
The American Journal of Interdisciplinary Innovations and Research
ISSN 2642-7478 Volume 07 - 2025

The Am. J. Interdiscip. Innov. Res. 2025 1

MVCA: An Ultra-Lightweight PHP MVC Framework for a Faster, Cleaner

Web

 1 Dmytro Novoselskyi
1 Senior Software Developer Los Angeles, USA

Received: 18th Oct 2025 | Received Revised Version: 29th Oct 2025 | Accepted: 27th Nov 2025 | Published: 05th Dec 2025

Volume 07 Issue 12 2025 | Crossref DOI: 10.37547/tajiir/Volume07Issue12-01

Abstract

This article examines the architecture and functional characteristics of MVCA, an ultra-lightweight PHP MVC framework

oriented toward building fast and clean web applications. The relevance of the study is driven by a recurring trade-off in

contemporary PHP frameworks: tools designed to tame complexity often become sources of excessive abstraction and

performance overhead themselves. This work aims to analyze MVCA in a multi-level manner, both architecturally and

comparatively, to determine its position within the existing PHP frameworks and assess how it can be utilized for small-

and medium-scale projects. The article is scientifically novel, as it conceptualizes minimalism as a design approach. MVCA

abstraction overhead and ORM layers, integrating modern tooling that includes support for PHP 8.1+, WebSockets, and

built-in debugging facilities. The framework's core security model particularly stresses, and it implements security by

design through strict filtration of user input. MVCA constitutes a balanced alternative to heavyweight platforms like

Laravel and Symfony. It can also provide for a balanced option to some classic lightweight solutions such as CodeIgniter,

as well as offering a combination of high performance and simplicity, as it supports critically necessary capabilities that

position it as an optimal choice for small and medium web projects, APIs, and microservices with heightened requirements

for speed, architectural transparency, and security. The article is useful for developers, software architects, and

researchers.

Keywords: PHP, MVC, framework, minimalism, performance, architecture, security, web development.

© 2025 Dmytro Novoselskyi. This work is licensed under a Creative Commons Attribution 4.0 International License (CC

BY 4.0). The authors retain copyright and allow others to share, adapt, or redistribute the work with proper attribution.

Cite This Article: Dmytro Novoselskyi. (2025). MVCA: An Ultra-Lightweight PHP MVC Framework for a Faster,

Cleaner Web. The American Journal of Interdisciplinary Innovations and Research, 7(12), 01–07.

https://doi.org/10.37547/tajiir/Volume07Issue12-01

1. Introduction

Despite the emergence of new languages along

with technologies, PHP remains a dominant force in

server-side web development, because it powers a

substantial portion of the internet, from WordPress blogs

to complex e-commerce platforms. Its low barrier for

entry, ease for deployment, and enormous ecosystem

condition its popularity, collectively ensuring of its

longevity and for relevance (Patel, 2024).

A transition occurred since web applications

and language evolved to be complex. The transition from

procedural code toward the use of frameworks was a

natural one. Frameworks let developers structure the

code and reduce the boilerplate also to manage

complexity of the contemporary system effectively. This

process yielded a clear bifurcation within the PHP

framework ecosystem. On one side stand heavyweight,

multi-functional platforms such as Laravel and Symfony,

offering rich ecosystems and tooling for rapid

development of large-scale applications. On the other

side are lightweight, performance-oriented

frameworks—epitomized by CodeIgniter—in which

speed and minimal overhead take precedence, often at

The American Journal of Interdisciplinary Innovations and Research
ISSN 2642-7478 Volume 07 - 2025

The Am. J. Interdiscip. Innov. Res. 2025 2

the expense of built-in functionality (Laaziri et al., 2019).

The central thesis is that while large frameworks

can improve developer productivity, their complexity

and performance overhead may be inappropriate for

small- and medium-sized projects. About this

phenomenon, the framework paradox acts as a descriptor

instruments for complexity combat change into novel,

secondary complexity origins appearing within acute

learning gradients, veiled abstractions, and outstanding

runtime burden (Ropstam, 2025).

