues and the restorations of the 

dentistry has been the FEA. This method has also 

become the cornerstone in allowing comparisons of 

different options for treatment plans. The variety of 

assumptions is the used in the studies, and the methods 

themselves. have created a great deal of diversity in the 

findings of the different studies (Brizuela-Velasco et al., 

2025; Wang et al., 2022). 

Although there is an increasing interest in AI-driven 

planning and recognition of the biomechanical factors 

influencing rehabilitation success, the direct comparison 

of the biomechanical outcomes AI planning versus 

conventional planning remains limited. Prior work 

involved silico, in-vitro, and clinical studies with diverse 

strategies. Thus, there is a need for a more detailed 

integration of the available studies (Sayed et al., 2025). 

This review specifically focuses on evaluating and 

synthesizing the biomechanical results of AI-supported 

and standard clinical planning in aesthetic dental 

rehabilitation and integrating the existing literature while 

highlighting the gaps in the evidence for future research. 

3. Methodology  

3.1. Study Design 

This structured narrative review utilized systematized 

methods for greater transparency and replicability. Due 

to the diversity of literature including finite element 

models, lab, and limited clinical studies no meta-analysis 

was planned. The systematic guidelines that emerging AI 

applications in cross-disciplinary areas, such as dental 

treatment planning, provide for eligibility, database 

search, study selection, and data extraction. 

3.2. Information Sources 

A comprehensive review of the literature was conducted 

using PubMed, Scopus, Web of Science, IEEE Xplore, 

and the Cochrane Library. The databases cover a wide 

range of disciplines, including biomedicine, dentistry, 

materials science, and artificial intelligence. This also 

helped in collecting relevant clinical and technical 

literature about the application of artificial intelligence in 

aesthetic dental rehabilitation, along with collecting the 

references. 

3.3. Search Strategy 

Search terms were developed based on three conceptual 

groupings. The first group addressed aesthetic and 

prosthetic rehabilitation. The second group focused on 

artificial intelligence (AI) and neural networks or 

generative technologies. The third group concerned 

biomechanics and mechanical outcomes. Keyword 

combinations and controlled vocabulary terms, where 

applicable, were applied, and Boolean logic was used to 

balance sensitivity and specificity. The general search 

structure was as follows: (“esthetic” OR “aesthetic” OR 

“prosthodontic” OR “restorative dentistry” OR “fixed 

prosthesis” OR crowns OR veneers OR “implant-

supported”) AND (“artificial intelligence” OR “machine 

learning” OR “deep learning” OR “neural network” OR 

generative OR GAN OR VAE OR transformer) AND 

(“finite element analysis” OR biomechanics OR stress 

OR strain OR “load distribution” OR “periodontal 

ligament” OR “alveolar bone” OR deformation). The 

review included studies published between January 1, 

2015, and December 21, 2025, to examine the evolution 
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of AI, deep learning, and generative models in dentistry. 

Only studies published in English and available in full 

text were considered. Earlier seminal studies were 

additionally identified through reference mining to 

ensure relevance to contemporary digital workflows. 

3.4. Eligibility Criteria 

The studies that were considered for inclusion were peer-

reviewed articles regarding dentoalveolar biomechanics 

and stress analysis, load transfer, and tissue responses 

relevant to aesthetic or prosthetic rehabilitation, 

including clinician and AI (GNN) treatment planning. 

Descriptions of technical neural networks were accepted 

if they were closely related. Reviews, editorials, 

abstracts, duplicates, studies focusing exclusively on 

orthodontics, studies with purely aesthetic outcomes, and 

non-English papers lacking dependable translations were 

excluded. 

3.5. Study Selection Process 

The PRISMA 2020 reporting guidance, adapted for 

narrative reviews, was used to complete the selection of 

studies. From the database search, we obtained 5,237 

entries for publications dated between January 1st, 2015, 

and December 21st, 2025. 99 duplicate records and 135 

records due to other predefined exclusion reasons were 

removed. The remaining records were subject to title and 

abstract screening of 143 records. Out of these, 49 

records were excluded after screening due to not meeting 

the inclusion criteria. Assessment of the full texts of 94 

reports led to the exclusion of 17 studies for the following 

reasons not relevant to aesthetic rehabilitation (9), not 

comparing the GNN based with the standard planning 

(3), and not targeting the assessment of the 

biomechanical outcomes (5). Seventy-seven studies were 

finally admitted reviewing out of all which met the 

eligibility criteria, and were added to the review, 

illustrated in Figure 1. 

 

Figure 1. PRISMA-Adapted Flowchart of Literature Identification and Selection Process 

3.6. Data Extraction and Synthesis Data were extracted on study design, rehabilitation type, 

planning approach, biomechanical outcomes, and key 

results. Due to heterogeneity, findings were described 

PRISMA 2020 flow diagram for new systematic reviews which included searches of databases and registers only 
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qualitatively, highlighting ranges, directional trends, 

consistent and contradictory results, and evidence gaps. 

This thematic synthesis of the results section is therefore 

informed by stress distribution, load transfer, 

deformation, and restoration stability. 

3.7. Quality and Bias Considerations 

Given the predominance of computational and AI-based 

studies, traditional risk-of-bias tools were unsuitable. 

