The American Journal of Interdisciplinary Innovations and Research
ISSN 2642-7478 Volume 07 - 2025

MVCA: An Ultra-Lightweight PHP MVC Framework for a Faster, Cleaner
Web

! Dmytro Novoselskyi
! Senior Software Developer Los Angeles, USA

Received: 18™ Oct 2025 | Received Revised Version: 29t Oct 2025 | Accepted: 27" Nov 2025 | Published: 05™ Dec 2025

Volume 07 Issue 12 2025 | Crossref DOI: 10.37547/tajiir/\VolumeO71ssuel2-01

Abstract

This article examines the architecture and functional characteristics of MVCA, an ultra-lightweight PHP MVC framework
oriented toward building fast and clean web applications. The relevance of the study is driven by a recurring trade-off in
contemporary PHP frameworks: tools designed to tame complexity often become sources of excessive abstraction and
performance overhead themselves. This work aims to analyze MVCA in a multi-level manner, both architecturally and
comparatively, to determine its position within the existing PHP frameworks and assess how it can be utilized for small-
and medium-scale projects. The article is scientifically novel, as it conceptualizes minimalism as a design approach. MVCA
abstraction overhead and ORM layers, integrating modern tooling that includes support for PHP 8.1+, WebSockets, and
built-in debugging facilities. The framework's core security model particularly stresses, and it implements security by
design through strict filtration of user input. MVCA constitutes a balanced alternative to heavyweight platforms like
Laravel and Symfony. It can also provide for a balanced option to some classic lightweight solutions such as Codelgniter,
as well as offering a combination of high performance and simplicity, as it supports critically necessary capabilities that
position it as an optimal choice for small and medium web projects, APIs, and microservices with heightened requirements
for speed, architectural transparency, and security. The article is useful for developers, software architects, and
researchers.

Keywords: PHP, MVC, framework, minimalism, performance, architecture, security, web development.

© 2025 Dmytro Novoselskyi. This work is licensed under a Creative Commons Attribution 4.0 International License (CC
BY 4.0). The authors retain copyright and allow others to share, adapt, or redistribute the work with proper attribution.

Cite This Article: Dmytro Novoselskyi. (2025). MVCA: An Ultra-Lightweight PHP MVC Framework for a Faster,
Cleaner Web. The American Journal of Interdisciplinary Innovations and Research, 7(12), 01-07.
https://doi.org/10.37547/tajiir/Volume07Issuel12-01

1. Introduction procedural code toward the use of frameworks was a
natural one. Frameworks let developers structure the
code and reduce the boilerplate also to manage
complexity of the contemporary system effectively. This
process yielded a clear bifurcation within the PHP
framework ecosystem. On one side stand heavyweight,
multi-functional platforms such as Laravel and Symfony,
offering rich ecosystems and tooling for rapid
development of large-scale applications. On the other
side are lightweight, performance-oriented

Despite the emergence of new languages along
with technologies, PHP remains a dominant force in
server-side web development, because it powers a
substantial portion of the internet, from WordPress blogs
to complex e-commerce platforms. Its low barrier for
entry, ease for deployment, and enormous ecosystem
condition its popularity, collectively ensuring of its
longevity and for relevance (Patel, 2024).

A transition occurred since web applications

o frameworks—epitomized by Codelgniter—in which
and language evolved to be complex. The transition from

speed and minimal overhead take precedence, often at

The Am. J. Interdiscip. Innov. Res. 2025 1

The American Journal of Interdisciplinary Innovations and Research

ISSN 2642-7478

the expense of built-in functionality (Laaziri et al., 2019).

The central thesis is that while large frameworks
can improve developer productivity, their complexity
and performance overhead may be inappropriate for
small- and medium-sized projects. About this
phenomenon, the framework paradox acts as a descriptor
instruments for complexity combat change into novel,
secondary complexity origins appearing within acute
learning gradients, veiled abstractions, and outstanding
runtime burden (Ropstam, 2025).

MVCA addresses this need by providing a
streamlined platform designed for rapid deployment
without unnecessary features. MVCA addresses this
minimalist philosophy, as it differs from antiquated
lightweight frameworks. Now, older models seem
outdated. It sustains an emphasis on efficacy. Also, it fills
a needed spot in the market. Like PHP 8.1+, Docker, and
WebSockets, it also strengthens existing tools and
modern conventions. The article has an intention to
scrutinize the architecture of MVCA exhaustively in
order to determine its situation and its viability. It will
also contrast MVCA's constituents along with design
tenets against industry benchmarks in PHP
development's modern landscape.