MVCA addresses this need by providing a

streamlined platform designed for rapid deployment

without unnecessary features. MVCA addresses this

minimalist philosophy, as it differs from antiquated

lightweight frameworks. Now, older models seem

outdated. It sustains an emphasis on efficacy. Also, it fills

a needed spot in the market. Like PHP 8.1+, Docker, and

WebSockets, it also strengthens existing tools and

modern conventions. The article has an intention to

scrutinize the architecture of MVCA exhaustively in

order to determine its situation and its viability. It will

also contrast MVCA's constituents along with design

tenets against industry benchmarks in PHP

development's modern landscape.

2. Materials and Methodology

The investigation of MVCA’s architectural as

well as performance characteristics as an ultra-

lightweight PHP MVC framework features analysis of

academic publications, industry reports, empirical

comparisons, along with content analysis of prevailing

practices within the PHP ecosystem through a multi-

tiered approach. The theoretical basis includes works

describing language evolution, procedural to object-

oriented programming shift, and the MVC pattern

(Siame & Kunda, 2017), also studies that juxtapose

lightweight with heavyweight frameworks (Laaziri et al.,

2019). Applied performance reports were created by

Niarman et al. (2023) and comparative reviews of

modern tools by Patel (2024). Expert work was published

by Ropstam (2025) and it stressed some architectural

trade-offs in Laravel and Symfony.

Three interrelated directions guide into the

methodology. First, an architectural analysis decomposes

the MVCA core then identifies design decisions that

simply but sufficiently function. Standardized

benchmarks such as using design patterns (PHP: The

Right Way, 2025), security support, tooling that is built-

in, and service containers and ORMs are employed.

Second, remaining PHP frameworks in different

classes are analyzed comparatively. Laravel and

Symfony exemplify mature ecosystems with high

abstraction, while CodeIgniter and native PHP act as

benchmarks for lightweight, minimalist approaches. Key

metrics, such as the response time, memory

consumption, and requests for each second, were

identified in light of the published performance tests

(Devace Technologies, 2025; Niarman et al., 2023).

These metrics were correlated then with architectural

features in the study.

Third, content analysis of industrial cases and

practical guides is employed to identify real-world

scenarios for lightweight frameworks and to document

the practical effects of minimalist architectures.

Incorporating data on the advantages and limitations of

MVC implementations in Laravel and Symfony (Geeks

for Geeks, 2025; Ropstam, 2025) establishes the context

in which MVCA positions itself as an alternative.

3. Results and Discussion

The historical development of PHP application

architecture shows simple procedural scripts changing to

common object-oriented programming (OOP), with total

support arriving in PHP 5.3 (Siame & Kunda, 2017).

OOP principles such as encapsulation helped build larger

systems. Inheritance as well as polymorphism also

helped in their maintainability as well as scalability.

PHP frameworks saw Model-View-Controller

or MVC become as such the dominant pattern. The main

benefit of MVC is Separation of Concerns: the data-

handling logic (Model), the user interface (View), and

the application’s control logic (Controller) are separated

into independent components. Such separation heightens

modularity, facilitates code reuse, and eases

collaborative development (Laaziri et al., 2019).

Beyond MVC, modern frameworks

systematically employ other established design patterns

that structure their internals (PHP: The Right Way, 2025).

As shown in Figure 1, among the most consequential are

the following.

The American Journal of Interdisciplinary Innovations and Research
ISSN 2642-7478 Volume 07 - 2025

The Am. J. Interdiscip. Innov. Res. 2025 3

Fig. 1. Framework Design Patterns Hierarchy

Singleton guarantees that a class has only one

instance and provides a global access point to it, often

used for managing database connections or configuration

parameters. This pattern directly relates to MVCA’s

security model. Factory abstracts object creation,

fostering flexibility and reducing coupling. In the front

controller pattern, a single file (e.g., index.php) handles

all requests to the application. Upon loading this file,

dependencies are loaded, the request is processed, and

the response is returned. Control flow becomes

centralized in this design. Security checks are now in fact

also more centralized.

