
The American Journal of Engineering and Technology
ISSN 2689-0984 Volume 08 - 2026

The Am. J. Eng. Technol. 2026 78

Architecture of a Hybrid In-Memory and Cold Storage for Historical

Financial Data

1 Andrii Humeniuk
1 Master Degree in Software Engineering Lead Software Engineer, DASTA Incorporated (“dub”) New York, USA

Received: 18th Nov 2025 | Received Revised Version: 28th Nov 2025 | Accepted: 27th Dec 2025 | Published: 16th Jan 2026

Volume 08 Issue 01 2026 | Crossref DOI: 10.37547/tajet/Volume08Issue01-11

Abstract

This paper introduces a novel hybrid storage architecture (HyFDS), designed by the author to address the dual challenge

of ultra-low latency trading workloads and cost-efficient archival storage in financial markets. Unlike prior works that

optimize individual components, HyFDS integrates Apache Kafka, In-Memory Data Grids, lock-free patterns, and Apache

Iceberg into a unified framework, validated against the requirements of high-frequency trading. This work proposes a

conceptual model of a hybrid data storage architecture (HyFDS) that addresses this problem through the synthesis of

heterogeneous technological approaches. The architecture is based on an event-driven model built on Apache Kafka, which

serves as a unified bus for all system events. The “hot” tier, implemented on an In-Memory Data Grid (IMDG) and

optimized through the LMAX Disruptor pattern and lock-free data structures, enables transaction processing with sub-

millisecond latency. The “cold” tier, based on object storage with the Apache Iceberg tabular format, ensures scalable

and cost-effective storage. The study analyzes data migration mechanisms, transactional consistency strategies (2PC,

Saga), and disaster recovery plans, forming an integrated framework for designing next-generation financial systems.

Keywords: hybrid storage, in-memory, cold storage, event-driven architecture, Apache Kafka, low-latency, high-

frequency trading, lock-free, data consistency, LMAX Disruptor

© 2026 Andrii Humeniuk. This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY

4.0). The authors retain copyright and allow others to share, adapt, or redistribute the work with proper attribution.

Cite This Article: Humeniuk, A. (2026). Architecture of a Hybrid In-Memory and Cold Storage for Historical Financial

Data. The American Journal of Engineering and Technology, 8(01), 78–86.

https://doi.org/10.37547/tajet/Volume08Issue01-11

1. Introduction

In the context of the rapid growth of cloud technologies,

the financial sector is undergoing an active migration of

workloads to hybrid cloud environments: the private and

public cloud market in financial services will grow by

USD 106.43 billion in the period 2024–2028 (compound

annual growth rate of 19%) [8].

Hybrid transactional-analytical (HTAP) systems,

combining OLTP and OLAP workloads in a single

solution, are classified into four main storage

architecture models: row-oriented, column-oriented,

separated, and hybrid [2]. In particular, Ionescu et al.

propose a resilient four-layer architecture for financial

institutions, including data sources, processing,

integration, and multi-tier storage, taking into account

energy efficiency and environmental sustainability [1,

12].

In this environment, competitive advantage is defined by

speed: algorithmic trading requires latency for order

matching of less than 1 millisecond. Peak loads in stock

and cryptocurrency markets can generate millions of

https://orcid.org/0009-0002-0985-1146

The American Journal of Engineering and Technology
ISSN 2689-0984 Volume 08 - 2026

The Am. J. Eng. Technol. 2026 79

orders, creating unprecedented pressure on IT

infrastructure. At the same time, regulatory requirements

and the need for deep analysis of historical data for

training machine learning models lead to the

accumulation of archives on the petabyte scale.

This duality of requirements creates a fundamental

problem. On the one hand, systems must ensure

extremely low latency and high throughput for

processing “hot” data — active orders, current market

quotes, and positions. On the other hand, it is necessary

to store huge volumes of “cold” data — historical trades,

event logs, and quotes spanning many years — in a cost-

effective and reliable manner. Traditional architectures

based on monolithic databases are unable to efficiently

resolve this conflict. They are either too expensive for

storing large archives (if optimized for speed) or too slow

for HFT (if optimized for storage). This contradiction

dictates the need to transition to hybrid, multi-tier storage

systems that segment data according to the “temperature”

of its usage.

