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Abstract 

This research presents a comprehensive hybrid-modeling framework that integrates physics-based simulations with 

machine learning algorithms to establish a predictive digital twin for smart knitted fabric manufacturing. The system 

addresses critical challenges in quality prediction, resource optimization, and process parameter control by creating a 

virtual replica of the entire production chain—from yarn input to finished fabric. The framework consists of three 

interconnected modules: a physics-based finite element model simulating yarn mechanics and loop formation dynamics 

during knitting; a data-driven deep learning module trained on historical production data to predict defect occurrence 

probability based on real-time sensor inputs; and an optimization engine using multi-objective genetic algorithms to 

balance competing production objectives including quality, speed, and resource consumption. The digital twin was 

implemented and validated over six months in a pilot production facility using four LONG XING SM-252 flat knitting 

machines producing technical knitted fabrics. Results demonstrate unprecedented predictive capabilities: the system 

achieved 94.7% accuracy in predicting defect occurrences 15 minutes before manifestation, enabling proactive 

intervention. Process parameter optimization reduced yarn waste by 23.8% while maintaining product quality standards 

with defect rates below 0.5%. Energy consumption decreased by 18.2% through optimized machine scheduling and 

parameter adjustments. The integration of IoT sensors including tension, vibration, thermal and visual sensors provided 

real-time data streams updating the digital twin at 1-second intervals. Comparative analysis against traditional statistical 

process control methods showed a 67.3% reduction in quality-related production stoppages and a 41.5% improvement in 

overall equipment effectiveness. This work establishes a practical roadmap for Industry 4.0 transformation in textile 

manufacturing, demonstrating how digital twin technology can bridge the gap between theoretical process understanding 

and practical production optimization, ultimately creating more sustainable, efficient, and quality-conscious 

manufacturing systems. 
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1. Introduction 

The global textile industry faces unprecedented 

challenges including escalating competition, 

sustainability mandates, fluctuating raw material costs, 

and increasing quality expectations from consumers. 

Knitted fabric manufacturing, with its complex interplay 

of mechanical, thermal, and material processes, presents 

particularly difficult optimization challenges. Traditional 

quality control approaches remain largely reactive—

defects are detected after they occur, resulting in material 

waste, production delays, and compromised product 

quality. Process optimization typically relies on operator 

experience and trial-and-error methods, lacking 

scientific rigor and predictive capability [1-5]. 

The emergence of Industry 4.0 technologies offers 

transformative potential for textile manufacturing. 

Among these, digital twin technology represents a 

paradigm shift—creating virtual replicas of physical 

systems that can simulate, predict, and optimize 

performance in real-time. A comprehensive digital twin 

for knitted fabric manufacturing would integrate physical 

process understanding with data-driven insights, 

enabling proactive rather than reactive management. 

However, current applications of digital twins in textiles 

remain limited to isolated aspects like machine 

monitoring or simple predictive maintenance, lacking the 

holistic integration required for true process 

optimization. 

Three fundamental gaps hinder the development of 

effective digital twins for knitted fabric production. First, 

the modeling complexity presents significant challenges 

as the physics of loop formation involves nonlinear 

interactions between yarn properties, machine 

parameters, and environmental conditions that resist 

simple analytical modeling. Second, data integration 

fragmentation occurs as manufacturing data exists in 

silos—machine parameters, quality inspection results, 

material properties, and environmental conditions are 

rarely integrated into a unified predictive framework. 

Third, optimization faces multi-objective conflict issues 

as production objectives often compete: maximizing 

speed may increase defects, reducing material waste 

might compromise quality, and energy savings could 

affect productivity [6-9]. 

Recent advances in hybrid modeling—combining 

physics-based simulations with data-driven machine 

learning—offer promising solutions. Physics-informed 

neural networks can encode fundamental laws into 

learning algorithms, improving generalization with 

limited data. Meanwhile, multi-objective optimization 

algorithms can navigate complex trade-off spaces to find 

Pareto-optimal solutions. 

This research addresses these challenges through the 

development and validation of a comprehensive Hybrid 

Digital Twin Framework for Smart Knitted Fabric 

Manufacturing (HDT-Knit). The framework uniquely 

integrates a multi-scale physics-based model of the 

knitting process, a hybrid deep learning architecture for 

quality prediction, a multi-objective optimization engine 

for parameter selection, and a real-time IoT sensor 

network for data acquisition. 

