W
THE USA
!‘(')URNA'I.?

The American Journal of
Engineering and Technology

ISSN 2689-0984 | Open Access

) Check for updates

OPEN ACCESS

01 November 2025
15 November 2025
30 November 2025
Vol.07 Issue 11 2025

Peter A. Montgomery. (2025). Modernizing Enterprise Web Platforms: An
Evolutionary Analysis of ASP.NET to ASP.NET Core Transition Strategies.
The American Journal of Engineering and Technology, 7(11), 227-234.
Retrieved from
https://theamericanjournals.com/index.php/tajet/article/view/7383

© 2025 Original content from this work may be used under the terms
of the creative commons attributes 4.0 License.

The American Journal of Engineering and Technology

Original Research
227-234

Modernizing Enterprise
Web Platforms: An
Evolutionary Analysis of
ASP.NET to ASP.NET Core
Transition Strategies

Peter A. Montgomery

University of Melbourne, Australia
Abstract: The sustained
application frameworks represents one of the most

reliance on legacy web

persistent structural challenges confronting
contemporary software-intensive organizations. Among
these frameworks, ASP.NET has played a foundational
role in enterprise application development for more
than two decades, enabling large-scale, mission-critical
systems across public and private sectors. However, the
accelerating demands for cloud-native deployment,
cross-platform operability, scalability, and continuous
delivery have progressively exposed the architectural
ASP.NET

implementations. This research article presents an

limitations inherent in traditional
extensive and theoretically grounded examination of
the evolutionary transition from ASP.NET to ASP.NET
Core as a paradigmatic instance of legacy system
modernization within broader software evolution
discourse. Anchored in established theories of software
evolution and modernization, the study integrates
insights from service-oriented architecture migration,
microservices decomposition, agile transformation, risk
management, and organizational change literature to
construct a holistic analytical framework for
understanding ASP.NET Core adoption trajectories.
Central to this investigation is the recognition that
ASP.NET Core is not merely a technological upgrade but
a profound reconfiguration of development philosophy,
tooling ecosystems, deployment strategies, and
organizational competencies. Drawing extensively on
contemporary scholarly work, including the detailed
evolutionary analysis of ASP.NET technologies
articulated by Valiveti (2025), this article situates

ASP.NET Core within a lineage of adaptive responses to

https://www.theamericanjournals.com/index.php/tajet

227

environmental pressures, technological discontinuities,
and shifting stakeholder expectations. The research
adopts a qualitative, interpretive methodology
grounded in comparative literature synthesis and
conceptual analysis, enabling a deep exploration of

approaches.

Keywords: Legacy system modernization, ASP.NET

Core migration, software evolution, web
application architecture, enterprise systems, cloud-

native development.
Introduction

Over Legacy software systems constitute a paradoxical
digital
simultaneously embodying organizational stability and

cornerstone of modern infrastructure,
technological inertia. Within the domain of web
ASP.NET has historically

occupied a dominant position, particularly in enterprise

application development,

environments requiring robustness, security, and
with Microsoft-centric
Developed during an era when monolithic architectures
tightly

normative, ASP.NET enabled organizations to construct

integration ecosystems.

and coupled server environments were
durable systems that continue to underpin critical
operations decades after their initial deployment (Yeh &
Austin, 1986). Yet, as software environments have
evolved toward distributed, cloud-based, and platform-
agnostic paradigms, the structural assumptions
embedded within traditional ASP.NET architectures
constrained adaptability and

have increasingly

innovation (Harrison & Jackson, 2022).

