
The American Journal of Interdisciplinary Innovations and Research 13 https://www.theamericanjournals.com/index.php/tajiir

Type Original Research

PAGE NO. 13-22

DOI 10.37547/tajiir/Volume07Issue10-02

OPEN ACCESS

SUBMITTED 14 September 2025
ACCEPTED 26 September 2025
PUBLISHED 06 October 2025
VOLUME Vol.07 Issue 10 2025

CITATION

COPYRIGHT

© 2025 Original content from this work is licensed under the terms of

the Creative Commons Attribution 4.0 License.

Serverless & Event-Driven

Architectures: Redefining

Distributed System Design

 Swati Karni
Swati Karni. (2025). Serverless & Event-Driven Architectures:

Redefining Distributed System Design. The American Journal of

Interdisciplinary Innovations and Research, 7(10), 13–22.

https://doi.org/10.37547/tajiir/Volume07Issue10-02

Abstract- The rise of serverless and event-driven

architectures is changing how we design and implement

distributed systems. These approaches eliminate the

need for server management and use event-based

execution. They create systems that are more scalable,

easy to deploy, resilient, and cost-effective. This paper

looks at how serverless computing shifts the focus from

managing infrastructure to focusing on application logic.

At the same time, event-driven models improve

responsiveness through asynchronous and independent

communication. Together, they enhance the design of

distributed systems by increasing fault tolerance,

lowering operational costs, and supporting real-time,

data-heavy applications. The discussion covers

architectural principles, design choices, and new best

practices that help integrate serverless and event-driven

methods in current distributed computing. Ultimately,

this study shows how these approaches lead to next-

generation cloud-native systems that are flexible, quick,

and tailored for changing workloads.

Keywords: Serverless Computing, Event-Driven

Architectures, Distributed Systems, Cloud-Native

Design, Scalability, Fault Tolerance, Asynchronous

Processing, Real-Time Applications, System Resilience,

Cloud Architecture

 1. Introduction

Designing distributed systems has traditionally been a

complex task, often bogged down by the need to

manage infrastructure, handle scaling limits, and

maintain large, tightly coupled applications. But times

are changing. The growth of serverless computing and

event-driven architectures is opening new doors for how

https://doi.org/10.37547/tajiir/Volume07Issue10-02
https://doi.org/10.37547/tajiir/Volume07Issue10-02
https://orcid.org/0009-0005-6180-7603

The American Journal of Interdisciplinary Innovations and Research 14 https://www.theamericanjournals.com/index.php/tajiir

The American Journal of Interdisciplinary Innovations and Research

we build and operate these systems. Rather than

stressing over servers and their maintenance,

developers can now focus on building useful application

logic that truly helps users.

Serverless platforms take care of provisioning, scaling,

and managing the underlying hardware, allowing

systems to adjust effortlessly to varying workloads.

Event-driven models organize applications into

separate, independent parts. Each part works on its own

and communicates by sending messages called events.

This clear separation allows the system to react more

promptly to changes, solve problems more effectively,

and lets each part evolve or improve without disrupting

the others. Today’s cloud-native systems use these ideas

together to build software that can handle everything

from live data streams to complex data analysis, all while

keeping costs low and the system easy to manage

because events trigger compute functions on demand,

resources are used more efficiently — organizations pay

only for what they consume, avoiding wasted capacity

(Haller et al., 2023).

In this paper, we look at how serverless and event-

driven approaches are changing the way distributed

systems are designed. We explain the main ideas behind

these models, practical design tips, and new best

practices. This study shows how these approaches help

software teams create systems that are scalable,

reliable, and cost-efficient, ready to meet the needs of

today’s fast-changing application world.

2. Evolution From Bare Metal to Serverless

Figure 1: System Deployment Evolution: From Bare Metal to Serverless

Figure 1 shows the changes in deployment over time. It

began with Bare Metal, where apps ran on physical

servers. Then came the era of Virtual Machines, allowing

multiple systems to share a single server. Then

Containers made it easier to move and run apps

anywhere. Today, Serverless enables developers to

simply write code while the cloud takes care of

everything else. This change has made deployment

faster, easier, and cheaper.

As organizations moved to the cloud, the demand for

agility and efficiency pushed providers to offer models

that abstracted away even more of the operational

expenditure and burden. Serverless computing arose to

meet the increasing demand for more efficient

development. It builds on utility-based computing by

allowing developers to deploy code without having to

manage servers. This model fits well with the pay-as-

you-go approach of cloud economics, making it

appealing to both startups and large companies that

want to cut costs while speeding up development.