MVC is in fact not a monolithic standard

analysis indicates but rather a spectrum of

implementations. Managed MVC is made up of

heavyweight frameworks such as Laravel or Symfony,

and these frameworks augment classical MVC through

the use of advanced service containers with dependency

injection mechanisms in multi-functional ORMs. MVCA

is different than just MVC implementation goals. This

unlikeness in MVC realization is basic. It also determines

many architectural properties that are inherent to the

frameworks.

Singleton as well as Factory design patterns

stand as sources of complexity along with power. Their

overuse or their concealment within the framework’s

magical abstractions cause major complexity and steep

learning curves. MVCA’s approach appears to be a

transparent and purposive use of these patterns. This

matches MVCA’s value of being uncomplicated.

Laravel as well as Symfony do largely define

the contemporary PHP-development landscape. Their

architectural philosophies through grounding in shared

principles such as MVC, yield tools with distinct

strengths as well as application domains.

Laravel positions itself as a framework oriented

toward developer convenience and rapid delivery,

achieved via an opinionated design and elegant,

expressive syntax. Its architecture rests upon several key

components since they all can ensure coherence and also

functionality. Eloquent ORM lies at its core, for it is an

efficient Active Record implementation. Eloquent ORM

is designed for interacting with databases and

simplifying CRUD operations substantially. The Blade

templating engine governs view construction because it

supplies simple yet effective syntax, allowing PHP to

integrate directly into HTML structures (Geeks for

Geeks, 2025). Artisan CLI makes development processes

automatic which helps tasks such as migrating,

controlling, and modeling (Ropstam, 2025). Official

packages such as both Forge Nova and then Vapor

together with a broad array of community libraries

further can extend the ecosystem's functionality. A

directory's structure is maintaining the codebase's logical

organization. That structure eases maintenance. The

structure is well defined in general. The application core

does utilize the structure here. It does do this using the

configuration. Routes along with resources exist.

Symfony, in fact, is a modular framework which

is component-oriented, built for the flexibility of

enterprise projects, and it scales now for support that is

long-term. Its architecture makes functionality break

down whenever libraries such as Process Forms and

Routing separate PHP. External projects are able to use

each of these reusable libraries and also a thorough

application is able to combine those. The Doctrine ORM

is mediating database interaction since it has the ability

to achieve strict isolation involving business logic. The

data-access layer then implements that Data Mapper

pattern beyond Active Record. Twig understands a

templating engine typical for several PHP projects as the

safe adaptable display tier. Bundles, reusable code

fragments do encapsulate specific functionality,

achieving modularity as well as extensibility. Explicit

configuration, not conventions, represents a key

principle, which is also known as configuration over

convention. This principle grants to developers full

control as to application behavior but requires of them a

study more deeply and a learning more thoroughly.

Laravel as well as Symfony differ less in their

features than in their philosophy. Laravel offers speed

since its method prefers convention to configuration

therefore it suits startups, MVPs, and typical web

applications. Symfony designs and configures explicitly

with components improving customization plus

The American Journal of Interdisciplinary Innovations and Research
ISSN 2642-7478 Volume 07 - 2025

The Am. J. Interdiscip. Innov. Res. 2025 4

maintainability long term, so complex enterprise systems

benefit. Thus, these frameworks occupy different, albeit

overlapping, ecological niches within the PHP world.

As an alternative to multi-functional platforms,

there exists a paradigm oriented toward minimalism and

maximal performance. This niche is occupied by

lightweight frameworks and, at the limit, by native PHP.

CodeIgniter is the classical exemplar of this

approach. A small footprint, high speed, straightforward

configuration, and a minimal set of base libraries

characterize it. It provides for a basic MVC structure

while imposing no tools or detailed abstractions upon the

developer.

Academic studies consistently show something

also performance tests consistently show something as

well: native PHP and lightweight frameworks such as

CodeIgniter outperform heavyweight counterparts on

raw metrics. One study found that native PHP delivers

slightly better performance results than the frameworks

CodeIgniter and Laravel under load and stress testing,

according to Niarman et al. (2023), especially when

dealing with simple request-response cycles, such as

execution time and memory usage. Another benchmark

reports a markedly lower average response time for

CodeIgniter (95 ms versus 140 ms for Laravel) and lower

memory consumption (11.2 MB versus 18.4 MB)

(Devace Technologies, 2025).