Finite element studies were evaluated on mesh density, 

material assumptions, boundary/loading conditions, and 

validation. AI-based planning studies were assessed for 

dataset transparency, validation, overfitting, and 

generalizability. For combined AI-FEA studies, 

compounded biases from modeling and algorithms were 

noted. Lack of regulatory or experimental validation was 

acknowledged, with quality and bias considerations 

guiding interpretation rather than excluding studies. 

4. Results  

4.1. Biomechanical Principles in Aesthetic Dental 

Rehabilitation 

Biomechanics regulates how force is distributed within 

aesthetic-dental rehabilitations, balancing restorations to 

most masticatory loads without overloading teeth, 

periodontal ligaments, or bone. Stable arrangements 

reduce potential damage if chewing or bruxism is present 

(Dogru et al., 2018; McGrath & Bonsor, 2022). Stress, 

measured in megapascals (MPa), reflects internal 

pressure and force within a material, while strain 

represents relative internal displacement and is 

dimensionless. Stress types tensile, compressive, and 

shear often concentrate at peripheral margins or apices, 

where failure risk is high. The periodontal ligament 

(PDL) physiologically exerts maximum stress around 

10 MPa, but under overload can transmit up to 70 MPa to 

enamel or cementum. Finite element models indicate that 

periodontium tissues exposed to sustained stresses of 20-

80 MPa, corresponding to strains of 0.005-0.008, are 

prone to structural failure, highlighting the critical role of 

biomechanical assessment in restorative and implant 

planning (Okkar Kyaw et al., 2024; Borba et al., 2015; 

Dhammayannarangsi et al., 2025; Gupta et al., 2020). 

According to previous literature, chewing forces usually 

average a couple hundred Newtons, while a maximum 

voluntary bite may reach 500-750 N, and in severe cases, 

bruxism reaches forces upwards of 1000 N. Longitudinal 

forces directed along the axis of a tooth are transmitted 

through the supporting structures in a uniform manner 

whereas, shear and/or lateral forces that are directed off 

axis cause bending and may increase stress in the 

structure. For this reason, optimal occlusal design, points 

of contact, and guidance will be set to favor the transfer 

of axial load (Flores-Ramírez et al., 2025; Ustrell-Barral 

et al., 2024; Holst et al., 2008; Attik et al., 2024). Dental 

tissues exhibit differing elastic properties that influence 

how stress distribute at restoration interfaces. Enamel has 

an elastic modulus value of 40-100 GPa, dentin is at 15-

20 GPa, and alveolar bone is at 10-20 GPa given that 

bone is of variable density (Kinney et al., 2003; Rees & 

Jacobsen, 1993). Zirconia has a modulus of elasticity of 

approximately 200 GPa, lithium disilicate is at 90-100 

GPa, and composite resins have values of 5-30 GPa 

which causes modulus mismatches that focus interfacial 

stresses (Babaei et al., 2022). Modulus mismatches at 

interfaces contribute to stress concentration and 

influence decisions on thickness and support (Puri & 

Prathap, 2025; Zarone et al., 2019). The unideal 

biomechanics that cause overload fracture of ceramics, 

shear failure debonding, minor breakdown through 

cyclic deformation, and tissue overload above 

remodeling limits are negative. Finite element analyses 

confirm these models especially in thin margins or 

mismatching. In these scenarios, AI planning probably 

surpasses traditional approaches by predicting stress 

distributions (Xie et al., 2025; Gunwal et al., 2018). 

4.2. Standard Clinical Planning Approaches in 

Aesthetic Rehabilitation 

Standard diagnostic methods, including clinical 

examination, photographs, radiographs, and impressions 

or intraoral scans, form the foundation of initial aesthetic 

rehabilitation planning. In complex cases, clinicians use 

articulator mounting, occlusal analysis, diagnostic wax-

ups, and trial restorations to integrate esthetic goals with 

tissue function, phonetics, and feasibility (Jubhari & 

Aenun, 2020; Rathee et al., 2023). Foundational records 

such as study models and wax-ups allow prediction of 

tooth morphology before intervention. Facebow transfer, 

articulator mounting, and occlusal analysis examine the 

functional relationships and occlusal schemes that enable 

the prediction of prosthetic results (Khanna, 2020). 

Periapical, panoramic, and CBCT imaging assist in 

analyzing the hard tissues and their anatomy to facilitate 

accurate and predictable restorative planning 

(Alresheedi, 2022). Standard planning techniques 

emphasize axial load transfer, maximum intercuspation, 

stable occlusal contacts, and smooth excursions while 

interferences laterally are avoided. Selection of materials 
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and preparation design consider specific loads at the site, 

ensuring adequate thickness for retention and preserving 

enough tooth structure. Clinicians adjust plans based on 

expertise, prior outcomes, and patient-specific 

limitations (Mordanov & Khabadze, 2024; Pable et al., 

2025).  

Minimum ceramic thickness in high-load areas is 

recommended at 1.5 mm for lithium disilicate and 1.0-

1.5 mm for zirconia, with posterior reductions often 

requiring at least 1.5 mm. A preparation taper of 6-10 

degrees balances retention, resistance, and prosthesis 

stability (Yli-Urpo et al., 2025). 

Some of the advantages of standard planning are its 

clinical underpinning, flexibility, and many years of 

effective use. Skilled clinicians can incorporate subtle 

details in their analysis which may not be reflected in the 

models, and conventional processes can be carried out 

with commonly accessible equipment (Joda & Zitzmann, 

2022). Interdisciplinary reports of long-term 

prosthodontic outcomes tend to show high survival rates, 

and after proper planning and execution, these rates can 

often exceed 90% at the 10-year mark for certain 

indications Knoernschild, 2020). 

