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Abstract 

With the rapid evolution and proliferation of Large Language Models (LLMs) in natural language processing, researchers 

and practitioners increasingly explore their potential in software engineering domains such as code generation, automated 

testing, and deployment workflows. This article presents a comprehensive conceptual analysis integrating insights from 

recent surveys and empirical studies to propose a unified framework for effectively leveraging LLMs across the software 

development lifecycle. Drawing on major works, including the broad survey of LLM architectures and capabilities (Zhao 

et al., 2024), the domain‐specific evaluation of code generation tasks (Chen et al., 2024), and in‐depth analyses of software 

testing with LLMs (Wang et al., 2024; Fan et al., 2023; Hou et al., 2024), this research systematically synthesizes existing 

findings, identifies critical gaps, and outlines a structured methodology to address key challenges. The findings highlight 

substantial variability in evaluation standards, a lack of robust testing pipelines tailored to LLM-generated code, 

deployment scalability constraints, and limited consensus on best practices. The proposed framework encompasses 

taxonomy, evaluation guidelines, testing strategies, and deployment infrastructure recommendations. This framework aims 

to guide future empirical research, industrial adoption, and standardization efforts in integrating LLM-powered tools into 

software engineering. The article concludes by discussing limitations and suggesting directions for future work, including 

empirical validation, benchmarking protocols, and governance considerations. 
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1. Introduction 

In recent years, Large Language Models (LLMs) have 

revolutionized the field of natural language processing 

and understanding. Their capacity to model rich 

linguistic patterns, generate coherent text, and perform 

various downstream tasks has spurred rapid adoption 

beyond conventional language tasks. Among these 

emerging applications, the use of LLMs in software 

engineering has garnered substantial attention. The idea 

of leveraging LLMs to assist or even automate tasks such 

as code generation, test case generation, documentation, 

and other development activities promises to reshape 

traditional software development paradigms. Indeed, 

several recent comprehensive surveys have attempted to 

map the landscape of LLMs and their applications in 

software engineering (Zhao et al., 2024; Raiaan et al., 

2024; Hou et al., 2024; Fan et al., 2023). 

On the one hand, the broader work by Zhao et al. (2024) 

presents a panoramic overview of LLM architectures, 

training, capabilities, and limitations. On the other, 

domain-specific investigations such as Chen et al. (2024) 

and Wang et al. (2024) examine the performance and 

challenges of LLMs in code generation and software 

testing contexts. Despite this burgeoning literature, there 

remains a conspicuous absence of a unified, holistic 

framework that ties together evaluation, testing, 

deployment, and operationalization of LLMs in real-

world software engineering pipelines. In particular, 
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existing works often treat code generation evaluation, 

test generation, and deployment scalability as disjoint 

problems, failing to address the integrated nature of 

software development environments. Moreover, while 

conventional software testing and engineering 

methodologies are well-established (ISO/IEC/IEEE 

24765:2017), their adaptation to the unique 

characteristics of LLM-generated artifacts remains 

underexplored. 

This article therefore addresses the following core 

research problem: How can we systematically integrate 

LLM-based tools into conventional software engineering 

workflows through a unified framework that addresses 

evaluation, testing, and deployment, while 

acknowledging the unique challenges of LLM-generated 

code and infrastructure demands? The absence of 

standardization, the diversity of evaluation metrics, and 

the lack of robust, scalable testing/integration platforms 

constitute critical gaps. These gaps hinder both academic 

reproducibility and industrial adoption of LLM-based 

tools. 

To address this problem, this article builds a 

comprehensive conceptual framework by synthesizing 

evidence and perspectives across multiple seminal and 

recent works. The framework comprises: (1) a taxonomy 

of LLM roles in software engineering; (2) evaluation 

guidelines and standardized metrics; (3) integrated 

testing strategies combining traditional software testing 

paradigms with LLM-specific considerations; and (4) 

deployment and infrastructure recommendations mindful 

of scalability, resource management, and governance. By 

doing so, this article advances the discourse beyond 

isolated case studies or narrow surveys, offering a 

holistic roadmap for both researchers and practitioners. 

2. Methodology 

This work is based on a systematic synthesis of existing 

peer-reviewed literature and preprints focusing on LLMs 

and their applications in software engineering. The 

methodology comprises three stages: selection of 

sources, thematic coding, and framework construction. 