2. Materials and Methodology

The investigation of MVCA’s architectural as
well as performance characteristics as an ultra-
lightweight PHP MVC framework features analysis of
academic publications, industry reports, empirical
comparisons, along with content analysis of prevailing
practices within the PHP ecosystem through a multi-
tiered approach. The theoretical basis includes works
describing language evolution, procedural to object-
oriented programming shift, and the MVC pattern
(Siame & Kunda, 2017), also studies that juxtapose
lightweight with heavyweight frameworks (Laaziri et al.,
2019). Applied performance reports were created by
Niarman et al. (2023) and comparative reviews of
modern tools by Patel (2024). Expert work was published
by Ropstam (2025) and it stressed some architectural
trade-offs in Laravel and Symfony.

Three interrelated directions guide into the
methodology. First, an architectural analysis decomposes
the MVCA core then identifies design decisions that

The Am. J. Interdiscip. Innov. Res. 2025

Volume 07 - 2025

simply but sufficiently function. Standardized
benchmarks such as using design patterns (PHP: The
Right Way, 2025), security support, tooling that is built-
in, and service containers and ORMs are employed.

Second, remaining PHP frameworks in different
classes are analyzed comparatively. Laravel and
Symfony exemplify mature ecosystems with high
abstraction, while Codelgniter and native PHP act as
benchmarks for lightweight, minimalist approaches. Key
metrics, such as the response time, memory
consumption, and requests for each second, were
identified in light of the published performance tests
(Devace Technologies, 2025; Niarman et al., 2023).
These metrics were correlated then with architectural
features in the study.

Third, content analysis of industrial cases and
practical guides is employed to identify real-world
scenarios for lightweight frameworks and to document
the practical effects of minimalist architectures.
Incorporating data on the advantages and limitations of
MVC implementations in Laravel and Symfony (Geeks
for Geeks, 2025; Ropstam, 2025) establishes the context
in which MV CA positions itself as an alternative.

3. Results and Discussion

The historical development of PHP application
architecture shows simple procedural scripts changing to
common object-oriented programming (OOP), with total
support arriving in PHP 5.3 (Siame & Kunda, 2017).
OOP principles such as encapsulation helped build larger
systems. Inheritance as well as polymorphism also
helped in their maintainability as well as scalability.

PHP frameworks saw Model-View-Controller
or MVC become as such the dominant pattern. The main
benefit of MVC is Separation of Concerns: the data-
handling logic (Model), the user interface (View), and
the application’s control logic (Controller) are separated
into independent components. Such separation heightens
modularity, facilitates code reuse, and eases
collaborative development (Laaziri et al., 2019).

Beyond MVC, modern frameworks
systematically employ other established design patterns
that structure their internals (PHP: The Right Way, 2025).
As shown in Figure 1, among the most consequential are
the following.

The American Journal of Interdisciplinary Innovations and Research

ISSN 2642-7478

Singleton

Ensures cne instance with
global access

Factory

Abstracts object creation
for flexibility

Centralizes request
processing and security

Fig. 1. Framework Design Patterns Hierarchy

Singleton guarantees that a class has only one
instance and provides a global access point to it, often
used for managing database connections or configuration
parameters. This pattern directly relates to MVCA’s
security model. Factory abstracts object creation,
fostering flexibility and reducing coupling. In the front
controller pattern, a single file (e.g., index.php) handles
all requests to the application. Upon loading this file,
dependencies are loaded, the request is processed, and
the response is returned. Control flow becomes
centralized in this design. Security checks are now in fact
also more centralized.

MVC is in fact not a monolithic standard
analysis indicates but rather a spectrum of
implementations. Managed MVC is made up of
heavyweight frameworks such as Laravel or Symfony,
and these frameworks augment classical MVC through
the use of advanced service containers with dependency
injection mechanisms in multi-functional ORMs. MVCA
is different than just MVC implementation goals. This
unlikeness in MVC realization is basic. It also determines
many architectural properties that are inherent to the
frameworks.