Event-driven architectures are now widely used as

modern systems—such as data-intensive apps, IoT

devices, and real-time analytics—need to react instantly

to new signals. Instead of being tightly linked like

traditional systems, they keep components independent

The American Journal of Interdisciplinary Innovations and Research 15 https://www.theamericanjournals.com/index.php/tajiir

The American Journal of Interdisciplinary Innovations and Research

and connected through messages. This approach makes

systems more scalable and dependable in changing

conditions. When combined, serverless and event-

driven models draw from older concepts of distributed

systems but introduce more automation, flexibility,

speed and responsiveness. This demonstrates that they

are not just fleeting trends but significant changes in

how today’s applications are designed and maintained.

Together, serverless and event-driven models expand

on earlier distributed system ideas while providing

greater levels of automation, speed and responsiveness.

This shows that these approaches are not just trends but

important changes in how modern applications are

designed, built, and delivered.

3. Basic Definitions

• Serverless Computing

In serverless computing, the cloud provider handles

things like setup, updates, scaling, and

maintenance. Developers just write code, and the

cloud runs it, charging only for actual use.

'Serverless' means developers don’t see or manage

servers, even though servers are still there.

Key Points- Developers don’t manage servers or

runtime environments. Costs are based on actual

compute consumption—no cost for idle time. Code

runs in ephemeral, stateless compute containers,

spun up and down as needed. Cloud providers

handle availability, scaling, and maintenance.

• Function-as-a-Service (FaaS)

Function-as-a-Service (FaaS) is a core approach

within serverless computing in which developers

write discrete "functions" that execute in response

to specific events (such as HTTP requests, file

uploads, or database changes). Each function is

responsible for a specific, stateless activity and is

triggered by defined events—enabling highly

modular and scalable applications.

Key Points- Code is executed as functions, not as

continuously running services. Functions are

triggered by events and run for short durations.

Examples- AWS Lambda, Azure Functions, Google

Cloud Functions.

• Event-driven architecture

Serverless computing often relies on event-driven

architectures. In this model, system components

communicate by producing and consuming events.

Functions are activated only in response to triggers

such as message queues, HTTP calls, scheduled

events, database updates, or file storage activity.

• Backend-as-a-Service (BaaS)

Backend-as-a-Service (BaaS) is another serverless

pattern, where cloud providers expose backend

functionalities (like databases, authentication,

notifications, etc.) as managed services. Developers

use APIs rather than building and maintaining

backend components themselves.

• Statelessness

Statelessness in serverless means that each function

invocation is independent, with no persistent

memory retained between calls. Any required state

must be managed outside the function—typically in

a database or storage service.

• Dynamic Scalability

Serverless architectures provide dynamic scalability:

resources automatically scale up or down in

response to demand without manual intervention.

Functions can handle both zero and thousands of

concurrent requests seamlessly.

• Pay-As-You-Go Billing

Pay-as-you-go (or pay-per-use) billing is a key

property of serverless. Billing is based on the actual

duration and resources consumed by each function

execution, rather than prepaid or reserved capacity.

• Vendor Lock-in

Because serverless uses cloud-provider-specific

runtimes, there is potential for vendor lock-in—

difficulty migrating workloads to another platform

due to proprietary APIs or services.

• Microservices

Decomposing applications into small, independently

deployable services—often used alongside

serverless for agile, scalable systems.

Serverless Containers: Some platforms support

container-based serverless deployment, offering

more flexibility for complex workloads.

Edge Computing: Serverless functions can be run at

edge locations, closer to users, for lower latency

applications.

4. Tools and Methodologies

This section describes the cloud platforms, materials,

The American Journal of Interdisciplinary Innovations and Research 16 https://www.theamericanjournals.com/index.php/tajiir

The American Journal of Interdisciplinary Innovations and Research

and methodologies used to explore serverless and

event-driven architectures for modern distributed

system design.

4.1 Cloud Platforms and Tools

The implementation leverages services from three

major cloud providers—Amazon Web Services

(AWS), Microsoft Azure, and Google Cloud Platform

(GCP)—each offering comprehensive serverless and

event-driven computing frameworks.