The trade-off is the absence of built-in advanced

features (e.g., ORM, authentication systems, queues),

compelling developers either to implement them

independently or to integrate third-party libraries.

However, a necessary subtlety should moderate

our data interpretation. Performance advantages that are

demonstrated in synthetic tests are not always translated

by real-world applications. External factors frequently

cause bottlenecks in production conditions such as slow

database queries with network latency plus disk I/O. The

true value for a lightweight framework is not only in

shaving milliseconds of CPU time. It is also about

reducing developers’ cognitive load and ensuring

architectural transparency. Simplicity and the absence of

magic make it easier to locate and optimize precisely

those code paths that are the genuine performance

chokepoints. In this way, simplicity itself becomes an

instrument for achieving high performance.

At the core of MVCA lies a philosophy that

directly repudiates the one size fits all approach typical

of large frameworks. The framework targets developers

who prioritize high performance, architectural simplicity,

and flexibility. Performance is achieved in cases when

coders minimize overhead while they also ensure rapid

code execution. An intuitive architecture is simple since

it lacks hidden, implicit mechanisms. Thus, people

should learn more to grasp intuitive architectures. Also,

the system is quite adaptable since projects may be

structured without constraint. The system also avoids

conventions that are dogmatic, rigid.

The pure form for the MVC pattern is what this

very philosophy aspires for realizing. This philosophy

avoids heavy abstractions since they complicate

frameworks like Laravel and Symfony. The goal to

reallocate time for the building of application

functionality is to reduce time for fighting the

framework.

A technical analysis of MVCA’s key

subsystems reveals distinctive architectural decisions.

First, routing: MVCA offers a flexible as well as

straightforward routing system since it supports both

direct route configuration in addition to dynamic routing.

The code example shown in Figure 2 illustrates how a

URL is bound to a controller method, which, in turn,

interacts with a model to retrieve data and loads a view

to render it.

Fig. 2. Object-Oriented PHP Controller for Storage

Retrieval and View Rendering

Second, the security model—a key architectural

differentiator for MVCA. By default, the framework

disables direct access to PHP superglobals such as

$_GET, $_POST, $_SERVER, and $_COOKIE. All user

input must be processed via a dedicated Request

singleton object, which enforces filtration and data

typing (e.g., $request->GET('var1', 'int')). This strong

and opinionated design decision advances a security by

design stance. Rather than offering security as an

optional library, MVCA embeds secure practices into the

architecture itself, making it harder to write insecure

code than secure code. This approach not only prevents

The American Journal of Interdisciplinary Innovations and Research
ISSN 2642-7478 Volume 07 - 2025

The Am. J. Interdiscip. Innov. Res. 2025 5

common vulnerabilities but also promotes testability, as

controllers become independent of global state.

Third, unlike many minimalist frameworks that

supply only a bare skeleton, MVCA integrates a suite of

built-in development tools. This toolset also includes a

real-time debugging console, allowing to analysis

database queries and the inspection of application state.

System support for multiple languages comes from

integrated translation service. Architecture now supports

the WebSocket protocol. It functions in real-time at a

certain point because you do not need to configure or

attach external libraries. These decisions are rounded out

with flexible database handling since the framework is

not tied with a specific DBMS. MySQL, MariaDB, and

PostgreSQL are supported through the framework.

The architecture of MVCA is characterized by

curated minimalism. For development, it still retains

modern and necessary tooling such as WebSocket

support, debugs by using built-in tools, yet consciously

it forgoes heavy abstractions for example a complex

service container or also a full-featured ORM. This

design philosophy shows separating needed web

applications complexity functionality from framework

bloat accidental complexity. Because of pragmatism,

MVCA does differ favorably from older lightweight

frameworks.