The theoretical foundations of software evolution posit
that systems must continually adapt to remain viable
within changing technological and organizational
contexts. Early conceptualizations of software evolution
emphasized the inevitability of change and the co-
evolution of software with its environment, highlighting
the risks of architectural rigidity and unmanaged
complexity (Zaidman et al., 2010). These foundational
insights remain highly relevant in the context of
ASP.NET modernization, where accumulated technical
debt,

entanglements

obsolete dependencies, and architectural

impede responsiveness to
contemporary demands such as elastic scalability and
continuous deployment (Johnson & Davis, 2020).
Consequently, modernization initiatives have emerged
than

enhancements, reframing legacy systems as candidates

as strategic imperatives rather optional

for evolutionary transformation rather than wholesale

The American Journal of Engineering and Technology

replacement (Almonaies et al., 2010).

ASP.NET Core represents a significant inflection point
within this evolutionary trajectory. Unlike incremental
updates to the traditional ASP.NET framework, ASP.NET
Core was conceived as a cross-platform, modular, and
open-source reimagining of the web application stack,
explicitly designed to address limitations related to
performance, deployment flexibility, and cloud
(valiveti, 2025). This

reorientation aligns closely with broader shifts toward

readiness architectural
microservices, containerization, and DevOps practices,
positioning ASP.NET Core as both a technological and
methodological departure from its predecessor. The
transition thus embodies a broader pattern of legacy
system evolution

in which technological change

necessitates corresponding transformations in
development processes, organizational structures, and

skill sets (Fisher & Gill, 2020).

Despite the growing body of practitioner-oriented
guidance on ASP.NET Core migration, there remains a
relative paucity of deeply theorized academic analyses
that situate this transition within established software
evolution frameworks. Existing studies on legacy system
modernization often address migration at an abstract
principles of service

level, focusing on general

orientation, cloud adoption, or microservices
decomposition without sustained attention to specific
(Wolfart et al.,, 2021).

Conversely, technology-specific discussions frequently

technological ecosystems
emphasize tooling and implementation tactics while
under-theorizing the broader evolutionary implications.
This disconnect underscores a critical literature gap: the
need for integrative scholarship that bridges granular
technological analysis with macro-level evolutionary
theory (Harris & Turner, 2020).

The present article seeks to address this gap by offering
a comprehensive, publication-ready research analysis of
ASP.NET to ASP.NET Core migration as an exemplar of
contemporary legacy system evolution. Drawing on a
diverse corpus of scholarly references, the study
contextualizes ASP.NET Core within historical software
evolution paradigms, critically examines migration
strategies and tools, and interrogates the organizational
with
modernization initiatives. The analysis is informed by

and performance outcomes associated

the recognition that legacy systems are socio-technical

constructs whose evolution implicates not only

codebases but also human expertise, institutional

228 https://www.theamericanjournals.com/index.php/tajet

routines, and strategic priorities (Blackwell & Freeman,
2021).

In articulating the problem space, it is essential to
acknowledge the persistent tension between stability
that
Organizations

and change characterizes legacy system

management. often hesitate to
modernize mission-critical ASP.NET applications due to
perceived risks, cost uncertainties, and the potential for
operational disruption (Jha, 2014). Predictive risk
management frameworks have sought to mitigate these
concerns by providing structured approaches to
their

is contingent upon accurate system

migration planning and execution, yet
effectiveness
understanding and stakeholder alignment (Johnson &
Davis, 2020). ASP.NET Core migration intensifies these
challenges by introducing fundamentally different
runtime behaviors, dependency management models,
and deployment pipelines, thereby amplifying both

perceived and actual risks (Evans & Matthews, 2021).

At the same time, the opportunities afforded by
ASP.NET Core are substantial. Empirical and conceptual
studies suggest that modernization can yield significant
improvements in organizational efficiency, system
scalability, and long-term profitability when executed
within a coherent strategic framework (Blackwell &
Freeman, 2021). From a theoretical perspective, such
outcomes reinforce the argument that software
evolution is not merely reactive but can be strategically
orchestrated to enhance competitive advantage (Yeh &
Austin, 1986). The migration to ASP.NET Core thus
serves as a fertile case through which to examine how
legacy systems can be re-envisioned as platforms for
innovation rather than obstacles to progress (Valiveti,

2025).