• AWS Lambda: A Function-as-a-Service (FaaS)

platform that executes code in response to events

without server provisioning. Lambda automatically

scales and integrates with AWS services like API

Gateway, S3, SNS, SQS, and Event Bridge for event

routing (Amazon Web Services, 2025).

• Azure Functions: Microsoft’s equivalent serverless

compute service supports multiple hosting plans

and integrates with Azure Blob Storage, Cosmos DB,

Event Grid, and Service Bus. Azure Function bindings

simplify connecting functions to various data

sources and event sources (Microsoft Azure, 2025).

• Google Cloud Functions: GCP’s event-driven

serverless compute service that runs functions

triggered by HTTP requests, Pub/Sub messages, or

Cloud Storage changes. It automatically scales with

demand and supports popular runtimes (Google

Cloud Platform, 2025).

• Google Cloud Run: Google Cloud Run is a fully

managed platform that allows deployment of

containerized applications without managing

servers. It automatically scales based on traffic and

only charges for the resources used during

execution (Google Cloud Platform, 2025).

4.1.1 Event Routing and Messaging

• AWS EventBridge, complemented by SNS and

SQS, provides scalable event bus and messaging

services.

• Azure Event Grid and Service Bus offer

enterprise event routing and messaging

respectively.

• Google Cloud Pub/Sub enables scalable,

durable messaging between independent

services.

4.1.2 Streaming Services

Amazon Kinesis facilitates real-time streaming data

processing. Azure Event Hubs and Google Cloud

Dataflow provide similar streaming analytics

capabilities.

4.2 Methods

This approach is built on serverless and event-driven

principles:

• Modular Event-Driven Design: Systems are made of

separate parts that send and receive events through

the cloud, making them easier to scale and manage.

• Event Routing and Filtering: Rules decide where

each event goes, sending it to the right function or

service like AWS Lambda, Azure Functions, or

Google Cloud Functions for faster processing.

• Stateless, On-Demand Functions: Functions run

only when triggered, don’t save state, and scale

automatically to handle sudden spikes in work.

• Integrated Observability: Tools like AWS

CloudWatch, Azure Monitor, and Google Cloud

Operations track performance and errors, keeping

systems reliable.

• Schema Management: Standard event formats are

used so data flows smoothly and works consistently

across platforms.

• The combination of these cloud services and

methodologies facilitates the creation of scalable,

resilient, and cost-efficient distributed systems

optimized for real-time event-driven workloads.

5. Traditional Distributed Systems to Serverless

Architectures with AI and ML Integration

5.1 Traditional Distributed Systems

Traditional distributed systems use servers or virtual

machines that are set up and managed manually. IT

teams handle tasks like scaling, updates, monitoring,

and failovers. While these systems give full control over

hardware and networking, they also create many

operational challenges. It results in higher fixed costs,

reduced flexibility, and longer time to market for new

features or updates. Developers often deploy monolithic

applications or microservices, keeping the application

state in memory or local storage.

Example: A large e-commerce platform using a cluster

of virtual machines for all frontend, backend, and

database workloads. IT staff must provision extra

capacity in advance for high-traffic events (e.g., Black

Friday), resulting in inefficiency and higher costs during

The American Journal of Interdisciplinary Innovations and Research 17 https://www.theamericanjournals.com/index.php/tajiir

The American Journal of Interdisciplinary Innovations and Research

off-peak times.

5.2 Serverless Architectures

Serverless computing abstracts away server

management entirely. Cloud providers handle all

underlying infrastructure, including scaling, patching,

and provisioning. Applications are built from stateless,

event-driven functions that scale automatically with

demand and are billed per execution or resource

consumption. Serverless architectures are well-suited

for event-driven applications, APIs, and workloads with

highly variable traffic.

Key Benefits and Challenges

Serverless systems bring many benefits, such as

automatic scaling without extra effort, lower costs, and

less work to manage infrastructure. Since applications

are broken into smaller, independent functions,

developers can also build and update features more

quickly. Still, there are some challenges, like having less

control over the system, limits on how long each

function can run, and possible delays in performance,

such as cold starts. Figure 2 shows a comparison of

traditional and serverless data center models.

Figure 2: Traditional vs Serverless Data Centers

Example: A photo-sharing service processes image

uploads using serverless functions: when a new photo is

added, an event triggers a Lambda (or Cloud

Function/Azure Function) to resize and store the image.