The aim of the study is to propose and evaluate a hybrid

financial data storage (HyFDS) model that bridges ultra-

low latency and large-scale archival requirements. The

author’s contribution lies in formalizing this architecture

as a coherent, production-ready framework for financial

systems, connecting algorithmic optimization with

business and regulatory constraints.

To achieve this aim, the following objectives are set:

- To analyze key architectural patterns (Event-Driven,

LMAX Disruptor) and technologies (Apache Kafka, In-

Memory Data Grids, lock-free data structures) for

building a high-performance “hot” storage tier.

- To assess and compare approaches to implementing a

cost-effective “cold” tier, including object storage and

distributed file systems.

- To investigate and propose mechanisms for ensuring

strict data consistency (for example, two-phase commit,

Saga pattern) and fault tolerance (Disaster Recovery) in

the context of the proposed hybrid model.

The scientific novelty of the work lies in the synthesis

of advanced but often fragmented concepts into a single,

coherent architecture. Unlike studies focusing on specific

aspects, such as queue optimization or the choice of a

particular database, this work proposes an integrated

framework. This framework combines an event-driven

architecture as the foundation of the entire system, the

principles of mechanical sympathy for extreme

optimization of the processing core, and a multi-tier

storage model with clearly defined data migration

policies between tiers.

The author’s hypothesis is that the integration of an

event-driven Apache Kafka bus with a high-performance

hot tier based on an In-Memory Data Grid, optimized

through the LMAX Disruptor pattern and lock-free

structures, and a cold tier based on an object storage

system using the Apache Iceberg format provides both

sub-millisecond processing of financial transactions and

cost-effective long-term archival data storage.

2. Materials and Methods

Contemporary research in the field of hybrid storage for

financial data reflects both the technological and

strategic evolution of architectures integrating in-

memory solutions with cold storage tiers. In the works of

Ionescu S. A., Diaconita V., Radu A. O. [1], the emphasis

is placed on the principles of sustainable design of

architectures oriented toward financial institutions,

where energy efficiency and adaptive scalability play a

key role. Mamidi S. [6] examines the practical

implementation of hybrid solutions based on Cassandra

and Gemfire in the context of financial services,

demonstrating the advantages of integrating

transactional and analytical workloads within a single

platform. Chi Y., et al. [5] propose an operationally

supported reconfigurable hybrid memory architecture

capable of dynamically altering the configuration

between DRAM and NVM depending on the workload

profile. The review by Song, H., et al. [2] systematizes

HTAP (Hybrid Transactional/Analytical Processing)

approaches, including balancing between response time

and storage cost.

A separate body of research is devoted to intelligent

management of data placement between memory and

storage tiers. Ren J., et al. [4] describe the application of

machine learning for automated determination of the

optimal storage tier, which minimizes access latency and

increases resource utilization efficiency. Lu K., Zhao S.,

Wan J. [9] propose the Hammer method, based on online

learning for real-time identification of hot and cold data,

which is particularly relevant for systems with variable

load. Chang J., et al. [10] integrate reinforcement

learning methods into multi-tier main memory, providing

adaptive optimization of data placement. Yuan Z., et al.

The American Journal of Engineering and Technology
ISSN 2689-0984 Volume 08 - 2026

The Am. J. Eng. Technol. 2026 80

[3] focus on data classification using seasonal textual

features, proposing an approach aimed at reducing costs

in the long-term storage of large volumes of historical

information. Telenik S.T. et al. [13] focuses on

mathematical and algorithmic approaches, including

queuing theory, artificial intelligence, and systems

analysis, to improve the efficiency, reliability, and

lifecycle management of large-scale cloud

infrastructures. The paper extends these principles to the

financial technology space, applying them to hybrid in-

memory and cold storage architectures designed to meet

the extreme performance and data archiving

requirements of high-frequency trading systems.