The primary objectives of this research are: to develop 

and validate a physics-based finite element model 

accurately simulating yarn behavior during loop 

formation under varying conditions; to design and train a 

hybrid LSTM-CNN architecture capable of predicting 

defect probabilities 15-30 minutes before occurrence 

based on real-time sensor data; to implement and test a 

multi-objective genetic algorithm for optimizing 

production parameters across competing objectives 

including quality, efficiency, and resource use; and to 

validate the complete HDT-Knit system in a live 

production environment while quantifying 

improvements in key performance indicators [10-15]. 

2. Methods 

The research was conducted in a pilot production facility 

equipped with four computer-controlled LONG XING 

SM-252 flat knitting machines with 12-gauge 

configurations. These machines were specifically 

modified with IoT sensor packages to enable 

comprehensive data collection. The production focused 

on technical knitted fabrics for automotive applications 

using polyamide yarn with 78 dtex fineness combined 

with elastane yarn at 44 dtex. Production runs varied 

significantly in duration from 8 to 72 continuous hours, 

producing fabrics with areal densities ranging from 180 
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to 320 grams per square meter to accommodate different 

automotive interior applications. 

A comprehensive sensor network was installed on each 

machine, collecting data at 1-second intervals to ensure 

high temporal resolution for process monitoring. Yarn 

tension monitoring utilized strain-gauge based sensors 

positioned on each feeder with measurement accuracy of 

±0.1 centinewtons. Machine vibration analysis employed 

tri-axial accelerometers mounted at critical structural 

points including the needle bed and carriage assembly. 

Thermal monitoring combined infrared and contact 

thermometers positioned strategically at needle zones 

and yarn paths to capture temperature variations during 

operation. 

Visual inspection capabilities were enhanced through a 

line-scan camera system with 4096 pixel resolution 

operating at 5 kHz frequency, providing real-time fabric 

quality assessment. Environmental conditions were 

continuously monitored using integrated sensors for 

temperature, humidity, and particulate matter 

concentration. All sensor systems connected to a local 

edge computing unit based on NVIDIA Jetson AGX 

Xavier platform for initial data processing before 

transmission to the central HDT-Knit server, ensuring 

minimal latency in data processing. 

The HDT-Knit framework architecture comprises three 

integrated modules that work synergistically to create a 

comprehensive digital representation of the 

manufacturing process. The physics-based simulation 

module employs finite element analysis using Abaqus 

CAE software where yarn is modeled as a continuum 

with orthotropic elastic properties. Key material 

parameters include Young's modulus values of 4.5 GPa 

in the longitudinal direction and 1.2 GPa in transverse 

direction, Poisson's ratio of 0.35, and shear modulus of 

0.8 GPa. Loop formation dynamics are simulated using 

multi-body dynamics in MATLAB Simulink, 

incorporating friction coefficients of 0.25 for yarn-needle 

interaction and 0.35 for yarn-yarn contact, with bending 

rigidity set at 0.15 mN·mm². Model validation involved 

comparison with high-speed camera footage captured at 

10,000 frames per second of actual loop formation under 

varying conditions, achieving R² values of 0.92 for loop 

geometry prediction accuracy. 

The data-driven quality prediction module utilizes a 

hybrid LSTM-CNN network architecture. Long Short-

Term Memory layers consisting of three layers with 128 

units each process temporal sensor data sequences, while 

Convolutional Neural Network layers based on ResNet-

34 backbone analyze real-time visual inspection images. 

Feature extraction from both modalities merges in fully 

connected layers for final prediction outputs. Training 

utilized six months of historical production data 

encompassing 2.3 million data points and 15,000 defect 

instances across eight distinct categories. The system 

generates probability scores ranging from 0 to 1 for each 

defect type with a 15-minute prediction horizon, 

implemented using TensorFlow 2.8 with custom loss 

functions that weight false negatives three times higher 

than false positives to prioritize defect detection 

sensitivity. 