Predicting system performance and stress distributions in 

planned deviations can be limited by a number of factors 

in the experience of the clinician such as trying to 

optimize several systems at the same time. In more 

intricate reallocations of the resources a small variation 

in the design can determine the controlling pathway of 

stress. It is also a problem in predicting stress 

distributions without the use of sophisticated 

computation (Chisnoiu et al., 2023; Joda et al., 2024). 

4.3. Artificial Intelligence and Generative Neural 

Networks in Dental Planning 

In dentistry, AI refers to technology capable of 

performing tasks requiring human cognition, such as 

pattern recognition, decision-making, and optimization. 

AI can process and analyze diverse data, identify 

patterns, and support diagnosis and treatment planning. 

It is increasingly applied in diagnostic imaging, risk 

assessment, treatment planning, and prognosis 

prediction. Unlike classical rule-based software, AI 

systems learn from data, improving performance as 

training datasets grow, enhancing accuracy in predicting 

outcomes for individual cases (Fatima et al., 2022; 

Mallineni et al., 2024). Machine learning, a key subset of 

artificial intelligence, includes several paradigms. 

Supervised learning develops algorithms using labeled 

data, such as radiographs, CBCT volumes, or intraoral 

scans, associated with clinical endpoints, including 

annotations, shapes of restorations, or outcomes, which 

facilitates extrapolation to novel cases (Lin et al., 2024). 

Unsupervised learning recognizes patterns or groupings 

in unclassified data, such as, labeling anatomical 

structures or occlusal molds (Wang et al., 2025). 

Reinforcement learning updates planning strategies 

through a feedback-based reward system, which includes 

goals such as minimizing predicted stress concentrations 

or deformation due to applied load (Wang et al., 2019). 

Every paradigm presents distinct methodologies to 

improve AI-assisted diagnosis, planning, and 

biomechanical optimization in dentistry. 

Generative neural networks form a special kind of 

machine learning model that is able to create new outputs 

instead of only doing classification or prediction of the 

existing outputs. In planning dentistry, generative 

models can synthesize geometries of restorations, 

implant sites and anatomical reconstructions that are not 

duplicates of the training instances, but instead, are 

plausible new solutions that can be constructed from the 

learned distribution of the data. This distinguishes these 

models from conventional classifiers and makes them 

highly relevant for the individualized planning of 

rehabilitation (Broll et al., 2024; Ma et al., 2025). 

Artificial neural networks are comprised of layers which 

are interconnected. Input layers analyze unprocessed 

data (like 3D tooth meshes or CBCT voxels) and hidden 

layers analyze anatomical patterns by using weighted 

nonlinear alterations. The output layers create 

predictions and designs, which are optimized through 

backpropagation that minimizes relevant loss functions 

(Lyakhov et al., 2022; Zannah et al., 2024). Generative 

neural networks train data distributions to synthesize 

detailed representations of dental structures while 

enhancing restorations' geometry, occlusion, 

biomechanics, and aesthetics beyond human ability. 

Multiple generative frameworks have been implemented 

in the dental and biomedical fields; the summaries of 

these frameworks can be found in Table 1. Convolutional 

Neural Networks (CNN) analyze images and accurately 

capture and identify local features and spatial 

relationships. The process of pooling diminishes 

dimensionality while preserving essential details which 

allows for the analysis of volumetric data sets such as 

CBCT scans. In dentistry, CNNs perform remarkably in 

segregating roots, bone, and margins of restorations 

which serve as the main data sets for later planning 
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activities. Because of these attributes, CNNs becomes the 

most suitable choice for restorative and implant planning 

workflows (Muthukrishnan et al., 2020; Fan et al., 2023).  

 

Table 1. Generative Neural Network Architectures in Dentistry and Biomechanics 

Architecture Strengths in Dentistry Example Application Limitations 

CNNs Spatial feature extraction 

from volumetric images 

Root and bone 

segmentation in CBCT 

Limited with non-

Euclidean mesh data 

GANs Realistic synthesis of 

anatomical geometries 

Crown and inlay design 

previews 

Mode collapse; training 

instability 

VAEs Probabilistic generation 

and interpolation 

Tooth morphology 

variation modeling 

Blurred outputs relative to 

GANs 

Transformers Sequential decision 

modeling 

Orthodontic and staged 

planning workflows 

High computational 

demands 

GANs consist of a generator that creates restoration-like 

images and a discriminator that classifies them as real or 

fake. Through competition, the generator produces 

realistic crowns and inlays with accurate anatomy and 

occlusion (Najeeb & Islam, 2025; Lee et al., 2025). 

VAEs learn compressed latent representations, allowing 

interpolation to generate new, biologically plausible 

tooth shapes and arches for individualized treatment 

planning (Oulmalme et al., 2025; Vivekananthan, 2024).  