Developers do not manage the server lifecycle, and the

system only incurs costs when processing images.

5.3 Serverless Architectures with AI and Machine

Learning Integration

Recently, serverless platforms have begun to support

sophisticated AI and ML workloads. In this paradigm,

developers deploy ML models or inference pipelines as

serverless functions, enabling real-time decision-

The American Journal of Interdisciplinary Innovations and Research 18 https://www.theamericanjournals.com/index.php/tajiir

The American Journal of Interdisciplinary Innovations and Research

making, data processing, and intelligent automation at

scale. Serverless AI abstracts the complexity of model

deployment, making it feasible to update models or

scale inference rapidly while only paying for actual

execution.

Figure 3: Serverless Architecture with AI ML integration (Microsoft Azure, 2025).

Figure 3 shows users interact with a Web App via chat to

input queries or upload documents. Uploaded PDF

documents are sent via HTTP upload to a Serverless

API implemented using Azure Functions. The Serverless

API handles multiple tasks, it stores and retrieves PDF

documents with Azure Blob Storage, a scalable object

storage service. It breaks the contents of the PDFs into

text chunks and stores/retrieves them using Azure AI

Search with vector search capabilities, enabling

semantic search over large volumes of data. It sends text

chunks to the Azure OpenAI Service for embedding and

generating answers, leveraging advanced AI language

models to understand and respond to natural language

queries. The Serverless API communicates with the Web

App through HTTP calls, facilitating chat responses

based on processed AI-generated insights.

The architecture is fully serverless, allowing automatic

scaling and no management of infrastructure. It

integrates AI-powered services including natural

language processing (Azure OpenAI Service) and

semantic search (Azure AI Search). Designed

for document-centric conversational experiences,

enabling users to query large document repositories

interactively. Modular and event-driven, it enables on-

demand function execution triggered by user actions

and data events.

Key Benefits and Challenges

Using serverless platforms for AI and ML offers several

advantages. It makes it easier and faster to deploy

custom or pretrained models, while keeping costs low

since resources are only used during requests or

inference, not when sitting idle. Cloud providers also

handle scaling and scheduling automatically, assigning

GPUs, TPUs, or CPUs as needed—whether for

HuggingFace models, Google Vertex AI, or AWS

SageMaker endpoints.

Despite these benefits, integrating serverless

architecture with AI brings unique and complex

technical challenges.

• Cold Start Latency: Deploying large AI models

involves significant delays due to loading model

weights, which can be several GBs, into accelerators

and starting execution contexts. This can result in

The American Journal of Interdisciplinary Innovations and Research 19 https://www.theamericanjournals.com/index.php/tajiir

The American Journal of Interdisciplinary Innovations and Research

long waits for the first inference (“cold start”), which

is less of a problem in always-on traditional setups

(SIGARCH, 2025).

• State Management: While traditional serverless

functions are stateless, many modern AI workloads

require state, such as cached model parameters or

context for sequential predictions. Handling state

efficiently within a serverless paradigm is non-trivial

and may impact performance if not handled

judiciously (SIGARCH, 2025).

• Complex Communication Patterns: AI pipelines

often require the chaining of multiple model

inferences or rapid data transfer between functions,

which is challenging in systems designed assuming

independent, stateless functions.

• Advanced Scheduling Needs: Serverless providers

must make intelligent, real-time decisions about

hardware allocation, batch sizes, and parallelism

modes to achieve high efficiency. These scheduling

problems are compounded by the bursty, stateful,

and sometimes unpredictable nature of AI

workloads.

Example:

• Real-time fraud detection: When a financial

transaction occurs, a serverless function invokes an

AI model to assess risk and flag suspicious activity

instantly. The cloud provider automatically handles

scaling, infrastructure, and hardware selection to

meet demand as transaction volumes spike.

• Conversational AI and Chatbots: Customer

messages trigger serverless functions, which run

ML-powered natural language processing to

generate responses, integrating with platforms like

AWS Lambda, Azure Functions, or Google Cloud

Functions and AI services (Lex, Bot Service,

Dialogflow).

6. Established use cases of serverless

Use Case Description / Why Serverless Works Well Examples / Research Evidence

Web & Mobile App

Backends / APIs

Many applications need RESTful APIs or similar

backends that respond to HTTP requests, scale

up/down with demand, and often have irregular or

spiky load. Serverless allows you to avoid

provisioning infrastructure for low-traffic periods

and scale automatically.