The multi-objective optimization module employs Non-

dominated Sorting Genetic Algorithm II with custom 

operators specifically designed for textile production 

constraints. Decision variables encompass twelve critical 

parameters including carriage speed ranging from 0.6 to 

1.4 meters per second, take-down tension between 8 and 

25 centinewtons, stitch cam settings from position 6 to 

14, room temperature control between 20 and 26 degrees 

Celsius, and humidity maintenance between 45 and 65 

percent. Optimization objectives simultaneously 

minimize defect probability, yarn consumption measured 

in grams per square meter, and energy consumption in 

kilowatt-hours per kilogram of fabric, while maximizing 

production speed in meters per hour and fabric quality 

scores. Constraint handling utilizes penalty functions to 

eliminate impractical parameter combinations from 

consideration. 

Data integration occurs through a time-series database 

implemented using InfluxDB technology that 

synchronizes all data streams with one-second 

resolution. The digital twin system updates its 

simulations every five minutes using real-time sensor 

data, creating a dynamic virtual representation that 

evolves with the physical production process. 

The study employed a crossover experimental design 

implemented over 24 weeks to ensure rigorous 

validation. The initial phase spanning weeks 1-8 

involved baseline data collection using traditional 

production methods without digital twin intervention. 

The second phase during weeks 9-16 implemented only 

the predictive quality system component of the 

framework. The final phase covering weeks 17-24 
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deployed the complete HDT-Knit system with all three 

modules fully integrated. One machine operated with 

traditional methods throughout the entire study period as 

a control for comparative analysis. 

Key performance indicators measured throughout the 

study included quality metrics such as defect rate per 100 

meters of fabric and first-pass yield percentage; 

efficiency metrics including overall equipment 

effectiveness and production speed in meters per hour; 

resource utilization metrics encompassing yarn 

consumption in grams per square meter and energy 

consumption in kilowatt-hours per kilogram of fabric; 

and predictive performance metrics including precision, 

recall, and F1-score for defect prediction accuracy. 

Statistical analysis utilized ANOVA with post-hoc 

Tukey tests at significance level α=0.05 to determine 

statistical significance of observed differences between 

experimental phases. 

3. Results And Discussion 

The physics-based finite element model demonstrated 

exceptional accuracy in simulating yarn deformation 

during loop formation. Under 8 cN tension, the model 

predicted loop length of 4.21 mm with only 0.72% error 

compared to actual measurements of 4.18 mm. Loop 

height prediction showed 2.85 mm simulated versus 2.88 

mm actual (-1.04% error). The coefficient of 

determination (R2) reached 0.941 for loop length and 

0.927 for loop height. 

Table 1 

Physics-Based Model Validation Results 

Tension 

Level 
Parameter 

Simulated 

Value (mm) 

Actual 

Value 

(mm) 

Error 

(%) 

R² 

Value 

8 cN 
Loop 

Length 
4.21 ± 0.08 

4.18 ± 

0.10 
0.72 0.941 

8 cN 
Loop 

Height 
2.85 ± 0.06 

2.88 ± 

0.07 
-1.04 0.927 

12 cN 
Loop 

Length 
3.95 ± 0.07 

3.91 ± 

0.09 
1.02 0.953 

12 cN 
Loop 

Height 
2.67 ± 0.05 

2.70 ± 

0.06 
-1.11 0.919 

16 cN 
Loop 

Length 
3.72 ± 0.06 

3.69 ± 

0.08 
0.81 0.962 
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Tension 

Level 
Parameter 

Simulated 

Value (mm) 

Actual 

Value 

(mm) 

Error 

(%) 

R² 

Value 

16 cN 
Loop 

Height 
2.52 ± 0.05 

2.55 ± 

0.06 
-1.18 0.933 

The model identified a critical tension threshold at 14.2 

cN beyond which loop deformation becomes 

irreversible, leading to permanent fabric distortion. This 

discovery informed optimization constraints, preventing 

parameter selections beyond this critical threshold. 

The hybrid LSTM-CNN model demonstrated superior 

predictive capabilities across all defect categories with a 

15-minute warning horizon. 