MVCA seems like the best choice according to

architectural analysis for some situations. It can help to

build small- to medium-scale web applications. Such

building is useful in fact. Systems larger like Laravel or

Symfony are excessively complex and create overhead in

these situations. The framework performs in a capable

manner, suiting it to high-load APIs as well as

microservices. Latency is indeed low in all of these

applications, and even minimal resources are consumed

now. Projects also desire it in instances where developers

need full architecture control with operational

transparency, instead of their starting entirely from

scratch. Finally, MVCA may act as a didactic instrument

for teaching canonical MVC principles. The complex

abstractions intrinsic within larger frameworks do not

unskew these principles.

Helpful is a synthesis of the analysis. This

synthesis enables a hypothesis well-founded regarding

MVCA’s performance profile. Its architectural

characteristics allow placement in high confidence

within the existing landscape, even though direct

empirical data are absent. Considering MVCA’s

minimalist design, the absence of a heavy ORM, the

minimal number of abstractions, and adherence to a pure

MVC architecture, its performance indicators (response

time, memory consumption, requests per second) are

expected to be on a level comparable to native PHP and

CodeIgniter and to exceed those of Laravel and Symfony

under analogous conditions markedly. This hypothesis

finds support in many studies that show a correlation

between simplicity architecturally and improvements in

raw performance metrics (Niarman et al., 2023).

Resource consumption for each request is now reduced,

and also the path of execution is shortened, through

elimination of the intermediate layers of abstraction.

The comparative table 1 which follows is

presented to consolidate all of the key differences. These

differences include architectural as well as philosophical

ones within the frameworks considered.

Table 1. Comparative analysis of PHP framework architectures

Criterion Pure PHP CodeIgniter MVCA Laravel Symfony

Architectural

paradigm

Procedural /

OOP

Lightweight

MVC

Ultra-light pure

MVC

MVC with a

service

container

Modular,

component-

based MVC

Key philosophy Maximum

control

Speed and

simplicity

Speed,

simplicity,

flexibility

Development

speed, magic

Flexibility,

scalability

Key abstractions None Basic helpers /

libraries

Request

singleton

services

Eloquent ORM,

Blade, DI

container

Doctrine ORM,

Twig,

Components

Performance

profile

Maximum (low

overhead)

High Theoretically

high

Medium (higher

overhead)

High

(optimizable)

The American Journal of Interdisciplinary Innovations and Research
ISSN 2642-7478 Volume 07 - 2025

The Am. J. Interdiscip. Innov. Res. 2025 6

Ideal scenarios Simple scripts,

maximum

performance

Small &

medium

projects,

prototypes

Small &

medium

projects, APIs,

real-time apps

SaaS, MVPs,

large web

applications

Enterprise

systems, long-

term projects,

APIs

Thus, selecting a framework is not merely a choice of toolset but a choice of a development philosophy. The table

enables architects and developers to rapidly assess which approach best aligns with the technical and ideological

requirements of their project.

4. Conclusion

An analysis of the current state of the PHP

framework ecosystem reveals that heavyweight

platforms richly function as some lightweight solutions

rawly compute. Since each approach addresses different

developer as well as business needs, it has its strengths

plus occupies a distinct niche.

In this instance, MVCA provides a considerate

addition beyond simple frameworks. That addition is

current. A unique security model for its core, alongside

performance-oriented architecture, makes it stand out

with modern tools plus WebSocket support and a built-in

debugging console. Developers aspiring to build fast,

clean, secure web applications can use MVCA as a

measured alternative. Frameworks of the mainstream

variety have both cognitive overhead as well as runtime

overhead which MVCA helps to avoid.

Researchers must develop further as well as

validate the conclusions in order that this work continues.

For organizing empirical, quantitative performance

testing of MVCA in comparison with CodeIgniter,

Laravel, and native PHP is a critical next step. Varied

load scenarios should have this testing. If such a study

occurred then it would empirically confirm or refute the

performance hypothesis advanced herein and would

provide developers and system architects with concrete

data for informed technological decision-making.