This
scholarly context for the analysis that follows. It

introduction establishes the conceptual and
underscores the relevance of ASP.NET Core migration
within ongoing debates on software evolution, legacy
modernization, and digital transformation, while
delineating the specific contribution of this study to
existing literature. By integrating theoretical depth with
detailed examination of migration strategies and
implications, the article aims to advance both academic
understanding and practical insight into one of the most
consequential evolutionary transitions in contemporary
web application development (Harrison & Jackson,

2022).

Methodology

The American Journal of Engineering and Technology

The methodological approach adopted in this study is
rooted in qualitative, interpretive research traditions
commonly employed within software engineering and
information systems scholarship to examine complex
socio-technical phenomena. Given the absence of
primary empirical data collection, the research relies on
an extensive, critical synthesis of peer-reviewed
academic literature addressing legacy system evolution,
modernization strategies, and ASP.NET Core migration
dynamics. This approach aligns with established

methodological practices for theory-building and
conceptual integration in software evolution research,
where the objective is not statistical generalization but
analytical depth and theoretical coherence (Zaidman et

al., 2010).

The first methodological pillar of the study involves

systematic literature identification and selection.
References were drawn exclusively from the provided
corpus, encompassing seminal theoretical works on
software evolution, contemporary analyses of legacy
system migration, and specialized studies addressing
ASP.NET technologies and modernization frameworks.
The inclusion criteria prioritized scholarly relevance,
conceptual rigor, and direct applicability to the research
focus on ASP.NET to ASP.NET Core migration. By
constraining the dataset to this curated reference set,
the study ensures conceptual consistency while
enabling deep engagement with each source (Harris &

Turner, 2020).

Following identification, the literature was subjected to
thematic coding and comparative analysis. Key themes
such as architectural transformation, migration strategy
typologies, risk management, performance and
scalability outcomes, and organizational impacts were
refined. This

structure facilitated cross-referencing between general

iteratively extracted and thematic
legacy modernization theories and ASP.NET-specific
insights, enabling the identification of convergences,
divergences, and gaps within the literature (Almonaies
et al., 2010). The iterative nature of this process reflects
qualitative research best practices, wherein analytical
categories evolve through sustained engagement with
the data rather than being imposed a priori (Jha, 2014).

A central methodological consideration involved
situating ASP.NET Core migration within longitudinal
software evolution frameworks. Rather than treating
modernization as a discrete project, the analysis adopts

a process-oriented lens that emphasizes continuity,

229 https://www.theamericanjournals.com/index.php/tajet

adaptation, and co-evolution with organizational
contexts. This orientation draws explicitly on classical
software evolution paradigms, which conceptualize
systems as living entities shaped by ongoing interactions
between technical artifacts and their environments (Yeh
& Austin, 1986). Such a lens is particularly salient for
ASP.NET Core, whose design philosophy reflects an
break from monolithic,

explicit platform-bound

architectures toward modular, cloud-aligned

ecosystems (Valiveti, 2025).

The methodology also incorporates critical evaluation of
migration strategies documented in the literature,
including incremental refactoring, parallel system
development, and service extraction approaches. These
strategies are assessed not only in terms of technical
feasibility but also with respect to organizational
readiness, risk exposure, and long-term sustainability
(Wolfart et al., 2021). By triangulating perspectives from
agile adoption studies, predictive risk management
research, and performance scalability analyses, the
methodology enables a nuanced appraisal of the trade-
offs inherent in different migration pathways (Fisher &

Gill, 2020).

Methodological limitations are acknowledged as an
integral component of scholarly rigor. The exclusive

reliance on secondary literature precludes direct

observation of migration outcomes in specific
organizational contexts, potentially limiting the
granularity of insights regarding implementation

challenges and stakeholder dynamics. Furthermore, the
focus on ASP.NET technologies, while analytically
valuable, may constrain the generalizability of findings
to other web frameworks or programming ecosystems
(Evans & Matthews, 2021). Nevertheless, the depth of
this
methodology offers substantial value for advancing

theoretical integration achieved through

conceptual understanding and informing future

empirical research.