Singleton as well as Factory design patterns
stand as sources of complexity along with power. Their
overuse or their concealment within the framework’s
magical abstractions cause major complexity and steep
learning curves. MVCA’s approach appears to be a
transparent and purposive use of these patterns. This
matches MVCA’s value of being uncomplicated.

Laravel as well as Symfony do largely define
the contemporary PHP-development landscape. Their
architectural philosophies through grounding in shared
principles such as MVC, yield tools with distinct
strengths as well as application domains.

The Am. J. Interdiscip. Innov. Res. 2025

Volume 07 - 2025

Laravel positions itself as a framework oriented
toward developer convenience and rapid delivery,
achieved via an opinionated design and elegant,
expressive syntax. Its architecture rests upon several key
components since they all can ensure coherence and also
functionality. Eloquent ORM lies at its core, for it is an
efficient Active Record implementation. Eloquent ORM
is designed for interacting with databases and
simplifying CRUD operations substantially. The Blade
templating engine governs view construction because it
supplies simple yet effective syntax, allowing PHP to
integrate directly into HTML structures (Geeks for
Geeks, 2025). Artisan CLI makes development processes
automatic which helps tasks such as migrating,
controlling, and modeling (Ropstam, 2025). Official
packages such as both Forge Nova and then Vapor
together with a broad array of community libraries
further can extend the ecosystem's functionality. A
directory's structure is maintaining the codebase's logical
organization. That structure eases maintenance. The
structure is well defined in general. The application core
does utilize the structure here. It does do this using the
configuration. Routes along with resources exist.

Symfony, in fact, is a modular framework which
is component-oriented, built for the flexibility of
enterprise projects, and it scales now for support that is
long-term. Its architecture makes functionality break
down whenever libraries such as Process Forms and
Routing separate PHP. External projects are able to use
each of these reusable libraries and also a thorough
application is able to combine those. The Doctrine ORM
is mediating database interaction since it has the ability
to achieve strict isolation involving business logic. The
data-access layer then implements that Data Mapper
pattern beyond Active Record. Twig understands a
templating engine typical for several PHP projects as the
safe adaptable display tier. Bundles, reusable code
fragments do encapsulate specific functionality,
achieving modularity as well as extensibility. Explicit
configuration, not conventions, represents a key
principle, which is also known as configuration over
convention. This principle grants to developers full
control as to application behavior but requires of them a
study more deeply and a learning more thoroughly.

Laravel as well as Symfony differ less in their
features than in their philosophy. Laravel offers speed
since its method prefers convention to configuration
therefore it suits startups, MVPs, and typical web
applications. Symfony designs and configures explicitly
with components improving customization plus

The American Journal of Interdisciplinary Innovations and Research

ISSN 2642-7478

maintainability long term, so complex enterprise systems
benefit. Thus, these frameworks occupy different, albeit
overlapping, ecological niches within the PHP world.

As an alternative to multi-functional platforms,
there exists a paradigm oriented toward minimalism and
maximal performance. This niche is occupied by
lightweight frameworks and, at the limit, by native PHP.

Codelgniter is the classical exemplar of this
approach. A small footprint, high speed, straightforward
configuration, and a minimal set of base libraries
characterize it. It provides for a basic MVC structure
while imposing no tools or detailed abstractions upon the
developer.

Academic studies consistently show something
also performance tests consistently show something as
well: native PHP and lightweight frameworks such as
Codelgniter outperform heavyweight counterparts on
raw metrics. One study found that native PHP delivers
slightly better performance results than the frameworks
Codelgniter and Laravel under load and stress testing,
according to Niarman et al. (2023), especially when
dealing with simple request-response cycles, such as
execution time and memory usage. Another benchmark
reports a markedly lower average response time for
Codelgniter (95 ms versus 140 ms for Laravel) and lower
memory consumption (11.2 MB versus 18.4 MB)
(Devace Technologies, 2025).