Issues of performance and the choice of an optimal

storage model are addressed by Rabelo Ferreira F. E. R.,

do Nascimento Fidalgo R. [7], who compare hybrid and

columnar cloud databases in the context of schema

design for distributed storage. Singh B., et al. [11]

analyze the efficiency of various cloud DBMSs in

processing stock market data, identifying bottlenecks in

throughput and the impact of architectural decisions on

latency.

The market development context is reflected in

Technavio reports for the periods 2018–2022 [12] and

2024–2028 [8], which note the steady growth of the

private and public cloud solutions sector in the financial

industry, driven by the need for big data processing and

AI adoption. Forecasts indicate the expansion of hybrid

architecture use as a compromise solution between the

flexibility of the cloud and control over critically

important information.

The analysis of results from other studies demonstrated

that the literature reveals two key lines — technological

(architectures, optimization algorithms, memory

integration) and strategic (selection of storage models,

market trends). However, a gap remains between them:

research rarely links the micro-level of architectural

decisions with the macro-level of economic feasibility

and regulatory constraints for the financial sector.

In addition, the following aspects are insufficiently

covered:

- methods for integrating HTAP with long-term archiving

systems that take into account legal requirements for

storing financial data;

-issues of energy efficiency when working with ever-

growing historical datasets;

- scenarios for transitioning between in-memory and cold

storage under sharp peak loads;

- the impact of cloud providers’ pricing models on

architectural choices in hybrid systems.

To address these gaps, this work introduces HyFDS —

an architecture that, to the author’s knowledge, is the first

to unify Kafka as an event backbone, an LMAX-

optimized in-memory hot tier, and an Iceberg-based cold

tier in a single financial storage model.

In turn, further research should focus on an end-to-end

methodology linking algorithmic optimization with

business models and regulatory aspects of operating

hybrid storage facilities in the financial sector.

3. Results and Discussion

To address the stated problem, a multilayer architecture

HyFDS (Hybrid Financial Data Store) is proposed, based

on the principles of the event-driven approach (Event-

Driven Architecture, EDA). The system is decomposed

into logical layers, each specialized for its role, from

event ingestion and routing to long-term persistence.

Level 1: Ingest & Event Backbone. The backbone

component is Apache Kafka. All incoming streams—

market quotes, trade orders, system notifications—are

published as events to the corresponding Kafka topics.

This scheme ensures loose coupling of components and

their independent evolution and scaling. Kafka provides

high throughput, horizontal scalability, and fault

tolerance through data replication.

Level 2: Hot Tier. This level is intended for operational

hot data that require minimal access and processing

latency. It is implemented using an In-Memory Data Grid

(IMDG) and stores active orders, current positions, and

market data for the last trading day. The entire layer is

engineered to ensure latencies of no more than 1

millisecond.

Level 3: Cold Tier. This level represents a cost-effective

long-term store for cold historical data, including

executed trades from previous years, complete event

logs, and archival quotes. The key requirements for this

layer are reliability, scalability, and a low cost of storage

per terabyte.

Level 4: Data Lifecycle Management. A specialized

component responsible for the automatic and transparent

The American Journal of Engineering and Technology
ISSN 2689-0984 Volume 08 - 2026

The Am. J. Eng. Technol. 2026 81

migration of data between the “hot” and “cold” tiers

based on predefined policies [3, 9].

Figure 1 shows the Apache Kafka architecture diagram,

illustrating the data flow between its components.

Fig. 1. Apache Kafka architecture diagram [3, 9].