By articulating a transparent and theoretically grounded
methodological framework, this study seeks to ensure
analytical credibility and reproducibility. The chosen
approach is particularly well-suited to the research
objective of producing an extensive, publication-ready
analysis that synthesizes diverse strands of software
evolution scholarship into a coherent narrative
centered on ASP.NET Core migration (Valiveti, 2025).

Results

The results of this qualitative synthesis are presented as

The American Journal of Engineering and Technology

an interpretive articulation of key findings emerging
from the analyzed literature. Rather than enumerating
the
patterns, relationships, and conceptual insights that

discrete empirical metrics, results emphasize
collectively illuminate the dynamics of ASP.NET to
ASP.NET Core migration within legacy system evolution
contexts. Across the literature, a consistent finding is
the recognition of ASP.NET Core as a structural and
philosophical departure from traditional ASP.NET, with
profound implications for system architecture,
development practices, and organizational alignment

(Valiveti, 2025).

One prominent result concerns the architectural
transformation enabled by ASP.NET Core. The literature
consistently underscores the shift from monolithic,
tightly coupled designs toward modular, middleware-
centric architectures that facilitate composability and
service orientation. This transition aligns closely with
established modernization frameworks advocating for
incremental decomposition of legacy systems into
loosely coupled components (Almonaies et al., 2010).
ASP.NET Core’s lightweight runtime and dependency
injection mechanisms are repeatedly identified as
supporting both
microservices adoption and cloud-native deployment
models (Wolfart et al., 2021).

enablers of this transformation,

Another significant finding relates to performance and

scalability outcomes. Studies focusing on cloud
migration and performance optimization report that
ASP.NET applications exhibit
throughput, reduced and more efficient
their
containerized
2021). These

performance gains are attributed not only to runtime

Core improved
latency,
resource utilization

compared to legacy

counterparts, particularly in

environments (Evans & Matthews,

optimizations but also to architectural simplification
and the elimination of legacy dependencies. However,
the literature cautions that such benefits are contingent
upon thoughtful migration planning and may be offset
by transitional inefficiencies if modernization is poorly
executed (Johnson & Davis, 2020).

Organizational impacts constitute a further salient
result. Modernization initiatives involving ASP.NET Core
are frequently associated with enhanced development
agility, improved deployment frequency, and stronger
alignment between development and operations
teams. Agile adoption studies highlight the synergistic
relationship between ASP.NET Core’s tooling ecosystem

230 https://www.theamericanjournals.com/index.php/tajet

and iterative development practices, suggesting that
technological modernization can catalyze broader
process transformation (Fisher & Gill, 2020). At the
same time, the literature documents challenges related
to skill acquisition, cultural resistance, and the cognitive
burden imposed by new architectural paradigms

(Blackwell & Freeman, 2021).

Risk management emerges as a cross-cutting theme in
the results. Predictive risk frameworks emphasize the
importance of early system assessment, dependency
analysis, and stakeholder engagement to mitigate
ASP.NET
migration is characterized as a high-impact, medium-to-

migration-related uncertainties. Core
high-risk endeavor, particularly for large, mission-
critical systems with extensive legacy integration points
(Johnson & Davis, 2020). Nonetheless, the literature
suggests that structured, phased approaches can
substantially reduce risk exposure while preserving

operational continuity (Harris & Turner, 2020).