DigitalOcean identifies APIs for web &

mobile apps as a top use case.

(digitalocean.com) (DigitalOcean,

2023)

Event-driven

Processing /

Triggered Functions

When tasks are initiated by events (e.g. file upload,

database change, message queue), serverless

functions can automatically react without always-on

servers. Works well for workflows where the

operations are stateless or can be decomposed.

“The Rise of Serverless Computing”

(ACM) describes image thumbnail

creation on S3 upload, event handlers,

etc. (cacm.acm.org) (Jonas et al.,

2019).

Data Processing /

ETL / Pipelines

Handling ingestion, transformation, filtering of data

(batch & streaming) benefits from serverless since

many operations happen when data arrives, not

constantly. Enables cost savings and often simpler

operational model.

SPEC RG’s “A Review of Serverless Use

Cases” survey includes many data

processing workflows.

(research.spec.org); also Lambada

project shows interactive data

analytics on cold data using serverless

architecture. (arXiv) (Eismann et al.,

2020; Müller et al., 2019).

https://www.sigarch.org/ai-goes-serverless-are-systems-ready/
https://www.sigarch.org/ai-goes-serverless-are-systems-ready/
https://www.digitalocean.com/blog/top-use-cases-for-serverless-computing?utm_source=chatgpt.com
https://cacm.acm.org/research/the-rise-of-serverless-computing/?utm_source=chatgpt.com
https://research.spec.org/fileadmin/user_upload/documents/rg_cloud/endorsed_publications/SPEC_RG_2020_Serverless_Usecases.pdf?utm_source=chatgpt.com
https://arxiv.org/abs/1912.00937?utm_source=chatgpt.com

The American Journal of Interdisciplinary Innovations and Research 20 https://www.theamericanjournals.com/index.php/tajiir

The American Journal of Interdisciplinary Innovations and Research

Internet of Things

(IoT)

IoT devices often produce data infrequently or

irregularly, or events triggered by physical sensors.

Serverless allows handling these with event triggers,

with scaling, without dedicated backend servers.

Survey (Hassan et al.) identifies IoT /

mobile applications among FaaS use

cases. (SpringerOpen); also general

overviews (e.g. Xenonstack) list IoT.

(xenonstack.com) (Hassan et al.,

2021).

Multimedia

Processing (e.g.

image/video work)

Functions can be triggered by uploads or media

arrival; tasks like transcoding, resizing, thumbnail

generation are well suited to serverless because

they can run independently and scale when needed.

ACM article’s “thumbnail creation”

example. (cacm.acm.org);

DigitalOcean mentions “multimedia

processing” among top use cases.

(digitalocean.com) (Jonas et al., 2019).

Chatbots / Voice

Assistants

These often receive bursts of traffic and depend on

external triggers (user messages, voice input). The

stateless short tasks make them well-suited for

serverless. Scaling down to zero in idle times helps.

Survey by Hassan et al. includes

“chatbot” use case. (SpringerOpen);

industry examples via blogs.

(xenonstack.com) (Hassan et al.,

2021).

Real-time / Near-

Real-Time

Monitoring and

Alerting

For example, reacting to telemetry, sensor data,

logs, where events must be processed as they arrive.

Serverless can help build pipelines or functions that

trigger alerts. Also good for infrastructure or

operations monitoring.

SPEC RG survey includes scientific use

cases like near-real-time water

monitoring (Copernicus Sentinel-1)

etc. (research.spec.org) (Eismann et

al., 2020).

Parallel & Burst-

Parallel

Computations

(Workflows / DAG

Jobs)

For workloads that can be expressed as many small

independent tasks (e.g. DAGs), serverless can be

more cost-efficient and can scale massively for

bursts. Key challenges often include scheduling, data

locality, managing cold starts.

“Wukong: A Scalable and Locality-

Enhanced Framework” shows

serverless parallel computing

outperforming alternatives in certain

workloads. (arXiv); also Lambada for

data analytics. (arXiv) (Carver et al.,

2020).

Scientific & Earth-

Observation

Applications

Big science/data workflows (e.g. satellite data,

environmental monitoring) where data arrives in

batches or streams, processed for insights;

sometimes used by government or research

institutions.

SPEC RG survey’s scientific use cases:

e.g. “Copernicus Sentinel-1 for near-

real time water monitoring,” “Terra

Byte - High Performance Data Analytic

for Earth Observation,” etc.