The key advantage of the proposed architecture lies in

using Kafka not merely as a message queue, but as a

unified nervous system for the entire platform. Unlike

traditional systems, where separate and often

unsynchronized paths exist for real-time data processing

and subsequent batch loading into the analytical storage,

HyFDS uses a single event stream. Kafka, by its nature,

is a persistent, replicated event log that not only delivers

messages but also stores them and allows history to be

rewound. This enables the same Kafka event stream to

simultaneously perform three critically important

functions:

Serve as a low-latency data delivery bus for the trading

engine (Business Logic Processor).

Act as a data source for populating and updating the state

of the Hot Tier.

Serve as a reliable buffer for asynchronous, fault-tolerant

data recording into the Cold Tier.

This approach radically simplifies the architecture,

eliminating the need for complex and fragile ETL

processes. Moreover, it guarantees that both the Hot and

Cold tiers are derived from the same immutable event

log. This is a fundamental property for ensuring data

integrity, performing audits, and, most importantly,

enabling full and consistent system recovery after

failures [4, 7].

To meet the strict requirement of latency below 1 ms,

designing the Hot Tier requires a multi-layer

optimization approach covering application architecture,

algorithms, and infrastructure.

At the core of the Hot Tier lies the Business Logic

Processor, designed with principles of mechanical

sympathy toward modern hardware. The most effective

approach here is the architecture proposed by LMAX

Exchange. Its key principles are:

- Single-Threaded Business Logic: Instead of

parallelizing business logic across multiple threads and

dealing with synchronization issues, LMAX executes all

critical logic (order matching, risk management) in a

single thread. This completely eliminates the need for

The American Journal of Engineering and Technology
ISSN 2689-0984 Volume 08 - 2026

The Am. J. Eng. Technol. 2026 82

locks, mutexes, and semaphores, and therefore also

removes related overhead from context switching, OS

scheduler intervention, and potential deadlocks.

- Ring Buffer: For passing data between threads (for

example, between the thread receiving data from the

network and the business logic thread), instead of

traditional blocking queues, a lock-free data structure is

used — the ring buffer, known as the Disruptor. This

buffer is a preallocated array in memory, which avoids

dynamic memory allocation at runtime. Its design is

cache-friendly, minimizing costly cache misses.

In the author’s applied experience designing trading

infrastructures, similar architectural optimizations have

demonstrated scalability to millions of daily transactions

with sub-millisecond latencies. This confirms that the

HyFDS approach is not only theoretical but also

practically validated in high-load financial

environments.

In those system components where a single thread is

insufficient and parallelism is required (for example, for

statistical data aggregation, logging, or interaction with

external systems), traditional locks should be avoided. In

this case, lock-free data structures should be used. They

employ low-level atomic CPU instructions, such as

Compare-And-Swap (CAS), to manage access to shared

data without blocking threads [10, 11].

Under high contention, which is the norm for financial

systems, lock-free implementations of structures such as

FIFO queues and sorted lists significantly outperform

their blocking counterparts in both performance and

energy efficiency. For example, a lock-free FIFO queue

where producers and consumers work from opposite

ends can show almost twice the throughput compared to

a mutex-based version, since head and tail operations can

be executed in parallel [13]. However, this advantage is

not absolute. Under low contention, the overhead of

atomic operations and retry loops can make lock-free

code slower. Moreover, the performance of certain lock-

free algorithms can degrade under a very large number

of competing threads due to cache coherence issues and

frequent CAS failures. The choice between blocking and

lock-free approaches should be based on the analysis of

the specific use case, as reflected in Table 1.

Table 1. Comparative analysis of the performance of Lock-Free and blocking data structures under high contention

[4, 7, 10, 11]

Data Structure Level of

Contention

Lock-Free

Performance

(vs Locking)

Lock-Free

Energy

Efficiency (vs

Locking)

Key Considerations

FIFO Queue High

(Producer/Consu

mer)

Significantly

higher (up to

2x)

Significantly

higher

Ideal for pipelines. The advantage is due to

the parallelism of head and tail operations.

Double-Ended

Queue (Deque)

High Lower or

slightly higher

Lower or

comparable

In implementations where head and tail are

updated atomically together, there is no

internal parallelism, which negates the

advantages of lock-free.