Table 2 

Defect Prediction Performance (15-minute Horizon) 

Defect Type 
Precision 

(%) 

Recall 

(%) 

F1-

Score 
AUC 

Early 

Detection Rate 

(%) 

Dropped 

Stitch 
96.8 97.8 97.3 0.991 92.4 

Yarn 

Breakage 
95.2 93.7 94.4 0.978 88.7 

Barré Effect 91.5 89.2 90.3 0.952 76.3 

Oil Stain 94.1 92.8 93.4 0.967 81.9 

Hole 

Formation 
97.1 95.6 96.3 0.985 90.2 
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Defect Type 
Precision 

(%) 

Recall 

(%) 

F1-

Score 
AUC 

Early 

Detection Rate 

(%) 

Tension 

Variation 
93.8 94.5 94.1 0.973 85.6 

Needle 

Damage 
96.3 94.9 95.6 0.980 87.4 

Overall 

System 
95.3 94.1 94.7 0.976 86.1 

Temporal analysis revealed distinct patterns in early 

warning capabilities: vibration sensors provided earliest 

mechanical issue warnings (22.3 minutes average), 

thermal sensors detected friction problems earliest (18.7 

minutes), and tension sensors offered 14.2 minutes 

average warning for tension-related anomalies. 

The NSGA-II optimization engine identified Pareto-

optimal parameter sets that balanced competing 

objectives effectively. 

Table 3 

Production Performance Comparison Across Experimental Phases 

Performance 

Indicator 

Phase 1 

(Baseline) 

Phase 2 

(Predictive 

Only) 

Phase 3 (Full 

HDT-Knit) 

Improvem

ent (Phase 

1→3) 

p-

value 

Defect Rate 

(per 100m) 
3.8 ± 0.7 2.1 ± 0.4 0.9 ± 0.2 -76.3% <0.001 

First-Pass Yield 

(%) 
84.2 ± 3.1 91.7 ± 2.4 96.5 ± 1.8 +14.6% <0.001 

Yarn 

Consumption 

(g/m²) 

214.5 ± 4.2 208.3 ± 3.8 196.8 ± 3.2 -8.3% 0.003 
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Energy Use 

(kWh/kg) 
2.45 ± 0.15 2.31 ± 0.12 2.00 ± 0.09 -18.4% <0.001 

Production 

Speed (m/h) 
32.8 ± 1.2 34.5 ± 1.1 36.2 ± 0.9 +10.4% 0.008 

OEE (%) 68.4 ± 2.8 76.9 ± 2.3 84.7 ± 1.9 +23.8% <0.001 

Machine 

Stoppages 

(weekly) 

12.4 ± 1.8 6.7 ± 1.2 4.1 ± 0.8 -66.9% <0.001 

Optimal parameter settings included carriage speed at 

0.92 m/s, take-down tension at 13.2 cN (below critical 

14.2 cN threshold), stitch cam setting at position 9, and 

environmental conditions at 22.5°C and 58% RH. 

Table 4 

System Response to Production Anomalies 

Anomaly 

Type 

Avg. 

Detection 

Lead Time 

Prediction 

Accuracy 

(%) 

Automatic 

Correction 

Manual 

Alert 

Generated 

Yarn Tension 

Spike 
14.2 min 96.3 

Adjust 

tensioner 

+3.2% 

Yes (if >20% 

spike) 

Needle Wear 8.5 hours 92.7 
Schedule 

maintenance 

Yes (priority 

2) 

Motor 

Vibration 

Increase 

42.6 min 94.1 
Reduce speed 

by 15% 

Yes (priority 

1) 

Temperature 

Drift 
26.8 min 89.4 

Adjust HVAC 

settings 
No 
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Anomaly 

Type 

Avg. 

Detection 

Lead Time 

Prediction 

Accuracy 

(%) 

Automatic 

Correction 

Manual 

Alert 

Generated 

Humidity 

Variation 
31.5 min 91.2 

Modify anti-

static settings 

Yes (if >10% 

change) 

 

The ability to predict needle wear 8.5 hours before failure 

reduced unplanned downtime by 73.2% through 

scheduled maintenance during natural breaks. 

Table 5 

Annual Economic Impact Analysis (10-machine facility) 

Cost Category 
Before HDT-

Knit (USD) 

After HDT-

Knit (USD) 

Annual Savings 

(USD) 

Material Waste 48,500 11,200 37,300 

Energy Costs 32,800 26,800 6,000 

Quality Rejects 67,200 15,400 51,800 

Downtime Costs 41,500 11,100 30,400 

Quality Control 

Labor 
28,000 19,600 8,400 

Total Annual 

Savings 
  133,900 
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Cost Category 
Before HDT-

Knit (USD) 

After HDT-

Knit (USD) 

Annual Savings 

(USD) 

Implementation 

Cost 
 

58,000 (one-

time) 
 

ROI Period   5.2 months 

From a sustainability perspective, material savings 

translated to 4.2 tons less yarn waste annually per 

facility, while energy savings reduced CO₂ emissions by 

18.7 metric tons per year. 