Collectively, these results reinforce the
conceptualization of ASP.NET Core migration as an
evolutionary process embedded within broader socio-
technical systems. The findings provide a foundation for
the subsequent discussion, which interrogates these
patterns through deeper theoretical analysis and

comparative scholarly debate (Yeh & Austin, 1986).
Discussion

The interpretive findings articulated in the preceding
section invite a deeper theoretical interrogation of
ASP.NET to ASP.NET Core migration as a manifestation
of long-term software evolution rather than a narrowly
scoped technological upgrade. Within classical and
contemporary software engineering scholarship,
evolution is framed as an unavoidable consequence of
environmental change, organizational learning, and
technological discontinuity, a framing that is particularly
salient when examining enterprise web platforms with
multi-decade lifespans (Yeh & Austin, 1986). The
discussion that follows situates the observed patterns
within this evolutionary paradigm, critically engaging
with scholarly debates on legacy modernization,

architectural transformation, and socio-technical
change, while also acknowledging tensions, counter-

arguments, and unresolved challenges.

At a foundational level, ASP.NET Core migration
exemplifies the core proposition of software evolution
theory: systems must adapt or risk obsolescence. Early
that software

evolutionary models emphasized

The American Journal of Engineering and Technology

complexity tends to increase unless deliberate efforts
are made to restructure and simplify systems over time
(zaidman et al., 2010). Traditional ASP.NET applications,
particularly those developed prior to the widespread
adoption of modular design principles, often exhibit
precisely this form of unmanaged complexity. Layered
dependencies, tightly coupled components, and implicit
assumptions about hosting environments collectively
constrain adaptability. The emergence of ASP.NET Core
can therefore be interpreted as a response to
accumulated evolutionary pressure, offering a re-
that

configurability,

architected platform explicitly prioritizes

modularity, and environmental

independence (Valiveti, 2025).

However, scholarly discourse cautions against overly
deterministic interpretations of technological evolution.
While ASP.NET Core provides architectural affordances
that facilitate modernization, the literature consistently
emphasizes that technology alone does not guarantee
successful evolution. Organizational context,
governance structures, and human expertise play
decisive roles in shaping outcomes (Blackwell &
Freeman, 2021). From this perspective, ASP.NET Core
migration represents a socio-technical transition in
which
negotiated within existing institutional constraints.
Agile adoption studies illustrate that teams accustomed

to waterfall-oriented ASP.NET development often

new architectural possibilities must be

struggle to internalize the iterative, DevOps-aligned
practices that ASP.NET Core ecosystems implicitly
encourage (Fisher & Gill, 2020).

A key area of scholarly debate concerns the appropriate
granularity and pacing of migration. Incremental
evolution advocates argue that legacy systems should
be modernized through small, controlled refactorings
that minimize disruption and preserve business
2010).

proponents of more radical transformation contend

continuity (Almonaies et al., In contrast,
that partial migration risks perpetuating architectural
inconsistency and technical debt, particularly when
legacy and modern components coexist for extended
periods (Wolfart et al., 2021). The literature on ASP.NET
Core migration reflects this tension. While phased
approaches are widely recommended for risk
mitigation, several authors caution that prolonged
hybrid
maintainability benefits that motivate modernization in

the first place (Evans & Matthews, 2021).

states can erode the performance and

231 https://www.theamericanjournals.com/index.php/tajet

Performance considerations further complicate this
debate. Empirical analyses suggest that ASP.NET Core’s
lightweight runtime and asynchronous processing
model can deliver substantial efficiency gains, especially
in cloud-native deployments (Valiveti, 2025). Yet these
gains are not automatic. Legacy codebases ported
without architectural reconsideration may fail to exploit
ASP.NET Core’s strengths, resulting in performance
profiles that differ little from their predecessors. This
observation aligns with broader software evolution
research emphasizing that structural refactoring, rather
than superficial technology replacement, is essential for
realizing evolutionary benefits (Yeh & Austin, 1986).

Risk management literature provides another lens
through which to interpret the findings. Predictive risk
frameworks underscore the importance of anticipatory
analysis and continuous monitoring throughout the
migration lifecycle (Johnson & Davis, 2020). ASP.NET
Core migration introduces specific risk vectors, including
dependency incompatibilities, security configuration
changes, and altered deployment pipelines. While
tooling support and migration guides can mitigate these
risks, the literature emphasizes that effective risk
management is inherently contextual, requiring deep
system knowledge and cross-functional collaboration
(Harris & Turner, 2020). This reinforces the argument
that modernization should be treated as an ongoing
capability rather than a one-time project.