The trade-off is the absence of built-in advanced
features (e.g., ORM, authentication systems, queues),
compelling developers implement them
independently or to integrate third-party libraries.

either to

However, a necessary subtlety should moderate
our data interpretation. Performance advantages that are
demonstrated in synthetic tests are not always translated
by real-world applications. External factors frequently
cause bottlenecks in production conditions such as slow
database queries with network latency plus disk I/0. The
true value for a lightweight framework is not only in
shaving milliseconds of CPU time. It is also about
reducing developers’ cognitive load and ensuring
architectural transparency. Simplicity and the absence of
magic make it easier to locate and optimize precisely
those code paths that are the genuine performance
chokepoints. In this way, simplicity itself becomes an
instrument for achieving high performance.

At the core of MVCA lies a philosophy that
directly repudiates the one size fits all approach typical
of large frameworks. The framework targets developers
who prioritize high performance, architectural simplicity,

The Am. J. Interdiscip. Innov. Res. 2025

Volume 07 - 2025

and flexibility. Performance is achieved in cases when
coders minimize overhead while they also ensure rapid
code execution. An intuitive architecture is simple since
it lacks hidden, implicit mechanisms. Thus, people
should learn more to grasp intuitive architectures. Also,
the system is quite adaptable since projects may be
structured without constraint. The system also avoids
conventions that are dogmatic, rigid.

The pure form for the MVC pattern is what this
very philosophy aspires for realizing. This philosophy
avoids heavy abstractions they complicate
frameworks like Laravel and Symfony. The goal to
reallocate time for the building of application
functionality is to reduce time for fighting the
framework.

since

A technical analysis of MVCA’s key
subsystems reveals distinctive architectural decisions.

First, routing: MV CA offers a flexible as well as
straightforward routing system since it supports both
direct route configuration in addition to dynamic routing.
The code example shown in Figure 2 illustrates how a
URL is bound to a controller method, which, in turn,
interacts with a model to retrieve data and loads a view
to render it.

Fig. 2. Object-Oriented PHP Controller for Storage
Retrieval and View Rendering

Second, the security model—a key architectural
differentiator for MVCA. By default, the framework
disables direct access to PHP superglobals such as
$ GET,$ POST, $ SERVER, and $ COOKIE. All user
input must be processed via a dedicated Request
singleton object, which enforces filtration and data
typing (e.g., $request->GET('varl, 'int')). This strong
and opinionated design decision advances a security by
design stance. Rather than offering security as an
optional library, MVCA embeds secure practices into the
architecture itself, making it harder to write insecure
code than secure code. This approach not only prevents

The American Journal of Interdisciplinary Innovations and Research

ISSN 2642-7478

common vulnerabilities but also promotes testability, as
controllers become independent of global state.

Third, unlike many minimalist frameworks that
supply only a bare skeleton, MVCA integrates a suite of
built-in development tools. This toolset also includes a
real-time debugging console, allowing to analysis
database queries and the inspection of application state.
System support for multiple languages comes from
integrated translation service. Architecture now supports
the WebSocket protocol. It functions in real-time at a
certain point because you do not need to configure or
attach external libraries. These decisions are rounded out
with flexible database handling since the framework is
not tied with a specific DBMS. MySQL, MariaDB, and
PostgreSQL are supported through the framework.

The architecture of MVCA is characterized by
curated minimalism. For development, it still retains
modern and necessary tooling such as WebSocket
support, debugs by using built-in tools, yet consciously
it forgoes heavy abstractions for example a complex
service container or also a full-featured ORM. This
design philosophy shows separating needed web
applications complexity functionality from framework
bloat accidental complexity. Because of pragmatism,
MVCA does differ favorably from older lightweight
frameworks.

MVCA seems like the best choice according to
architectural analysis for some situations. It can help to
build small- to medium-scale web applications. Such
building is useful in fact. Systems larger like Laravel or
Symfony are excessively complex and create overhead in
these situations. The framework performs in a capable
manner, suiting it to high-load APIs as well as

Volume 07 - 2025

microservices. Latency is indeed low in all of these
applications, and even minimal resources are consumed
now. Projects also desire it in instances where developers
need full architecture control with operational
transparency, instead of their starting entirely from
scratch. Finally, MVCA may act as a didactic instrument
for teaching canonical MVC principles. The complex
abstractions intrinsic within larger frameworks do not
unskew these principles.