References

1. Devace Technologies. (2025, July 22). Laravel Vs

CodeIgniter: Which one should you choose? Devace

Technologies.

https://www.devacetech.com/insights/laravel-vs-

codeigniter

2. Geeks for Geeks. (2025). Introduction to Laravel

and MVC Framework. Geeks for Geeks.

https://www.geeksforgeeks.org/php/introduction-to-

laravel-and-mvc-framework/

3. Laaziri, M., Benmoussa, K., Khoulji, S., & Kerkeb,

M. L. (2019). A Comparative study of PHP

frameworks' performance. Procedia Manufacturing,

32, 864–871.

https://doi.org/10.1016/j.promfg.2019.02.295

4. Niarman, A., Iswandi, N., & Candri, A. K. (2023).

Comparative Analysis of PHP Frameworks for the

Development of an Academic Information System

Using Load and Stress Testing. International

Journal of Software Engineering and Computer

Science, 3(3), 424–436.

https://doi.org/10.35870/ijsecs.v3i3.1850

5. Patel, S. I. (2024). A Comparative Study of PHP

Frameworks' Performance. The International

Journal of Multidisciplinary Research, 10(10).

https://www.newhorizonsgroup.in/files/journal/202

4TIJMR2024-06-052024-06-05-04-43-49am.pdf

6. PHP: The Right Way. (2025). Design Patterns. PHP:

The Right Way.

https://phptherightway.com/pages/Design-

Patterns.html

7. Ropstam. (2025, February 10). Laravel vs Symfony:

Which Framework To Choose in 2025? Ropstam

Solutions Inc. https://www.ropstam.com/laravel-vs-

symfony-which-framework-to-choose/

8. Siame, A., & Kunda, D. (2017). Evolution of PHP

Applications: A Systematic Literature Review.

International Journal of Recent Contributions from

Engineering, Science & IT (IJES), 5(1), 28-39.

https://doi.org/10.3991/ijes.v5i1.6437

https://www.devacetech.com/insights/laravel-vs-codeigniter
https://www.devacetech.com/insights/laravel-vs-codeigniter
https://www.devacetech.com/insights/laravel-vs-codeigniter
https://www.devacetech.com/insights/laravel-vs-codeigniter
https://www.geeksforgeeks.org/php/introduction-to-laravel-and-mvc-framework/
https://www.geeksforgeeks.org/php/introduction-to-laravel-and-mvc-framework/
https://www.geeksforgeeks.org/php/introduction-to-laravel-and-mvc-framework/
https://www.geeksforgeeks.org/php/introduction-to-laravel-and-mvc-framework/
https://doi.org/10.1016/j.promfg.2019.02.295
https://doi.org/10.1016/j.promfg.2019.02.295
https://doi.org/10.1016/j.promfg.2019.02.295
https://doi.org/10.35870/ijsecs.v3i3.1850
https://doi.org/10.35870/ijsecs.v3i3.1850
https://doi.org/10.35870/ijsecs.v3i3.1850
https://www.newhorizonsgroup.in/files/journal/2024TIJMR2024-06-052024-06-05-04-43-49am.pdf
https://www.newhorizonsgroup.in/files/journal/2024TIJMR2024-06-052024-06-05-04-43-49am.pdf
https://www.newhorizonsgroup.in/files/journal/2024TIJMR2024-06-052024-06-05-04-43-49am.pdf
https://www.newhorizonsgroup.in/files/journal/2024TIJMR2024-06-052024-06-05-04-43-49am.pdf
https://phptherightway.com/pages/Design-Patterns.html
https://phptherightway.com/pages/Design-Patterns.html
https://phptherightway.com/pages/Design-Patterns.html
https://phptherightway.com/pages/Design-Patterns.html
https://www.ropstam.com/laravel-vs-symfony-which-framework-to-choose/
https://www.ropstam.com/laravel-vs-symfony-which-framework-to-choose/
https://www.ropstam.com/laravel-vs-symfony-which-framework-to-choose/
https://doi.org/10.3991/ijes.v5i1.6437
https://doi.org/10.3991/ijes.v5i1.6437
https://doi.org/10.3991/ijes.v5i1.6437

The American Journal of Interdisciplinary Innovations and Research
ISSN 2642-7478 Volume 07 - 2025

The Am. J. Interdiscip. Innov. Res. 2025 7

Figure

Fig. 1. Framework Design Patterns Hierarchy

Fig. 2. Object-Oriented PHP Controller for Storage Retrieval and View Rendering