Attention-based architectures, such as Transformers, aid 

sequential decision-making in multi-step orthodontic or 

staged rehabilitation workflows. Diffusion-based 

generative models iteratively refine random inputs into 

anatomical structures, showing promise in dental 

planning, though further validation is needed (Dong et 

al., 2024; Ma et al., 2025). Generative neural networks 

offer a key advantage in dental planning by integrating 

biomechanical objectives directly into the design 

process. Unlike conventional planning, where clinicians 

balance esthetics, function, material strength, and 

biological response, generative models evaluate 

thousands of variable combinations. Incorporating 

biomechanical simulations such as FEA allows networks 

to be trained or evaluated using performance metrics like 

stress distribution, deformation, and load transfer (El-

Hakim et al., 2025; Siluvai et al., 2025). Candidate 

designs are subjected to simulated loads, with loss 

functions penalizing localized stress or excessive 

displacement, enabling the network to associate 

geometric features such as cusps, occlusal contacts, and 

implant angulations with biomechanical outcomes 

(Khan, 2025; Kriswanto et al., 2025; Chang et al., 2025). 

Reinforcement learning further optimizes planning by 

modeling mastication cycles, improving fatigue life, 

deformation control, and alignment vectors, 

demonstrating generative models’ utility in adaptive, 

multi-layered restorative and orthodontic planning 

(Dhopte & Bagde, 2023). A key feature of AI-enhanced 

dental planning is clinician interaction with automated 

systems to build trust. Beyond generating treatment 

recommendations, AI can create comprehensive plan 

templates, but acceptance depends on clinicians’ ability 

to interpret and validate outputs. Explainable AI (XAI) 

addresses this by providing visual or numerical 

rationales, highlighting the clinical reasoning behind 

recommendations (Ahmed, 2025; Sciarra et al., 2025). 

Tools include biomechanical sensitivity analyses, 

heatmaps, and ranked feature importance for parameters 

such as occlusal contact, crown thickness, and implant 

angulation, enabling clinicians to assess alignment with 

anatomical and biomechanical constraints (Li & Wang, 

2025; Mun et al., 2025). AI predicts biomechanical 

effects of subtle design changes, such as cusp inclination 

or contact position, with stress and deformation feedback 

fostering clinician confidence (Preda et al., 2025; Khan 

et al., 2024). Generative systems function as decision-

support tools, with clinicians retaining responsibility for 

context, ethics, and approval. Human-AI collaboration 

with explainability ensures continuous feedback, ethical 

adoption, and regulatory compliance, supporting the 

sustainable use of GNNs in aesthetic dental rehabilitation 

(Shujaat, 2025, Kaviandost et al., 2025). Explainability 
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paired with clinician oversight is essential for ethical, 

sustainable use of generative neural networks in dental 

rehabilitation, meeting regulatory requirements for 

transparency and accountability. 

4.4. Clinical Implementation and Decision-Support 

Paradigms 

There are several existing applications of Artificial 

Intelligence in dentistry, but only a few focus on 

clinician-AI decision support systems, where AI 

provides preliminary suggestions for the clinician to 

review and adjust, combining human expertise with 

regulatory compliance (Moeini & Torabi, 2025). AI-

enhanced implant planning achieves high positional 

accuracy, reduces planning time from 30 to 10 minutes, 

and produces clinically acceptable plans in 89% of cases, 

comparable to 93% for human experts, often 

indistinguishable in Turing tests (Xie et al., 2025). VAEs 

and Transformers improve outcome prediction and 

alignment planning, enabling dynamic tooth movement 

adjustments, 35% fewer refinements, and 28% faster 

alignment, while complex cases are still modified by 

clinicians (Murshida et al., 2025). There are several 

issues that impact the widespread use of planning that 

relies on generative neural networks. Data representation 

and quality are critical, as networks trained on datasets 

that underrepresent certain populations or treatment 

approaches may perform poorly for anatomically or 

demographically different groups, such as those in South 

Asia, creating low generalizability and potential bias 

(Murat et al., 2025; Beyaz et al., 2025; Franceschini et 

al., 2025; Yang et al., 2025). Finite element analysis 

provides insight into stress and deformation distributions 

but relies on assumptions about material properties, 

boundary conditions, and loads, so predicted 

biomechanical outcomes may not always match in vivo 

results. Generative models can produce anatomically 

plausible outputs that lack clinical utility (Kumar et al., 

2023; Hussain et al., 2025; Ray et al., 2023). 

Implementation is further challenged by computational 

limits, regulatory uncertainty, ethical concerns regarding 

privacy and access, and the absence of liability 

frameworks. Many AI planning tools remain primarily 

research-oriented, as summarized in Table 2. 

Table 2. Limitations, Bias Sources, and Mitigation Strategies in GNN-Based Dental Rehabilitation Planning 

Challenge Impact Mitigation Strategies 

Data Bias Reduced generalizability across 

populations 

Prospective clinical trials and experimental 

validation 

Model 

validation 

Limited clinical translatability due to FEA 

assumptions 

Prospective clinical trials and experimental 

validation 

Explainability Liability and clinician trust concerns Explainable AI tools such as attention maps and 

saliency visualization 

Integration Workflow disruption and adoption barriers Interoperable, plug-and-play APIs and clinician-in-