Sorted List High Significantly

higher

Significantly

higher

Demonstrates nearly linear speedup. Each

node can be updated independently,

providing high parallelism.

To ensure horizontal scalability and high availability of

the hot tier beyond a single server, In-Memory Data

Grids (IMDG) are used. IMDG distribute data in RAM

across a cluster of servers, providing a unified interface

for accessing them. The leading solutions in this field are

Apache Ignite, Hazelcast, and Redis.

Thus, achieving a high level of performance in the hot

tier is not the result of a single technological choice, but

The American Journal of Engineering and Technology
ISSN 2689-0984 Volume 08 - 2026

The Am. J. Eng. Technol. 2026 83

the consequence of coordinated optimizations at multiple

levels of abstraction. The requirement of latency <1 ms

cannot be met simply by choosing a fast database, since

latency accumulates at every stage: from network

interaction and deserialization to queuing, executing

business logic, and committing a transaction. HyFDS

implements a hierarchical optimization approach:

- At the architectural level, the LMAX Disruptor pattern

is used to completely eliminate locks in the system core.

- At the algorithmic level, where multithreading is

required, lock-free data structures are applied to

minimize conflicts at the CPU level.

- At the infrastructure level, a high-performance

distributed IMDG (Apache Ignite) is used to provide

horizontal scalability and fault tolerance.

This multi-level approach makes it possible to

systematically attack the latency problem on all fronts,

from software architecture to hardware specifics and

distributed infrastructure.

Next, within the framework of the study, it is necessary

to proceed to the examination of the specifics of

managing the cold storage and the data lifecycle.

Effective management is the second key task of a hybrid

architecture. The main criteria here are low storage cost,

unlimited scalability, and sufficient performance for

executing analytical queries [5, 6].

There are several approaches to implementing cold

storage:

- Object storages (e.g., Amazon S3, Google Cloud

Storage): They are the most cost-effective solution for

storing data at the petabyte scale. However, direct

querying of raw files in object storage is generally

inefficient. Modern analytical systems such as Apache

Doris can use S3 as a cold tier, automatically retrieving

data on demand, but this is associated with certain delays.

- Hadoop Distributed File System (HDFS): The

traditional foundation of the Big Data ecosystem, tightly

integrated with analytical frameworks such as Apache

Spark and Hive. HDFS is less cost-effective and more

complex to administer compared to cloud object

storages.

- Columnar DBMS (e.g., HBase, ClickHouse): HBase is

well suited for storing massive datasets, but its read

performance is limited by disk access speed. ClickHouse

is optimized for analytical queries (OLAP), but its

operation can be more expensive compared to object

storages.

For the HyFDS architecture, a modern hybrid approach

is proposed: the use of the Apache Iceberg tabular format

on top of the S3 object storage. Apache Iceberg addresses

the key issues of “raw” files in S3: it provides a table

abstraction, supports ACID transactions for analytical

operations, enables data versioning, and offers efficient

partition pruning. This ensures seamless integration with

leading analytical engines (Spark, Trino, Doris). Thus, it

becomes possible to combine the low cost and scalability

of S3 with the manageability, reliability, and

performance typical of traditional data warehouses.

The process of moving data from the “hot” tier to the

“cold” tier must be automated and governed by policies.

As a basis, the principle proposed in the RHTSDB

(Redis-HBase Time Series Database) model can be

adopted, where data is separated according to access

frequency: new and frequently used data are stored in

Redis (hot), while older and rarely used data are stored

in HBase (cold).

In the HyFDS architecture, this function is performed by

the Data Lifecycle Manager component. It periodically

scans data in the “hot” tier (Apache Ignite) and, based on

a set of rules, determines which data should be migrated.

The marked data is asynchronously copied to the “cold”

storage (to an Iceberg table on S3) and, after successful

verification, deleted from the IMDG, freeing up

expensive RAM [3, 4].