(research.spec.org) (Eismann et al.,

2020).

7. Future Scope

• Serverless-Enabled AutoML and ML Lifecycle

Management: A future possibility is combining

serverless computing with automated machine

learning (AutoML) and model pipelines. In this

setup, tasks like tuning parameters, searching

models, monitoring, retraining, and rolling back can

all be done with serverless functions, reducing the

need for manual work. This helps organizations

deploy AI systems faster and at lower cost. The main

difficulties are handling the extra orchestration,

limits on execution time, and making results

consistent across different functions (Vaibhav,

2023).

• Adaptive Training Frameworks with Budgets and

Deadlines: A future use of serverless is adaptive ML

training, where resources can grow or shrink during

training to meet set budgets or deadlines. Unlike

fixed clusters, this saves cost and avoids wasted

compute, making it useful for short or experimental

https://journalofcloudcomputing.springeropen.com/articles/10.1186/s13677-021-00253-7?utm_source=chatgpt.com
https://www.xenonstack.com/blog/serverless-computing-use-cases?utm_source=chatgpt.com
https://cacm.acm.org/research/the-rise-of-serverless-computing/?utm_source=chatgpt.com
https://www.digitalocean.com/blog/top-use-cases-for-serverless-computing?utm_source=chatgpt.com
https://journalofcloudcomputing.springeropen.com/articles/10.1186/s13677-021-00253-7?utm_source=chatgpt.com
https://www.xenonstack.com/blog/serverless-computing-use-cases?utm_source=chatgpt.com
https://research.spec.org/fileadmin/user_upload/documents/rg_cloud/endorsed_publications/SPEC_RG_2020_Serverless_Usecases.pdf?utm_source=chatgpt.com
https://arxiv.org/abs/2010.07268?utm_source=chatgpt.com
https://arxiv.org/abs/1912.00937?utm_source=chatgpt.com
https://research.spec.org/fileadmin/user_upload/documents/rg_cloud/endorsed_publications/SPEC_RG_2020_Serverless_Usecases.pdf?utm_source=chatgpt.com

The American Journal of Interdisciplinary Innovations and Research 21 https://www.theamericanjournals.com/index.php/tajiir

The American Journal of Interdisciplinary Innovations and Research

jobs. The main challenges are time limits, stateless

functions, and the need for better scheduling, saving

progress, and managing large training tasks (Li et al.,

2022).

• AI-Driven Solutions for Cold Start Optimization:

One of the biggest issues with serverless is the delay,

or “cold start,” when functions are triggered for the

first time. A possible future solution is using AI itself

to reduce this problem. For example, predictive

models and reinforcement learning could guess

when a function will run and prepare it in advance.

AI can also adjust memory and concurrency to

improve both speed and cost. This creates a

feedback loop where AI makes serverless platforms

better for AI workloads. The challenge is making

accurate predictions for workloads that are irregular

without wasting resources (Zhang et al., 2023).

• Serverless + Edge + On-Device AI: Combining

serverless with edge and on-device AI has strong

potential for fast and secure applications. In this

approach, some tasks run on edge devices while

others run in the cloud, with serverless functions

managing the process. This reduces network use,

lowers delay, and keeps user data safer. It is

especially useful for IoT systems where data comes

in continuously but is processed only when needed.

The main challenge is building hybrid systems that

can split tasks smoothly between cloud and devices

while working around issues like low memory,

unstable connections, and different types of

hardware (GeeksforGeeks, 2024)

8. Conclusion

Serverless and event-driven architectures represent a

significant shift in how we build distributed systems.

They separate the application logic from the

infrastructure and let systems react quickly to events.

These approaches reduce complexity, lower costs

through pay-per-use, and improve scalability by

automatically adjusting resources to match demand. At

the same time, they developers focus on business logic,

instead of wasting time in managing servers or their

lifecycle. However, challenges like cold starts, state

management, and debugging remain. Fortunately,

ongoing research and improvements in orchestration, AI

driven optimization, ML and hybrid cloud integration are

helping to tackle these issues. In the end, serverless and

event-driven architectures reshape the fundamentals of

distributed computing. They provide a model for

creating resilient, flexible, systems that are future ready

that meet the changing needs of digital transformation.