Helpful is a synthesis of the analysis. This
synthesis enables a hypothesis well-founded regarding
MVCA’s performance profile. Its architectural
characteristics allow placement in high confidence
within the existing landscape, even though direct
empirical data are absent. Considering MVCA'’s
minimalist design, the absence of a heavy ORM, the
minimal number of abstractions, and adherence to a pure
MVC architecture, its performance indicators (response
time, memory consumption, requests per second) are
expected to be on a level comparable to native PHP and
Codelgniter and to exceed those of Laravel and Symfony
under analogous conditions markedly. This hypothesis
finds support in many studies that show a correlation
between simplicity architecturally and improvements in
raw performance metrics (Niarman et al., 2023).
Resource consumption for each request is now reduced,
and also the path of execution is shortened, through
elimination of the intermediate layers of abstraction.

The comparative table 1 which follows is
presented to consolidate all of the key differences. These
differences include architectural as well as philosophical
ones within the frameworks considered.

Table 1. Comparative analysis of PHP framework architectures

Criterion Pure PHP Codelgniter MVCA Laravel Symfony
Architectural Procedural / Lightweight Ultra-light pure MVC with a Modular,
paradigm OOP MVC MVC service component-
container based MVC
Key philosophy Maximum Speed and Speed, Development Flexibility,
control simplicity simplicity, speed, magic scalability
flexibility
Key abstractions None Basic helpers / Request Eloquent ORM, | Doctrine ORM,
libraries singleton Blade, DI Twig,
services container Components
Performance Maximum (low High Theoretically Medium (higher High
profile overhead) high overhead) (optimizable)

The Am. J. Interdiscip. Innov. Res. 2025

The American Journal of Interdisciplinary Innovations and Research

ISSN 2642-7478

Volume 07 - 2025

Ideal scenarios | Simple scripts, Small &
maximum medium
performance projects,

prototypes

Small & SaaS, MVPs, Enterprise

medium large web systems, long-
projects, APIs, applications term projects,
real-time apps APIs

Thus, selecting a framework is not merely a choice of toolset but a choice of a development philosophy. The table
enables architects and developers to rapidly assess which approach best aligns with the technical and ideological
requirements of their project.

4. Conclusion

An analysis of the current state of the PHP
framework ecosystem reveals that heavyweight
platforms richly function as some lightweight solutions
rawly compute. Since each approach addresses different
developer as well as business needs, it has its strengths
plus occupies a distinct niche.

In this instance, MVCA provides a considerate
addition beyond simple frameworks. That addition is
current. A unique security model for its core, alongside
performance-oriented architecture, makes it stand out
with modern tools plus WebSocket support and a built-in
debugging console. Developers aspiring to build fast,
clean, secure web applications can use MVCA as a
measured alternative. Frameworks of the mainstream
variety have both cognitive overhead as well as runtime
overhead which MV CA helps to avoid.

Researchers must develop further as well as
validate the conclusions in order that this work continues.
For organizing empirical, quantitative performance
testing of MVCA in comparison with Codelgniter,
Laravel, and native PHP is a critical next step. Varied
load scenarios should have this testing. If such a study
occurred then it would empirically confirm or refute the
performance hypothesis advanced herein and would
provide developers and system architects with concrete
data for informed technological decision-making.

References

1. Devace Technologies. (2025, July 22). Laravel Vs
Codelgniter: Which one should you choose? Devace
Technologies.
https://www.devacetech.com/insights/laravel-vs-

The Am. J. Interdiscip. Innov. Res. 2025

codeigniter

2. Geeks for Geeks. (2025). Introduction to Laravel
and MVC Framework. Geeks for Geeks.
https://www.geeksforgeeks.org/php/introduction-to-
laravel-and-mvc-framework/

3. Laaziri, M., Benmoussa, K., Khoulji, S., & Kerkeb,
M. L. (2019). A Comparative study of PHP
frameworks' performance. Procedia Manufacturing,
32, 864-871.
https://doi.org/10.1016/j.promfg.2019.02.295

4. Niarman, A., Iswandi, N., & Candri, A. K. (2023).
Comparative Analysis of PHP Frameworks for the
Development of an Academic Information System
Using Load and Stress Testing. [International
Journal of Software Engineering and Computer
Science, 3(3), 424-436.
https://doi.org/10.35870/ijsecs.v3i3.1850