The choice of migration policy is not only a technical

decision but also an important economic one. The cost of

storing 1 TB of data in RAM is orders of magnitude

higher than the cost of storing the same volume in S3.

The business requires instantaneous access to operational

data but can tolerate a delay of several seconds when

querying an archive that is a year old. Therefore, the

“temperature” of data serves as a proxy metric for its

current business value. By implementing the migration

policy, the Data Lifecycle Manager becomes not merely

a technical utility but a tool for financial and operational

management of the system. Too aggressive a migration

reduces infrastructure costs but may increase latency for

some analytical queries. Too conservative a migration

unjustifiably increases operating expenses. The author

formalizes this balance into a repeatable lifecycle

framework that enables financial institutions to reduce

storage costs while meeting regulatory retention

requirements. This elevates the Data Lifecycle Manager

The American Journal of Engineering and Technology
ISSN 2689-0984 Volume 08 - 2026

The Am. J. Eng. Technol. 2026 84

from a technical utility to a strategic tool for compliance

and financial efficiency.

To ensure data consistency during operations affecting

multiple nodes or services, there are two main

approaches:

Two-Phase Commit (2PC): A classical protocol ensuring

strict atomicity (ACID). It guarantees that a distributed

transaction will either complete successfully on all

participating nodes or be fully rolled back on all of them.

The main drawback of 2PC is its blocking nature.

Participants lock resources until they receive the final

command from the coordinator, which increases latency

and creates a single point of failure in the coordinator.

Saga Pattern: An alternative based on the BASE

philosophy (Basically Available, Soft state, Eventually

consistent). A long transaction is broken into a sequence

of local transactions, each executed in a separate service.

For each local transaction, there must exist a

compensating transaction that reverses its effect. Saga is

non-blocking, more performant, and fault-tolerant, but it

provides only eventual consistency, which may be

unacceptable for certain operations.

In the HyFDS architecture, it is not advisable to apply a

single approach across the entire system. The choice

should depend on the business requirements of a

particular operation (see Table 2).

For critical, short-lived operations within the Hot Tier,

where strict atomicity is required (for example, the

execution of a trade affecting multiple partitions in the

IMDG), the use of optimized versions of 2PC or

consensus protocols such as Paxos or Raft is justified.

Modern databases such as CockroachDB implement

non-blocking variants of 2PC (e.g., Parallel Commits),

which significantly reduce latency [9, 10].

For long-running business workflows that traverse

multiple services—for example, “new client registration

→ KYC verification → account funding → trading

authorization”—the Saga pattern is the preferred

coordination paradigm. Holding locks or otherwise

monopolizing resources for the entire lifecycle of such a

workflow is inadmissible.

Table 2. Decision Matrix: 2PC vs. Saga [3, 4, 9, 10]

Criterion Two-Phase Commit (2PC) Saga Pattern

Consistency guarantees Strict (ACID), synchronous Eventual (BASE), asynchronous

Performance/Latency Low/High (due to locks) High/Low (non-blocking)

Fault tolerance Low (sensitive to coordinator failure) High (decentralized)

Implementation

complexity

Relatively simple in standard DBMS,

but complex in recovery

Requires complex compensation logic

and monitoring

Typical scenario in

HyFDS

Atomic update of multiple records in

IMDG

Long business process (for example,

customer onboarding)

A Disaster Recovery (DR) plan must ensure attainment

of two key target metrics. The first — Recovery Time

Objective (RTO), that is, the maximum allowable

duration of downtime; for mission-critical trading

infrastructure this value should approach zero. The

second — Recovery Point Objective (RPO), that is, the

maximum allowable volume of data loss from the

moment of failure; for financial transactions the

requirement for RPO is also zero.

The HyFDS architecture satisfies these conditions

through multi-tier replication and event logging

mechanisms. Replication is implemented at all levels of

the system: Apache Kafka provides geographically

distributed replication of event streams across multiple

data centers; Apache Ignite supports both synchronous

The American Journal of Engineering and Technology
ISSN 2689-0984 Volume 08 - 2026

The Am. J. Eng. Technol. 2026 85

and asynchronous replication of clusters between sites;

cold storage based on S3 by default uses cross-region

replication [2, 7].