References

1. Amazon Web Services. (2025). AWS Lambda

Developer Guide.

https://docs.aws.amazon.com/lambda/latest/dg/w

elcome.html

2. Carver, B., Zhang, J., Wang, A., Anwar, A., Wu, P., &

Cheng, Y. (2020). Wukong: A scalable and locality-

enhanced framework for serverless parallel

computing. arXiv. https://arxiv.org/abs/2010.07268

3. DigitalOcean. (2023). Top use cases for serverless

computing. DigitalOcean.

https://www.digitalocean.com/blog/top-use-cases-

for-serverless-computing

4. Eismann, S., Scheuner, J., van Eyk, E., Schwinger, M.,

Grohmann, J., Herbst, N., Abad, C. L., & Iosup, A.

(2020). A review of serverless use cases and their

characteristics. SPEC RG Cloud Working Group.

arXiv. https://arxiv.org/abs/2008.11110

5. Google Cloud Platform. (2025). Serverless on Google

Cloud. https://cloud.google.com/serverless

6. SIGARCH. (2025). AI Goes Serverless: Are Systems

Ready? https://www.sigarch.org/ai-goes-

serverless-are-systems-ready/

7. Haller, A., Atkinson, M., & Smith, J. (2023).

Serverless computing: What it is, and what it is

not? ACM Computing Surveys, 56(5), 1-

34. https://doi.org/10.1145/3587249

8. Hassan, H. B., Bahsoon, R., Kazman, R., Koziolek, A.,

Litoiu, M., Shang, W., & Zhu, L. (2021). Serverless

computing: A survey of opportunities, challenges,

and applications. Journal of Cloud Computing:

Advances, Systems and Applications, 10(1), 1–48.

https://doi.org/10.1186/s13677-021-00253-7

9. Jonas, E., Schleier-Smith, J., Sreekanti, V., Tsai, C.,

Khandelwal, A., Pu, Q., Shankar, V., Menezes

Carreira, J., Krauth, K., Yadwadkar, N., Gonzalez, J.

E., Popa, R. A., Stoica, I., & Patterson, D. A. (2019).

Cloud programming simplified: A Berkeley view on

serverless computing. UC Berkeley Technical Report

No. UCB/EECS-2019-3.

https://www2.eecs.berkeley.edu/Pubs/TechRpts/2

019/EECS-2019-3.pdf

10. Microsoft Azure. (2025). Azure Functions

Documentation. https://learn.microsoft.com/en-

https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://arxiv.org/abs/2010.07268?utm_source=chatgpt.com
https://www.digitalocean.com/blog/top-use-cases-for-serverless-computing?utm_source=chatgpt.com
https://www.digitalocean.com/blog/top-use-cases-for-serverless-computing?utm_source=chatgpt.com
https://arxiv.org/abs/2008.11110?utm_source=chatgpt.com
https://cloud.google.com/serverless
https://www.sigarch.org/ai-goes-serverless-are-systems-ready/
https://www.sigarch.org/ai-goes-serverless-are-systems-ready/
https://doi.org/10.1145/3587249
https://doi.org/10.1186/s13677-021-00253-7
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-3.pdf?utm_source=chatgpt.com
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-3.pdf?utm_source=chatgpt.com
https://learn.microsoft.com/en-us/azure/azure-functions/

The American Journal of Interdisciplinary Innovations and Research 22 https://www.theamericanjournals.com/index.php/tajiir

The American Journal of Interdisciplinary Innovations and Research

us/azure/azure-functions/

11. Microsoft Azure. (2025). Baseline Azure AI Foundry

Chat Reference Architecture. Microsoft

Learn. https://learn.microsoft.com/en-

us/azure/architecture/ai-ml/architecture/baseline-

azure-ai-foundry-chat

12. Müller, I., Marroquín, R., & Alonso, G. (2019).

Lambada: Interactive data analytics on cold data

using serverless cloud infrastructure. arXiv.

https://arxiv.org/abs/1912.00937

https://learn.microsoft.com/en-us/azure/azure-functions/
https://learn.microsoft.com/en-us/azure/architecture/ai-ml/architecture/baseline-azure-ai-foundry-chat
https://learn.microsoft.com/en-us/azure/architecture/ai-ml/architecture/baseline-azure-ai-foundry-chat
https://learn.microsoft.com/en-us/azure/architecture/ai-ml/architecture/baseline-azure-ai-foundry-chat
https://arxiv.org/abs/1912.00937?utm_source=chatgpt.com