the-loop systems 

Multimodal data integration is anticipated to be the focus 

of future studies. This is the integration of imaging data 

with biomechanics and biologic data from the patient to 

get even more personalization. Integrating physics-

informed neural networks almost certainly reduces the 

need for expensive computational simulations by 

embedding the relevant biomechanical data into the 

learning framework. Real-time feedback systems may be 

realized through the use of edge AI within intraoral 

scanners or CAD/CAM systems during the design or 

preparation stages. While possible, the integration of 

generative planning tools to standard care pathways will 

require clinical validation and alignment with regulatory 

frameworks (Mahesh Batra & Reche, 2023; Che et al., 

2025). In the reported studies, there are differences to be 

noted between the standard clinical planning and the 

generative neural planning, as shown in Figure 2. Where 

both planning workflows begin with the same clinical 

diagnoses, with standard planning workflows, there is 

much more clinical decision making, and much more 

hand tuning. In contrast, planning-by-GNN frameworks 

include a mid-stage in the workflow where candidate 

designs are generated and subsequently iteratively fine-

tuned to biomechanical objectives prior to clinician 

review. The studies included in this review incorporated 

the aforementioned calibration and yielded active 

designs with optimized moderate load transfer, reduced 

peak stress indicators, and clinician oversight. 
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Figure 2. Side-by-side conceptual workflow comparison of standard clinical planning versus generative neural 

network-based planning for aesthetic rehabilitation. 

 

4.5. Synthesis of Biomechanical Outcomes from 

Reviewed Literature 

The analysis of stress distribution in supporting 

structures and the periodontium is often used as a proxy 

for biomechanical risk in aesthetic dental rehabilitation. 

Low peak stress and even stress distribution indicate 

good biomechanical performance, as summarized in 

Table 3. AI-assisted planning, particularly using finite 

element analysis and neural network optimization, has 

demonstrated improved outcomes. ANN-optimized full-

arch rehabilitation with bone implants shows reduced 

peri-implant stress and less deformation under loading 

compared to traditional FEA-based planning. The extent 

of improvement varies depending on the clinical and 

modeling context. For example, AI-assisted orthopedic 

prosthetic implants demonstrate clear biomechanical 

advantages, whereas studies focusing on geometric 

reconstruction or landmark prediction improve model 

accuracy without significantly altering tissue stress 

distribution. Overall, incorporating AI tools that 

optimize stress and deformation enhances biomechanical 

planning for complex rehabilitations, addressing 

limitations of conventional approaches and supporting 

better functional and structural outcomes in restorative 

dentistry. 

 

 

 

 

 

 

Clinical examination and imaging 

Occlusal analysis and diagnostic 

Clinician driven planning decisions 

(experience and guidelines) 

Manual refinement and occlusal 

adjustment 

Final plan, fabrication, and placement 

Clinical examination, imaging, and scans 

Data preprocessing and feature extraction 

Generative neural network derived 

candidate plans 

Biomechanical objective optimization 

(stress and deformation metrics) 

Clinician review and placement 

GNN-BASED PLANNING STANDARD CLINICAL PLANNING 
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Table 3. Summary of representative studies evaluating biomechanical parameters in aesthetic dental 

rehabilitation under standard versus AI-supported planning 

Study Design / Method Rehabilitation 

Type 

Planning Compared Biomechanical 

Outcomes 

Key Findings 

Dindorf et al. 

(2024) 

VAE-based 

modeling 

Posture 

biomechanics 

Conventional vs 

Generative AI 

Reconstruction 

accuracy 

Generative AI 

planning 

demonstrated 

superior 

biomechanical 

modeling 

performance 

Broll et al. 

(2024) 

GAN (StyleGAN-

2) 

Dental 

inlay/crown 

CAD vs GAN-based Occlusal geometry 

accuracy 

GAN-based planning 

showed improved 

reconstruction 

quality 

Chen et al., 

(2025) 

FEA + ANN-PSO Full-arch 

implants 

FEA vs ANN-

optimized 

Peri-implant stress ANN-based planning 

improved 

biomechanical 

performance 

Martínez-

Valencia et al. 

(2022) 

FEA + ANN Cranial implant Standard vs ANN-

optimized 

Implant deformation ANN-optimized 

planning improved 

biomechanical 

outcomes 

Sekhar 

Koppireddy et 

al. (2025) 

FCNN Facial soft tissue 

planning 

Conventional vs 

FCNN 

Landmark prediction FCNN-based 

planning showed 

superior predictive 

performance 

Chen et al. 

(2023) 

Generative DL Structural tissue 

analysis 

Traditional ML vs 

Generative DL 

Prediction robustness Generative DL 

models demonstrated 

superior performance 

The distribution of the masticatory load corresponds with 

how occlusal forces are allocated across restorations and 

supporting structures and is commonly assessed through 

stress patterns, frictional behavior, and contact geometry. 

While Table 2 does not report force-sharing coefficients, 

numerous studies evaluate load balance using stress- and 

geometry-based metrics. ANN-supported optimization 

in early full-arch implant rehabilitation reduces peri-

implant stress through localized redistribution of 

occlusal loads. GAN-enhanced reconstruction improves 

occlusal surface accuracy in crowns and inlays, 

replicating cups and fossa morphology, promoting more 

uniform load transfer. Overall, GNN-based planning 

demonstrates potential to enhance load distribution, 

particularly in multi-unit complete restorations, beyond 

isolated restorations. 

The consequences of tissue deformation under 

mechanical loads depend on implant or restoration 

positioning and the response of surrounding tissues. 

Table 4 summarizes reductions in deformation achieved 

with ANN-assisted planning compared to standard 

methods. In personalized implant rehabilitation, ANN-

designed models limited maximum implant 

displacement to under 0.1 mm, whereas non-optimized 

models showed greater variability. ANN optimization 

also reduced stress on adjacent bone, requiring less force 

for deformation. However, predicted outcomes depend 

heavily on model assumptions regarding material 

properties, boundary conditions, and load magnitudes. 