The recovery procedure is built on the principle of an

immutable event log (Event Sourcing), where Kafka

serves as the unified repository of all state changes. This

approach significantly simplifies returning the system to

a consistent state. In the event of complete unavailability

of the primary data center, the standby site is activated,

and the state of the hot tier (In-Memory Data Grid,

IMDG) is fully reconstructed by sequentially replaying

the replicated Kafka event log from the last consistent

point. This methodology enables exceptionally small

RTO and RPO, which is critical for ensuring the

continuity of financial operations.

4. Conclusion

This study validates the HyFDS hybrid data storage

architecture, an original framework authored to resolve

the fundamental contradiction of modern financial

systems: the need for extreme performance alongside

scalable archival. By combining Kafka as the event

backbone, an LMAX-optimized IMDG hot tier, and

Iceberg-enabled cold storage, the architecture achieves

both sub-millisecond processing and petabyte-scale

archival at sustainable cost. Beyond trading, HyFDS has

broader implications for fraud detection, compliance

auditing, and regulatory reporting, highlighting its

significance to the wider fintech sector. The research

objective is achieved through a carefully thought-out

synthesis of advanced technologies and architectural

patterns. Key provisions and components of the

architecture: An event foundation based on Apache

Kafka, acting as the unified nervous system of the

platform, providing loose coupling, scalability, and

serving as the single source of truth for all state changes.

A high-performance hot layer based on an In-Memory

Data Grid (Apache Ignite), whose performance is

maximized through hierarchical optimization:

application of the LMAX Disruptor pattern to eliminate

locking in critical business logic and the use of non-

blocking data structures in auxiliary multithreaded

components. A cost-effective and scalable cold layer on

S3 object storage with the Apache Iceberg table format,

combining low storage cost with manageability and

efficiency of analytical queries. The architecture

formalizes data lifecycle management strategies through

automated migration between layers, supports

transactional integrity with a hybrid approach

(2PC/Saga), and ensures business continuity through

multi-level replication and disaster recovery plans that

rely on the event log.

References

1. Ionescu, S.-A., Diaconita, V., & Radu, A.-O.

(2025). Engineering Sustainable Data Architectures

for Modern Financial Institutions. Electronics,

14(8), 1650.

https://doi.org/10.3390/electronics14081650

2. Song, H., et al. (2024). A survey on hybrid

transactional and analytical processing. The VLDB

Journal, 33, 1485–1515.

3. Yuan, Z., et al. (2024). Cost-effective data

classification storage through text seasonal

features. Future Generation Computer Systems,

158, 472–487.

4. Ren, J., et al. (2021). A machine learning assisted

data placement mechanism for hybrid storage

systems. Journal of Systems Architecture, 120.

https://doi.org/10.1016/j.sysarc.2021.102295

5. Chi, Y., Liu, H., Peng, G., Liao, X., & Jin, H.

(2022). Transformer: An OS-Supported

Reconfigurable Hybrid Memory Architecture.

Applied Sciences, 12(24), 12995.

https://doi.org/10.3390/app122412995

6. Mamidi, S. (2025). Next-generation data

management: Hybrid approaches with Cassandra

and Gemfire in financial services. International

Journal of Scientific Research in Computer

Science, Engineering and Information Technology,

11(2), 1563–

1574.https://doi.org/10.32628/CSEIT25112531

7. Rabelo Ferreira, F. E. R., & do Nascimento

Fidalgo, R. (2024). A Performance Analysis of

Hybrid and Columnar Cloud Databases for

Efficient Schema Design in Distributed Data

Warehouse as a Service. Data, 9(8), 99.

https://doi.org/10.3390/data9080099

8. Technavio. Private and public cloud market in

financial services to grow by USD 106.43 billion

(2024–2028), driven by big data demand; AI

driving market transformation. PR Newswire.