First, we compiled a set of foundational and recent 

publications that directly address LLMs in general and 

their use in software engineering, testing, and code 

generation. Core works include broad surveys of LLMs 

(Zhao et al., 2024; Raiaan et al., 2024; Hou et p al., 

2024), specialized studies on software engineering 

applications (Fan et al., 2023; Wang et al., 2024), and 

focused analyses on code generation evaluation (Chen et 

al., 2024). To contextualize LLM adoption within 

established software engineering practices, traditional 

references such as the standard vocabulary provided by 

ISO/IEC/IEEE 24765:2017 were included, along with 

classical investigations on software testing techniques 

(Mayeda & Andrews, 2021; Lonetti & Marchetti, 2018; 

Clark, Walkinshaw & Hierons, 2021). Additionally, to 

address deployment and infrastructure concerns, a few 

works that discuss scalable test platforms or cloud-based 

frameworks were considered (Chandra, 2025; Vasireddy 

et al., 2023; Pogiatzis & Samakovitis, 2020; Borra, 2024; 

Zhou et al., 2025), albeit more peripherally owing to their 

variable relevance. 

Second, we conducted thematic coding of the identified 

literature. Each paper was analyzed to extract (a) the 

role(s) LLMs play in software engineering (e.g., code 

generation, test generation, documentation), (b) 

evaluation methodologies and metrics employed, (c) 

identified challenges, limitations, or open problems, (d) 

infrastructure or deployment considerations, and (e) 

proposed solutions or recommendations. Using these 

codes, we constructed a consolidated thematic map that 

reveals overlaps, divergences, and under‑studied 

intersections. 

Finally, based on the thematic map, we formulated a 

structured framework integrating taxonomy, evaluation, 

testing, and deployment. The framework is not empirical 

in itself but conceptual: it serves as a blueprint for future 

empirical validation and tool development. 

Throughout, we strictly rely on information contained 

within the selected literature; we do not draw from 

external empirical experiments or data beyond what is 

available in the references. As such, the framework 

represents a reasoned, evidence-based synthesis, not a 

new empirical study. 

3. Results 

 The synthesis yields four major outcomes: a taxonomy 

of LLM roles in software engineering, an evaluation 

guideline, an integrated testing strategy, and 

deployment/infrastructure recommendations. 

Taxonomy of LLM Roles in Software Engineering 

Our analysis reveals that LLMs currently contribute to 

software engineering through multiple, overlapping 

roles. These can be broadly categorized as follows: 
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● Code Generation and Augmentation: LLMs are used to 

generate new code, suggest code completions, refactor 

existing code, or add documentation comments. This is 

the most widely studied application. According to Chen 

et al. (2024), evaluations of LLM output in code 

generation tasks vary widely in metrics and granularity. 

● Automated Test Case Generation: LLMs can generate 

test cases, including unit tests, integration tests, or edge-

case scenarios. This use case has been explored by Wang 

et al. (2024) among others. 

● Requirement Specification and Documentation: Some 

studies describe using LLMs to draft requirements, 

generate design documents, or convert natural-language 

specifications into formal representations. While less 

intensely studied, this role emerges in the broad surveys 

(Zhao et al., 2024; Raiaan et al., 2024). 

● Code Review and Static Analysis Aid: LLMs can assist 

developers by reviewing code, flagging potential bugs, 

or suggesting improvements. This was highlighted in 

domain analyses of LLM applications in software 

engineering (Hou et al., 2024; Fan et al., 2023). 

●  Deployment and DevOps Assistance: Emerging works 

(e.g., Chandra, 2025) propose using LLMs to assist in 

deployment scripting, CI/CD automation, or 

configuration generation, although empirical evidence 

remains limited. 

This taxonomy underscores that LLMs are not confined 

to a single narrow task—but span multiple phases of the 

software development lifecycle, from planning through 

coding to deployment and maintenance. 

Evaluation Guidelines and Standardized Metrics 

A striking result is the lack of consensus across studies 

regarding how to evaluate LLM-generated code and 

artifacts. We observed considerable heterogeneity in 

metrics, evaluation processes, and benchmarking. Some 

of the key observations: 

● Diversity of Metrics: In code generation tasks, some 

studies measure correctness purely via compilation and 

execution (e.g., pass/fail tests), while others employ 

human evaluation for readability, maintainability, or 

style (Chen et al., 2024). For test generation, criteria 

include code coverage, fault detection capability, and 

even human assessment of test quality (Wang et al., 

2024; Fan et al., 2023). 