Overall, GNN-supported planning demonstrates lower, 

controlled tissue deformation, contingent on the validity 

and accuracy of the underlying simulation frameworks. 
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The projected longevity and stability of restorations have 

been assessed using surrogate biomechanical measures, 

such as stress concentration, geometric precision, and 

deformation control, rather than long-term clinical 

outcomes. GNN-based methods described in Table 4 

improved reconstruction accuracy and reduced error 

metrics, suggesting enhanced mechanical stability and 

lower fracture risk. However, the long-term clinical 

survival of these improvements remains unknown. 

Consequently, conclusions regarding restoration 

longevity are extrapolated from models or laboratory 

studies, warranting caution when applying these results 

in real-world clinical settings. 

Table 4 illustrates that across several biomechanical 

fields, GNN-based planning shows significant benefits 

relative to standard clinical planning in the areas of lower 

stress, stable deformation, and better 

geometric/predictive accuracy, and improvement is most 

pronounced in more complicated, multifaceted 

rehabilitation cases, like those involving full-arch 

implant-supported prostheses or substantial multi-

parameter optimization. On the other hand, simpler cases 

only see benefits in modeling accuracy and don’t see 

large biomechanical risk mitigation. Overall, results 

demonstrate the promise of GNN-supported planning to 

improve biomechanical performance, and while there are 

still no long-term clinical predictions and the benefits 

reported are situational in nature, the gaps still need to be 

acknowledged. 

 

Table 4. Synthesized comparison of biomechanical outcomes for standard clinical planning versus generative 

neural network-based planning 

Study Biomechanical 

Parameter 

Standard 

Planning 

GNN-Based Planning Comparative 

Direction 

Consistency 

Dindorf et 

al. (2024) 

Posture 

reconstruction 

error (MSE) 

Test MSE 0.13 

using real data 

only 

Test MSE 0.03-0.07 with 

VAE-augmented data 

Lower error 

with GNN-

based modeling 

High 

Broll et al. 

(2024) 

Occlusal surface 

reconstruction 

error (RMSE, 

mm) 

Higher 

geometric 

deviation in 

CAD designs; 

subjective 

ratings 0.0-4.0 

RMSE 0.02-0.08 mm 

(simple preps), 0.16-0.18 

mm (complex preps) 

Lower 

reconstruction 

error with GNN 

designs 

High 

Chen et al. 

(2025) 

Peri-implant 

stress (von Mises 

/ principal stress, 

MPa) 

Higher stresses 

in conventional 

FEA; maxima 

up to 157 MPa 

Mean stress reduced by 

11.08 ± 6.43%; maxima 

108 MPa 

Reduced stress 

with GNN-

supported 

planning 

High 

Martínez-

Valencia et 

al. (2022) 

Implant 

displacement 

under load (mm) 

0.011-0.239 

mm across non-

optimized 

designs 

Constrained to ≤0.1 mm 

(0.084-0.099 mm) 

Reduced and 

controlled 

displacement 

with GNN 

optimization 

High 

Sekhar 

Koppireddy 

et al. (2025) 

Soft-tissue 

geometric 

prediction error 

(RMSE, MAE, 

SSIM) 

Higher 

prediction 

errors in 

conventional 

approaches 

RMSE 3.70-4.31; MAE 

1.42-1.58; accuracy up 

to 0.63 

Reduced error 

and improved 

prediction with 

GNN planning 

High 

Chen et al. 

(2023) 

Structural feature 

prediction 

accuracy (%) 

Lower accuracy 

and higher error 

rates with 

traditional ML 

Accuracy improvements 

5-15% with generative 

models 

Improved 

predictive 

performance 

with GNN 

approaches 

Medium 
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The biomechanical results from the reviewed studies are 

illustrated in Figure 3, which also visually explains 

workflow planning differences summarized in Figure 2. 

The most favorable biomechanical outcomes were 

achieved through stress-constrained iterative 

optimization incorporated in GNN-based planning. 

Across studies, these approaches consistently 

demonstrated lower peak stress, more uniform stress 

distribution, and reduced periodontal and peri-implant 

tissues. In contrast, conventional clinical workflows, 

where biomechanical feedback is superficially or 

retroactively applied, showed localized high stress at 

cervical and apical regions and greater deformation 

variability. Figure 3 highlights differences in planning 

rationales and their impact on tissue-restoration interface 

biomechanics, integrating coordinate systems to 

represent stress and deformation patterns. This 

visualization demonstrates how GNN workflows 

optimize load transfer and tissue stability. Synthesizing 

these trends across studies clarifies how different 

planning approaches influence biomechanical outcomes, 

validating reported indicators and explaining the 

observed patterns in tissue deformation, stress 

distribution, and restoration integration. 

 

Figure 3. Conceptual schematic of favorable and unfavorable stress distribution patterns within a rehabilitated 

tooth-restoration complex 

5. Discussion 

The current narrative review contrasts biomechanical 

outcomes of aesthetic dental rehabilitation achieved with 

conventional planning and graph neural network–

supported strategies. By integrating biomechanical 

theory, classical planning concepts, and artificial 

intelligence, the analysis illustrates how different 

paradigms affect stress distribution, load transfer, tissue 

deformation, and presumed restoration stability. 

Biomechanical constraints operate globally, suggesting 

that optimization quality, rather than planning modality 

alone, primarily determines mechanical performance. 