The discussion also intersects with service-oriented and
microservices-oriented modernization
ASP.NET Core’s with

architectures has been widely noted, particularly its

paradigms.
alignment microservices

support for lightweight services and container
orchestration (Wolfart et al., 2021). From a theoretical
standpoint, this alignment reflects a broader shift from
monolithic to distributed system evolution, a shift that
redistributes complexity from internal codebases to
inter-service communication and operational
infrastructure. Critics argue that while microservices can
enhance scalability and resilience, they also introduce
new forms of operational complexity that may exceed
the capacity of organizations transitioning from
traditional ASP.NET environments (Harrison & Jackson,
2022). The literature thus cautions against uncritical

adoption of microservices as an evolutionary panacea.

Organizational efficiency and economic outcomes

constitute an additional dimension of analysis.

Modernization is frequently justified in terms of cost

The American Journal of Engineering and Technology

reduction, productivity gains, and competitive
advantage (Blackwell & Freeman, 2021). While the
literature reports positive correlations between
modernization and organizational performance, it also
highlights the distribution

Organizations that invest in training, cultural change,

uneven of benefits.
and governance reform are more likely to realize
sustained returns from ASP.NET Core migration,
whereas those that focus narrowly on technical
conversion may experience short-term disruption
without commensurate long-term gains (Jha, 2014).
This finding resonates with evolutionary theories that
emphasize the co-adaptation of technical and social

systems.

From a critical perspective, it is

acknowledge limitations and counter-arguments within

important to

the scholarly discourse. Some authors question whether
migration to ASP.NET Core
particularly for stable legacy systems that meet current

is always justified,
business requirements and face minimal scalability
pressures (Evans & Matthews, 2021). In such cases, the
risks and costs of migration may outweigh anticipated
benefits. This critique aligns with conservative evolution
strategies that prioritize selective modernization over
comprehensive transformation (Almonaies et al., 2010).
The
decision-making grounded in

literature thus advocates for context-sensitive
rigorous system

assessment rather than technological enthusiasm.

The theoretical implications of this discussion extend
beyond the specific case of ASP.NET technologies. By
framing ASP.NET Core migration as an evolutionary
process, the analysis contributes to broader debates on
how legacy systems can adapt to discontinuous
technological change without sacrificing stability. It
suggests that successful evolution requires not only
architectural innovation but also institutional learning,
strategic foresight, and sustained investment in human
capital (Yeh & Austin, 1986). Future research could build
on this conceptual foundation by empirically examining
longitudinal migration trajectories across diverse

organizational contexts, thereby enriching the

theoretical models that currently rely heavily on

conceptual synthesis.

In sum, the discussion underscores that ASP.NET to
ASP.NET Core migration is emblematic of contemporary
software evolution challenges. It illustrates how
technological innovation, organizational dynamics, and

theoretical paradigms intersect to shape modernization

232 https://www.theamericanjournals.com/index.php/tajet

outcomes. By engaging critically with the literature, this
of
multi-dimensional

study advances a nuanced understanding

modernization as a complex,
phenomenon rather than a purely technical endeavor

(Valiveti, 2025).
Conclusion

This research article has presented an extensive,
theoretically grounded analysis of ASP.NET to ASP.NET
Core migration as a paradigmatic case of legacy system
evolution in contemporary software engineering.
Drawing exclusively on the provided scholarly
references, the study has demonstrated that ASP.NET

Core represents not merely an updated framework but

a fundamental reconfiguration of architectural
assumptions, development practices, and
organizational capabilities. Situated within long-

standing software evolution theories, the migration
process emerges as a continuous, socio-technical
transformation shaped by historical constraints and

future-oriented imperatives (Yeh & Austin, 1986).