 

● Lack of Benchmark Standardization: While some 

authors attempt benchmark suites, the content, 

complexity, and domain coverage vary widely between 

studies. This makes comparison across different LLMs 

or configurations difficult. 

● Limited Focus on Maintainability and Security: Few 

works systematically examine nonfunctional aspects 

such as code security, technical debt, maintainability, or 

long-term readability. 

● Absence of Governance or Compliance Metrics: As 

LLM-generated artifacts become part of production 

codebases, issues like licensing, compliance, and 

copyright no longer remain theoretical. Yet none of the 

surveyed works propose metrics or processes to handle 

such concerns. 

From this synthesis, we propose preliminary 

evaluation guidelines: 

1. Multi‑dimensional Evaluation: Any evaluation of 

LLM-generated code should include at least three 

dimensions: functional correctness (compilation, 

execution, test pass rate), code quality (readability, 

maintainability, style), and nonfunctional concerns 

(security, compliance, modularity). 

2. Hybrid Benchmarking Approach: Combine automated 

benchmark suites with human expert review. 

Benchmarks should capture code complexity, domain 

diversity, and real-world relevance. 

3. Longitudinal Assessment: Beyond one-time 

evaluation, code should ideally be monitored for 

maintenance cost, refactoring effort, bug occurrence, and 

team adoption over time. 

4. Transparent Reporting: Researchers should report not 

only success rates but also failure modes, common error 

patterns, and instances where human intervention was 

required. 

Integrated Testing Strategy 

Integrating traditional software testing methodologies 

with LLM-specific concerns yields several insights. 

Traditional software testing techniques—unit testing, 

integration testing, regression testing—form a stable 

foundation (ISO/IEC/IEEE 24765:2017; Mayeda & 

Andrews, 2021; Lonetti & Marchetti, 2018). However, 
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LLM-generated code introduces unique risks: 

unpredictable semantics, variability in code style, 

potential hidden vulnerabilities, and varying code 

structure. Our synthesis suggests the following integrated 

testing strategy: 

● Initial Automated Testing: Immediately after 

generation, code must undergo standard automated tests 

including compilation, unit tests (if available), 

integration tests, and static analysis. This is no different 

from human-written code. 

● LLM-Specific Sanitization Pass: Treat LLM-generated 

code as potentially “untrusted input,” running additional 

static analysis and linting; scanning for known 

vulnerability patterns; checking for compliance with 

coding standards; verifying license headers or 

dependencies. This sanitization acknowledges that LLM 

outputs may inadvertently introduce security flaws or 

license violations. 

● Fuzz Testing and Robustness Checks: Where possible, 

generate randomized input sets to test edge cases, ensure 

no unexpected behavior, and stress-test boundary 

conditions. 

● Human Code Review: Especially important for 

complex or critical modules — human developers should 

review architecture, logic flow, readability, and 

compliance with project-specific conventions. 

● Regression Testing and Monitoring Post-Integration: 

Once merged into the codebase, subsequent changes 

should trigger regression tests to ensure LLM-generated 

code continues to behave as expected under evolving 

dependencies and usage patterns. 

This integrated strategy aims to combine the strengths of 

traditional testing with additional safeguards tailored to 

the particular uncertainties of LLM-generated artifacts. 

Deployment and Infrastructure Recommendations 

A frequent omission in the literature is consideration of 

deployment, scalability, and infrastructure — critical 

factors for productionizing LLM-enhanced software 

development tools. While specialized works are limited, 

a few promising directions emerge. For example, 

Chandra (2025) discusses design and implementation of 

scalable test platforms for LLM deployments; Vasireddy 

et al. (2023) explore load balancing in containerized 

orchestration contexts; and Pogiatzis & Samakovitis 

(2020) illustrate serverless ETL pipeline design on cloud 

platforms. Drawing from these, we outline a set of 

infrastructure recommendations: 

1. Containerization and Orchestration: Use container-

based environments (e.g., Docker) orchestrated via 

Kubernetes or similar for modularity, scalability, and 

portability. This facilitates isolated sandboxing of LLM 

inference workloads, test execution, and deployment 

tasks. 