Available literature indicates that GNN-assisted 

planning can reduce peak stress in periodontal and peri-

implant tissues by approximately 15-30% in complex, 

multi-unit rehabilitations. In simpler restorations, 

biomechanical gains appear marginally, while evidence 

remains largely computational or short-term. 

The artificial neural networks predicting biomechanical 

parameters during planning can provide greater benefits 

than traditional methods, yielding lower maximum stress 

and improved stress distribution in complex prosthetic 

rehabilitation cases. Clinically, stress concentrations that 

cause biomechanical failures often occur at restoration 

margins, interfaces, and surrounding implant bone, as 

documented in multiple studies. AI enhances prosthetic 

Standard clinical planning 

(conventional workflows) 
GNN based planning  

(ANN / GAN / VAE supported) 

• Geometry driven decisions 

• Manual refinement 

• Limited computational feedback 

• Reactive adjustments 

• Candidate plan generation 

• Multi-parameter optimization 

• Stress / deformation objectives 

• Iterative refinement loop 

• Higher peak stress (often localized) 

• Less homogeneous load transfer 

• Greater variability in deformation 

• Operator-dependent geometric accuracy 

• Reduced peak stress 

• More homogeneous load transfer 

• Controlled deformation / displacement 

• Improved modeling / reconstruction accuracy 

• More frequent risk indicators 

• Greater dependence on clinician experience 

• Stability inferred, not directly measured 

• Improved mechanical stability indicators 

• Reduced biomechanical risk indicators 

• Clinical validation remains limited 

Planning approach 

Biomechanical 

processing 

Surrogate 

implications 

Biomechanical 

outcomes 
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design to reduce these stresses, aligning with recent 

research.  A study demonstrated that crowns generated 

using 3D deep learning (3D-DCGAN) distributed 

functional stresses similarly to natural teeth, with 

biomechanical fatigue assessments confirming superior 

performance compared to traditional crowns (Ding et al., 

2023).  

Similarly, one more study had noted that AI-created 

crowns, which had a morphology of stress distribution, 

had predicted fatigue life characterized by retention of 

natural dentition and lived stress biomechanics beyond 

the boundary of mere geometric precision (He, 2025). 

These results underscore once more that the principle of 

bio-mechanic conditions continues to stand, i.e. axial 

load transfer continues to be the most favorable, while 

even small changes to the configuration of the load 

toward oblique loading results in exceedingly greater 

tensile and shear stresses. 

Implant dentistry systematic literature reviews indicating 

the use of AI continue to support these trends as well. 

The study indicates that AI-driven design implants, using 

FEA and design optimization loops, can reduce interface 

stress, and in some cases, even reduce it significantly 

(Revilla-León et al., 2023). Although previous studies 

focused on the diagnostic/classification side of the 

problem, these applications related to the optimization of 

biomechanical parameters indicate a shift toward design 

augmentation and AI predictive models, which is 

consistent with the findings of the present study. 

A key outcome of this synthesis was the superior 

geometric precision, reduced reconstruction error, and 

enhanced predictive performance of GNN-based 

planning. Even minor geometric inaccuracies, often 

imperceptible in manual workflows, can substantially 

alter stress trajectories and deformation patterns under 

functional loading. Recent implant-planning studies 

support the high capability of AI in anatomical 

recognition and measurement from diagnostic images. 

Meta-analyses report means accuracies of approximately 

96% for identifying mandibular edentulous regions and 

about 83% for maxillary recognition on CBCT images 

(Alqutaibi et al., 2025). These diagnostic capabilities 

substantiate that AI can construct highly detailed 

anatomical frameworks essential for biomechanical 

modeling, planning, and precise reconstruction. Meta-

analyses of object recognition models for intraoperative 

implant positioning demonstrated that several AI-based 

tools surpass manual planning in accuracy and reliability 

(Roongruangsilp et al., 2025). This review indicates that 

AI-guided geometric precision yields real biomechanical 

advantages, with GNN-based planning outperforming 

traditional CAD/CAM and machine learning methods. 

Among many advancements, one of the most remarkable 

contributions of the literature reviewed and the present 

study is merging FEA and AI methodologies. FEA is a 

staple in the biomechanical analysis in dentistry. Recent 

literature discussing new trends FEA’s application in 

studying the stress and strain in removable partial 

dentures and implantable prosthesis and influencing the 

design using computational design models (Zhu et al., 

2025). This study contributes to the literature in showing 

that the integration of FEA within generative design 

systems, biomechanical enhancement moves 

optimization from a reactive stance to active design 

guidance. 

Notwithstanding, the FEA-based findings must consider 

the varying methodologies in the studies that have been 

done. In dental biomechanics, finite element models 

typically consider the bone and tissues as isotropic and 

homogeneous, irrespective of the differences between 

individuals in the sample due to factors such as age, bone 

density (e.g. D3 vs D4 bone types), elastic moduli at 

1300 MPa vs 1100 MPa, and measurement methodology 

that may lead to 20-30% stress prediction inaccuracies 

(Prados-Privado et al., 2020). Also, considerable 

differences in mesh density, which contains anywhere 

from 10,000 to over 500,000 elements, can impact the 

resolution of stress and numerical instability in the mesh 

and hence, cause differences between studies (Desai et 

al., 2023). These differences in methodologies explain 

somewhat the contradictory conclusions presented in 

literature and inhibit direct quantitative comparability. 