5. Patel, S. 1. (2024). A Comparative Study of PHP
Frameworks' Performance. The International
Journal of Multidisciplinary Research, 10(10).
https://www.newhorizonsgroup.in/files/journal/202
4TIIMR2024-06-052024-06-05-04-43-49am.pdf

6. PHP: The Right Way. (2025). Design Patterns. PHP:
The Right Way.
https://phptherightway.com/pages/Design-
Patterns.html

7. Ropstam. (2025, February 10). Laravel vs Symfony:
Which Framework To Choose in 20257 Ropstam
Solutions Inc._https://www.ropstam.com/laravel-vs-
symfony-which-framework-to-choose/

8. Siame, A., & Kunda, D. (2017). Evolution of PHP
Applications: A Systematic Literature Review.
International Journal of Recent Contributions from
Engineering, Science & IT (IJES), 5(1), 28-39.
https://doi.org/10.3991/ijes.v5i1.6437

https://www.devacetech.com/insights/laravel-vs-codeigniter
https://www.devacetech.com/insights/laravel-vs-codeigniter
https://www.devacetech.com/insights/laravel-vs-codeigniter
https://www.devacetech.com/insights/laravel-vs-codeigniter
https://www.geeksforgeeks.org/php/introduction-to-laravel-and-mvc-framework/
https://www.geeksforgeeks.org/php/introduction-to-laravel-and-mvc-framework/
https://www.geeksforgeeks.org/php/introduction-to-laravel-and-mvc-framework/
https://www.geeksforgeeks.org/php/introduction-to-laravel-and-mvc-framework/
https://doi.org/10.1016/j.promfg.2019.02.295
https://doi.org/10.1016/j.promfg.2019.02.295
https://doi.org/10.1016/j.promfg.2019.02.295
https://doi.org/10.35870/ijsecs.v3i3.1850
https://doi.org/10.35870/ijsecs.v3i3.1850
https://doi.org/10.35870/ijsecs.v3i3.1850
https://www.newhorizonsgroup.in/files/journal/2024TIJMR2024-06-052024-06-05-04-43-49am.pdf
https://www.newhorizonsgroup.in/files/journal/2024TIJMR2024-06-052024-06-05-04-43-49am.pdf
https://www.newhorizonsgroup.in/files/journal/2024TIJMR2024-06-052024-06-05-04-43-49am.pdf
https://www.newhorizonsgroup.in/files/journal/2024TIJMR2024-06-052024-06-05-04-43-49am.pdf
https://phptherightway.com/pages/Design-Patterns.html
https://phptherightway.com/pages/Design-Patterns.html
https://phptherightway.com/pages/Design-Patterns.html
https://phptherightway.com/pages/Design-Patterns.html
https://www.ropstam.com/laravel-vs-symfony-which-framework-to-choose/
https://www.ropstam.com/laravel-vs-symfony-which-framework-to-choose/
https://www.ropstam.com/laravel-vs-symfony-which-framework-to-choose/
https://doi.org/10.3991/ijes.v5i1.6437
https://doi.org/10.3991/ijes.v5i1.6437
https://doi.org/10.3991/ijes.v5i1.6437

The American Journal of Interdisciplinary Innovations and Research
ISSN 2642-7478 Volume 07 - 2025

Figure

Singleton

Ensures one instance with
global access

Factory

Abstracts object creation
for flexibility

Front Controller

Centralizes request
processing and security

Fig. 1. Framework Design Patterns Hierarchy

<?php

namespace Products\C;
use ProductsyM;

use Engine\Config;

use Engine\Dutput;

use Services\Request;
use Services\Cookies;
class StorageController

private M\StorageModel $storageModel;

private Config $config;

private Output $output;

private Cookies $cookies;

public function __construct(M\StorageModel $storageModel, Config $config, Output $output, Cookies $cookies)

$this-=storageModel = $storageModel;
$this-=config = $config;
$this-»output = $output;
$this-»cookies = $cookies;

public function main(): void

{

$request = Request::init();

$view[1 = $this->storageModel->getItemById($request->GET(B));

$view[1= H

Sview[10 1 = $this->config-=get(IH

$this-=output->load(, $view, [=> $this-=cookies-=>get(Y1y
}

Fig. 2. Object-Oriented PHP Controller for Storage Retrieval and View Rendering

The Am. J. Interdiscip. Innov. Res. 2025 7