2. Horizontal Scaling with Load Balancing: To handle 

demand spikes — e.g., many developers requesting code 

generation or test generation concurrently — adopt load 

balancing and dynamic scaling strategies to distribute 

inference and testing workloads across multiple nodes 

(Vasireddy et al., 2023). 

3. Serverless or Microservices-Based Architecture for 

Pipeline Components: Decompose the entire workflow 

— code generation, static analysis, test execution, result 

reporting — into microservices or serverless functions 

for scalability, maintainability, and ease of integration 

(Pogiatzis & Samakovitis, 2020). 

4. CI/CD Integration and Automated Feedback Loops: 

Embed LLM-powered generation and testing pipelines 

into continuous integration/continuous deployment 

(CI/CD) workflows. Automated feedback (test pass/fail, 

linting results, security scan results) should be returned 

to developers promptly, enabling iterative refinement. 

5. Monitoring, Logging, and Governance: Maintain 

detailed logs of LLM prompts, generated code snippets, 

test results, and deployment metadata. This supports 

traceability, compliance audits, and root-cause analysis 

for failures or unexpected behavior. Additionally, 

governance policies should account for licensing, 

attribution, and ethical compliance when LLM-generated 

code enters production. 

Collectively, these recommendations establish a bridge 

between LLM-powered code generation/testing and real-

world software engineering operations — addressing one 

of the major gaps identified in prior literature. 

4. Discussion 

The proposed integrated framework — combining 

taxonomy, evaluation guidelines, testing strategies, and 

infrastructure recommendations — represents a 

conceptual advance in how researchers and practitioners 
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might systematically adopt LLMs in software 

engineering. However, several deeper interpretations, 

limitations, and future directions merit discussion. 

Interpretation and Theoretical Implications 

 First, the taxonomy underscores that LLMs are not 

simply coding assistants but function as multi-faceted 

collaborators across software engineering: designers, 

testers, dev‑ops assistants, and documentation writers. 

This multi-role capability challenges conventional role 

boundaries in software teams, potentially leading to 

redefined responsibilities, new workflows, and altered 

team dynamics. If LLMs reliably assume certain routine 

or boilerplate tasks (e.g., test generation, 

documentation), human developers may shift focus to 

higher-level design, architecture, or domain-specific 

logic. Such a shift has implications for educational 

curricula, skill development, and job roles in software 

engineering. 

Second, the evaluation guidelines point to a necessary 

maturation of the field toward rigorous, multi-

dimensional assessment. The historical tendency to 

evaluate code solely on execution correctness overlooks 

aspects such as maintainability, security, and long-term 

sustainability. By advocating for broader evaluation — 

including human review, long-term monitoring, and 

transparency — the framework aligns LLM research 

with established concerns in software engineering, such 

as technical debt, security risk management, and 

maintainability. 

Third, the integrated testing strategy emphasizes that 

LLM-generated artifacts should not be treated differently 

just because they were machine-generated: they must 

undergo the same, if not more rigorous, validation than 

human-written code. This underscores an important 

theoretical point: the provenance of code (human vs. 

machine) should not dictate trust levels, but quality, 

reliability, and risk should. By integrating conventional 

and LLM-specific testing practices, we treat LLM 

outputs as first-class code artifacts deserving full 

lifecycle treatment. 

Fourth, the infrastructure recommendations bring LLM-

based development into the operational domain. Without 

scalable architecture, logging, CI/CD integration, and 

governance, LLM tools risk remaining experimental or 

siloed within small projects. The proposed deployment 

framework thus reflects a broader vision: LLM-powered 

development should not remain a novelty but become a 

stable, maintainable component of software engineering 

ecosystems. 

5. Limitations 

 Despite the contributions, the article has inherent 

limitations, most stemming from its conceptual, non-

empirical nature. 

● Lack of Empirical Validation: The proposed 

framework is built through synthesis and logical 

reasoning, not through new experiments or large-scale 

deployments. As such, its practical effectiveness remains 

conjectural until validated by empirical studies. 

● Dependence on Existing Literature Scope: The 

framework is constrained by the scope and limitations of 

the referenced works. For example, very few papers 

address long-term maintenance or real-world 

deployment, so sections on governance or operational 

scaling are necessarily speculative and informed by 

peripheral works (e.g., infrastructure papers) rather than 

solid empirical evidence. 