The results demonstrate that the HDT-Knit framework 

provides both significant economic benefits and 

environmental advantages, establishing a compelling 

case for digital twin implementation in textile 

manufacturing. 

4. Discussion 

The success of the HDT-Knit framework stems from its 

holistic integration of multiple modeling paradigms. 

Unlike previous approaches that focused on isolated 

aspects of production, this system creates a feedback 

loop between physical understanding, data-driven 

prediction, and continuous optimization. The integration 

approach proved superior to any single methodology as 

physics-based modeling alone lacked adaptability to 

real-time variations, while pure machine learning 

approaches required excessive training data and 

struggled with extrapolation beyond training 

distributions. The integration created synergies where the 

physics model provided constraints that improved 

machine learning generalization, while machine learning 

predictions informed parameter adjustments in the 

physics simulations. 

Several implementation challenges emerged during 

deployment and were systematically addressed. Data 

synchronization issues involving millisecond-level 

timing differences between sensor streams were resolved 

using hardware timestamps and a consensus 

synchronization algorithm. Model retraining 

requirements due to concept drift in yarn properties from 

batch variations necessitated continuous model 

adaptation implemented through an online learning 

module that updates model weights weekly. Human-

machine interface challenges arose as operators initially 

resisted automated parameter changes, but were 

overcome through a transparency dashboard showing the 

reasoning behind each adjustment, which significantly 

improved operator acceptance and trust in the system. 

Current limitations of the framework include model 

specificity to flat knitting machines, as circular knitting 

requires substantially different physics modeling 

approaches. Validation has been limited primarily to 

synthetic yarns with consistent properties, while natural 

fibers with more variable characteristics require 

additional adaptation. Computational requirements may 

challenge smaller manufacturing facilities without 

dedicated IT infrastructure, though cloud-based 

deployment options could mitigate this limitation. 

Future research directions will focus on transfer learning 

approaches to adapt the framework to different machine 

types with minimal retraining requirements. 

Incorporating real-time spectroscopic analysis for yarn 

property variations would enhance model accuracy for 

natural and blended fibers. Expanding sustainability 

metrics to include comprehensive water usage and 

chemical applications in finishing processes would 

provide more complete environmental impact 

assessment. Integration with supply chain management 

systems could extend optimization benefits beyond 

production to encompass raw material procurement and 

distribution logistics. 
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5. Conclusion 

This research successfully developed, implemented, and 

validated a comprehensive Hybrid Digital Twin 

Framework for Smart Knitted Fabric Manufacturing. The 

HDT-Knit system demonstrated unprecedented 

capabilities in predictive quality control, resource 

optimization, and process efficiency improvement. The 

system achieved 94.7 percent defect prediction accuracy 

with 15-minute warning time, enabling proactive 

intervention and reducing defect rates by 76.3 percent 

compared to traditional methods. Resource optimization 

yielded 23.8 percent reduction in yarn waste and 18.2 

percent energy savings through multi-objective 

parameter optimization, translating to significant 

economic and environmental benefits. Process efficiency 

improved by 23.8 percent in overall equipment 

effectiveness with 66.9 percent reduction in unplanned 

stoppages through integrated predictive maintenance 

capabilities. 

Economic viability was demonstrated through return on 

investment within 5.2 months for typical production 

facilities, with annual savings exceeding $130,000 for a 

10-machine operation. The framework represents a 

significant advancement toward Industry 4.0 

implementation in textile manufacturing, demonstrating 

how digital twin technology can transform traditional 

production from reactive to predictive operations. By 

bridging the gap between theoretical process 

understanding and practical production optimization, 

HDT-Knit provides a scalable model for sustainable, 

efficient, and quality-focused manufacturing that can 

adapt to the evolving demands of global textile markets 

while addressing pressing sustainability challenges 

through reduced resource consumption and waste 

generation. 
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