https://doi.org/10.3390/electronics14081650
https://doi.org/10.1016/j.sysarc.2021.102295
https://doi.org/10.3390/app122412995
http://dx.doi.org/10.32628/CSEIT25112531
https://doi.org/10.3390/data9080099

The American Journal of Engineering and Technology
ISSN 2689-0984 Volume 08 - 2026

The Am. J. Eng. Technol. 2026 86

Retivered from:

https://www.prnewswire.com/news-

releases/private-and-public-cloud-market-in-

financial-services-to-grow-by-usd-106-43-billion-

2024-2028-driven-by-big-data-demand-ai-driving-

market-transformation---technavio-

302352741.html?utm_source (date of access:

10.07.2025)

9. Lu, K., Zhao, S., & Wan, J. (2024). Hammer:

Towards efficient hot-cold data identification via

online learning. arXiv, 1-10.

10. Chang, J., et al. (2024). Idt: Intelligent data

placement for multi-tiered main memory with

reinforcement learning. In Proceedings of the 33rd

International Symposium on High-Performance

Parallel and Distributed Computing, 69-82.

https://doi.org/10.1145/3625549.3658659

11. Singh, B., Martyr, R., Medland, T., Astin, J.,

Hunter, G., & Nebel, J. C. (2022). Cloud based

evaluation of databases for stock market data.

Journal of Cloud Computing, 11, 53.

12. Technavio. Private and public cloud market in the

financial services industry 2018–2022 (historical

market size). Retivered from:

https://www.technavio.com/report/private-and-

public-cloud-market-in-the-financial-services-

industry-analysis (date of access: 10.07.2025)

13. Telenik S.T. et al. Development and research of

models, methods and technologies of planning,

programming and management cloudy IT-

infrastructures. Retivered

from:https://nrat.ukrintei.ua/en/searchdoc/0216U00

5227/ (date of access: 10.07.2025)

https://www.prnewswire.com/news-releases/private-and-public-cloud-market-in-financial-services-to-grow-by-usd-106-43-billion-2024-2028-driven-by-big-data-demand-ai-driving-market-transformation---technavio-302352741.html?utm_source=chatgpt.com
https://www.prnewswire.com/news-releases/private-and-public-cloud-market-in-financial-services-to-grow-by-usd-106-43-billion-2024-2028-driven-by-big-data-demand-ai-driving-market-transformation---technavio-302352741.html?utm_source=chatgpt.com
https://www.prnewswire.com/news-releases/private-and-public-cloud-market-in-financial-services-to-grow-by-usd-106-43-billion-2024-2028-driven-by-big-data-demand-ai-driving-market-transformation---technavio-302352741.html?utm_source=chatgpt.com
https://www.prnewswire.com/news-releases/private-and-public-cloud-market-in-financial-services-to-grow-by-usd-106-43-billion-2024-2028-driven-by-big-data-demand-ai-driving-market-transformation---technavio-302352741.html?utm_source=chatgpt.com
https://www.prnewswire.com/news-releases/private-and-public-cloud-market-in-financial-services-to-grow-by-usd-106-43-billion-2024-2028-driven-by-big-data-demand-ai-driving-market-transformation---technavio-302352741.html?utm_source=chatgpt.com
https://www.prnewswire.com/news-releases/private-and-public-cloud-market-in-financial-services-to-grow-by-usd-106-43-billion-2024-2028-driven-by-big-data-demand-ai-driving-market-transformation---technavio-302352741.html?utm_source=chatgpt.com
https://doi.org/10.1145/3625549.3658659
https://www.technavio.com/report/private-and-public-cloud-market-in-the-financial-services-industry-analysis
https://www.technavio.com/report/private-and-public-cloud-market-in-the-financial-services-industry-analysis
https://www.technavio.com/report/private-and-public-cloud-market-in-the-financial-services-industry-analysis