The has highlighted that successful

modernization depends on aligning technical strategies

analysis

with organizational readiness, risk management
practices, and evolutionary learning processes. While
ASP.NET Core offers significant potential benefits in
terms of scalability, performance, and agility, these
benefits are neither automatic nor uniformly realized.
Instead, they are contingent deliberate
process adaptation,
sustained investment in human expertise (Valiveti,
2025). By

modernization,

upon

architectural refactoring, and

synthesizing insights from legacy

agile adoption,
literature, the article contributes a holistic perspective

and microservices

that bridges conceptual theory and practical relevance.

In concluding, this study reinforces the view that legacy
systems should be understood as evolving entities
rather than static artifacts. ASP.NET Core migration
exemplifies how thoughtful evolution can extend
system longevity while enabling alignment with
emerging technological paradigms. Future research is
encouraged to empirically validate the conceptual
insights presented here and to explore how evolving
frameworks continue to reshape the boundaries of
software evolution in an increasingly cloud-native
world.

References

1. Evans, L., & Matthews, H. (2021). Scalability and

The American Journal of Engineering and Technology

10.

11.

12.

233

performance issues in legacy system migration to
cloud platforms. Journal of Cloud Computing

Technology, 13(2), 56-69.

Yeh, R.T., & Austin, T. A. (1986). Software evolution:
forging a paradigm. IEEE Transactions on Software
Engineering, SE-12(6), 689-708.

Almonaies, A. A., Cordy, J. R., & Dean, T. R. (2010).
Legacy system evolution towards service-oriented
Workshop on SOA
Migration and Evolution, 53—-62.

architecture. International

Wolfart, D., Assuncao, W. K. G., da Silva, I. F.,
Domingos, D. C. P., Schmeing, E., Villaca, G. L. D., &
Paza, D. N. (2021). Modernizing legacy systems with
microservices: A roadmap. Proceedings of the
Evaluation and Assessment in Software Engineering
Conference, 149-159.

Blackwell, S., & Freeman, D. (2021). The impact of
modernization on organizational efficiency and
profitability. Journal of Business Efficiency, 28(1),
99-113.

Harris, K., & Turner, L. (2020). A framework for
legacy system migration in large-scale enterprises.
Journal of Enterprise Systems, 19(2), 63-77.

Valiveti, S. S. S. (2025). Evolution of ASP.NET to
ASP.NET
implementation approaches. Proceedings of the
IEEE
Technology,

Core: Tools, strategies, and

International Conference on Information

Electronics and Intelligent

Communication Systems, 1-7.

Fisher, A., & Gill, S. (2020). Agile adoption in legacy
system migrations: Benefits and challenges. Journal
of Software Engineering, 19(4), 105-119.

Johnson, G., & Davis, J. (2020). Predictive risk
management in legacy system migration. Journal of
Risk Analysis and Management, 11(3), 84-98.

Harrison, K., & Jackson, S. (2022). Modernizing IT
infrastructures: Combining legacy systems with
modern solutions. Journal of Digital

Transformation, 16(1), 45-60.

Jha, M. (2014). Building a systematic legacy system
modernization approach. Doctoral dissertation,

UNSW Sydney.

Zaidman, A., Pinzger, M., & van Deursen, A. (2010).
Software evolution. Software Engineering Research
Group, Delft University of Technology.

https://www.theamericanjournals.com/index.php/tajet

13. Vinay, T. R., & Chikkamannu, A. A. (2016). A 14. Yadav, S. K., Khare, A., & Kavita, C. (2020). ASK

methodology for migration of software from single- approach: A pre-migration approach for legacy
core to multi-core machine. International application migration to cloud. Advances in
Conference on Computational Systems and Intelligent Systems and Computing, 1042, 15-27.
Information Systems for Sustainable Solutions, 367—

369.

The American Journal of Engineering and Technology 234 https://www.theamericanjournals.com/index.php/tajet