Incorporating the results from FEA into the training 

processes of AI ensures that generative models are not 

only able to imitate specific anatomical configurations, 

but respond to the specific biomechanical demands as 

well, which is the pattern this study is demonstrating and 

which has recently begun to be the focus of other in-silico 

studies. One such example is the combination of AI, 

mesh optimization, and stress evaluation, where multi-

objective optimization in a model has been shown to 

reduce the maximum cortical stresses in the model for 

various implant configurations, while also being able to 

accommodate the unique anatomical details of a patient 

better than other methods (Al-Matrafi et al., 2025). This 

aligns with the present findings with increased order 

Stress distribution and load transfer with GNN-attached 

planning this supports the vision that physics-informed 
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AI models are a rational advance of biomechanical 

planning rather than a substitute of fundamental 

principles. 

The review indicates that GNN-based planning may 

enhance restoration stability and longevity, particularly 

in complex, multi-unit rehabilitations, despite the lack of 

direct clinical evidence. Conventional planning is often 

streamlined due to cognitive limits rather than expertise. 

Literature shows that AI improves precision, decision 

rationality, and diagnostic consistency (Arjumand, 

2024). Automated landmark detection and bone 

segmentation using AI can surpass human performance, 

supporting superior generative model outputs (Wang et 

al., 2025). Although not directly linked to biomechanical 

outcomes, these advances provide detailed anatomical 

data crucial for improving planning accuracy, 

corroborating the observed benefits of GNN-assisted 

restorative and implant planning. 

Restoration stability and longevity were mainly inferred 

from surrogate biomechanical metrics rather than 

longitudinal clinical data. Improvements in geometry 

precision, stress reduction, and deformation control 

predict mechanical reliability, suggesting that GNN-

based planning may enhance longevity, especially in 

extensive reconstructions. However, whether these 

biomechanical changes translate to lower complication 

rates or improved survival remains uncertain. 

Biomechanics is one of several factors including 

aesthetics, patient preferences, biological compatibility, 

and cost that influence clinical outcomes (Ghafari et al., 

2020). Given the lack of long-term validation, 

assumptions rely on simulations or lab studies. Future 

research should prioritize integrating AI-based 

biomechanical optimization with prospective clinical 

outcome studies. 

6. Clinical Integration, Limitations, and Future 

Directions 

This review emphasizes clinician-in-the-loop integration 

over full automation, with AI serving as a decision aid 

that complements, rather than replaces, clinical judgment 

while enhancing biomechanical understanding. Real-

world implementation of GNN-based planning requires 

specialized software, costly hardware, clinician training, 

and embedding into existing digital workflows, all of 

which face high licensing fees, long learning curves, and 

regulatory approval through safety and efficacy studies. 

Widespread adoption is expected to be gradual over the 

next 5-10 years. 

Challenges include limited data from marginalized 

populations, model opacity, and overreliance on 

simplified biomechanical assumptions, which reduce 

generalizability and accuracy. Solutions involve diverse 

datasets, explainable AI, and integration of physics-

based modeling. Prospective clinical trials with 100–200 

patients per group and ≥5-year follow-up are needed to 

compare AI-assisted versus traditional rehabilitation 

outcomes. Multi-objective optimization balancing 

biomechanics, aesthetics, and biology is crucial. GNN-

based planning shows promise but requires clinician 

oversight and long-term validation. 

7. Conclusion 

This review evaluated whether GNN-based planning 

demonstrated biomechanical benefits over customary 

clinical planning protocols for dental reconstructive 

surgery. The reviewed monopoly suggested 

biomechanical patents of GNN workflows were more 

favorable in comparison to conventional techniques. This 

was evidenced most consistently by the reduction of peak 

proclivities of stress within periodontal or peri-implant 

tissues. The more optimal the focus of the stress or 

deformation the more favorable the stream pattern of the 

stress was. The relative difference noticed improved in 

complex-multi unit and implant-supported 

rehabilitations and was most evident where conventional 

planning was limited by the cognitive predictive ability 

of the planner. Additionally, the body of evidence was 

still largely dominated by simulation studies and finite 

element modelling. Direct evidence for clinical outcomes 

remains lacking. Observed stress reductions and 

provisional load-balancing improvements may inform 

clinical considerations but should be viewed as indicators 

for refinement rather than validated surrogate evidence 

for actual clinical performance. 

Current evidence emphasizes that biomechanics-driven 

restoration is essential for sustainable aesthetic 

rehabilitation, as high localized stresses cause non-

physiological deformation of restorations and supporting 

tissues. Clinicians can apply these principles without 

advanced computational tools by designing restorations 

that ensure axial load transfer, balanced occlusion, 

proper contacts, and adequate restorative thickness, 

while avoiding thin margins prone to failure. Selecting 

the material and preparation will always be one of the 

most critical factors to consider as well as maintaining 

adequate restorative thickness is dictated based on the 

clinical indication and its associated mechanical 

behavior. 
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In the future, GNN-based planning should complement, 

not replace, clinical judgment. Its clinical translation will 

require large, diverse datasets, prospective studies, and 

explainable, traceable AI. Integration of clinicians, 

biomechanical scientists, computer scientists, and 

regulatory experts is essential to ensure that GNN-

assisted planning is ethical, clinically meaningful, and 

improves patient outcomes, including function, 

aesthetics, and restoration longevity.   
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