● Rapidly Changing Landscape: The field of LLMs 

evolves extremely quickly. New architectures, 

deployment models, evaluation metrics, security 

vulnerabilities, and regulatory frameworks may emerge, 

potentially rendering parts of the framework obsolete. 

● Human Factors Underexplored: While the framework 

acknowledges the need for human review and integration 

into team workflows, it does not deeply address social, 

organizational, or psychological factors — e.g., how 

developer trust evolves, how code ownership is 

perceived when parts are machine-generated, or how 

responsibility and accountability are managed. 

● Ethical, Legal, and Licensing Issues: Although we 

mention governance and compliance, the framework 

does not deeply engage with complex issues such as 

licensing of training data, intellectual property 

ownership, and liability in case of bugs or security flaws. 

These are critical concerns but require dedicated legal 

and ethical scholarship. 

Future Research Directions 

 Given these limitations, we outline several avenues for 

future research and development: 

1. Empirical Implementation and Case Studies: 

Researchers should implement the proposed framework 
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in real-world software development teams, across 

diverse domains (web, embedded systems, enterprise, 

open-source), to evaluate its practical viability, benefits, 

and limitations. Such case studies could measure metrics 

like developer productivity, code quality, bug incidence, 

time-to-release, and maintenance cost. 

2. Benchmark Standardization and Open Datasets: There 

is a pressing need for community-wide benchmark suites 

for LLM-generated code—covering a variety of 

languages, domains, complexity levels, and real-world 

tasks. Such benchmarks should be open-source and 

collectively maintained, enabling better cross-study 

comparisons. 

3. Governance, Licensing, and Ethical Frameworks: 

Dedicated work should be done to define policies for 

licensing, attribution, liability, and compliance when 

using LLM-generated code in commercial or open-

source projects. Collaboration between legal scholars, 

ethicists, and software engineering researchers is vital. 

4. Human-Centric Studies on Adoption and Trust: 

Empirical studies should investigate how human 

developers perceive and interact with LLM-generated 

code: Do they trust it? How often do they override or 

rewrite it? How does it affect code ownership and 

collaboration? What are the social dynamics involved? 

5. Security and Robustness Analysis: Comprehensive 

security audits should be conducted on LLM-generated 

code, including dependency tracing, vulnerability 

scanning, and dynamic security testing. Research should 

also explore how adversarial inputs or malicious prompts 

could lead to insecure or buggy code. 

6. Scaling and Infrastructure Tooling: Development of 

open-source platforms or tools that encapsulate the 

proposed deployment architecture would facilitate 

adoption. This includes container orchestration 

templates, CI/CD integrations, logging and monitoring 

dashboards, and compliance modules. 

7. Policy and Standardization Initiatives: Professional 

bodies (e.g., IEEE, ISO) should consider extending 

existing software engineering standards (such as 

ISO/IEC/IEEE 24765:2017) to explicitly address AI-

generated code, defining vocabulary, best practices, and 

quality standards. 

 

6. Conclusion 

The acceleration of research and practical efforts around 

Large Language Models has opened promising 

opportunities for their integration into software 

engineering workflows. However, fragmented 

investigations and varying methodologies have hindered 

consistent adoption and robust evaluation. This article 

synthesizes diverse strands of literature to propose a 

unified conceptual framework for integrating LLMs into 

software engineering — spanning taxonomy, evaluation 

guidelines, testing strategies, and deployment 

infrastructure. 

By treating LLM-generated artifacts as first-class code, 

subject to the same rigorous testing, review, and 

governance as human-written code, the framework offers 

a pathway toward responsible, maintainable, and 

scalable adoption. While conceptual, the framework lays 

a foundation for future empirical validation, tool 

development, and standardization efforts. 

Given the rapid pace of LLM development and growing 

industrial interest, adopting such a structured approach is 

not merely desirable — it may become essential. Only 

through systematic evaluation, disciplined testing, and 

responsible deployment can the promise of LLMs be 

responsibly realized in practical software engineering 

environments. We hope this framework stimulates 

further research, collaboration, and real-world 

implementations bridging the gap between LLM 

capabilities and software engineering best practices. 
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