The American Journal of Engineering and Technology
ISSN 2689-0984 Volume 08 - 2026

Architecture of a Hybrid In-Memory and Cold Storage for Historical
Financial Data

! Andrii Humeniuk
! Master Degree in Software Engineering Lead Software Engineer, DASTA Incorporated (“dub”) New York, USA

Received: 18" Nov 2025 | Received Revised Version: 28" Nov 2025 | Accepted: 27" Dec 2025 | Published: 16™ Jan 2026

Volume 08 Issue 01 2026 | Crossref DOI: 10.37547/tajet/\Volume08lssue01-11

Abstract

This paper introduces a novel hybrid storage architecture (HyFDS), designed by the author to address the dual challenge
of ultra-low latency trading workloads and cost-efficient archival storage in financial markets. Unlike prior works that
optimize individual components, HyFDS integrates Apache Kafka, In-Memory Data Grids, lock-free patterns, and Apache
Iceberg into a unified framework, validated against the requirements of high-frequency trading. This work proposes a
conceptual model of a hybrid data storage architecture (HyFDS) that addresses this problem through the synthesis of
heterogeneous technological approaches. The architecture is based on an event-driven model built on Apache Kafka, which
serves as a unified bus for all system events. The “hot” tier, implemented on an In-Memory Data Grid (IMDG) and
optimized through the LMAX Disruptor pattern and lock-free data structures, enables transaction processing with sub-
millisecond latency. The “cold” tier, based on object storage with the Apache Iceberg tabular format, ensures scalable
and cost-effective storage. The study analyzes data migration mechanisms, transactional consistency strategies (2PC,
Saga), and disaster recovery plans, forming an integrated framework for designing next-generation financial systems.

Keywords: hybrid storage, in-memory, cold storage, event-driven architecture, Apache Kafka, low-latency, high-
frequency trading, lock-free, data consistency, LMAX Disruptor

© 2026 Andrii Humeniuk. This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY
4.0). The authors retain copyright and allow others to share, adapt, or redistribute the work with proper attribution.

Cite This Article: Humeniuk, A. (2026). Architecture of a Hybrid In-Memory and Cold Storage for Historical Financial
Data. The American Journal of Engineering and Technology, 8(01), 78-86.
https://doi.org/10.37547/tajet/Volume08Issue01-11

1. Introduction architecture models: row-oriented, column-oriented,
separated, and hybrid [2]. In particular, lonescu et al.
propose a resilient four-layer architecture for financial
institutions, including data sources, processing,

In the context of the rapid growth of cloud technologies,
the financial sector is undergoing an active migration of
workloads to hybrid cloud environments: the private and integration, and multi-tier storage, taking into account
public cloud market in financial services will grow by energy efficiency and environmental sustainability [1,
USD 106.43 billion in the period 2024-2028 (compound 12].

annual growth rate of 19%) [8].
In this environment, competitive advantage is defined by

speed: algorithmic trading requires latency for order
matching of less than 1 millisecond. Peak loads in stock
and cryptocurrency markets can generate millions of

Hybrid transactional-analytical (HTAP) systems,
combining OLTP and OLAP workloads in a single
solution, are classified into four main storage

The Am. J. Eng. Technol. 2026 78

https://orcid.org/0009-0002-0985-1146

The American Journal of Engineering and Technology

ISSN 2689-0984

orders, creating unprecedented pressure on IT
infrastructure. At the same time, regulatory requirements
and the need for deep analysis of historical data for
training machine learning models lead to the
accumulation of archives on the petabyte scale.

This duality of requirements creates a fundamental
problem. On the one hand, systems must ensure
extremely low latency and high throughput for
processing “hot” data — active orders, current market
quotes, and positions. On the other hand, it is necessary
to store huge volumes of “cold” data — historical trades,
event logs, and quotes spanning many years — in a cost-
effective and reliable manner. Traditional architectures
based on monolithic databases are unable to efficiently
resolve this conflict. They are either too expensive for
storing large archives (if optimized for speed) or too slow
for HFT (if optimized for storage). This contradiction
dictates the need to transition to hybrid, multi-tier storage
systems that segment data according to the “temperature”
of its usage.

The aim of the study is to propose and evaluate a hybrid
financial data storage (HyFDS) model that bridges ultra-
low latency and large-scale archival requirements. The
author’s contribution lies in formalizing this architecture
as a coherent, production-ready framework for financial
systems, connecting algorithmic optimization with
business and regulatory constraints.

To achieve this aim, the following objectives are set:

- To analyze key architectural patterns (Event-Driven,
LMAX Disruptor) and technologies (Apache Kafka, In-
Memory Data Grids, lock-free data structures) for
building a high-performance “hot” storage tier.

- To assess and compare approaches to implementing a
cost-effective “cold” tier, including object storage and
distributed file systems.

- To investigate and propose mechanisms for ensuring
strict data consistency (for example, two-phase commit,
Saga pattern) and fault tolerance (Disaster Recovery) in
the context of the proposed hybrid model.

The scientific novelty of the work lies in the synthesis
of advanced but often fragmented concepts into a single,
coherent architecture. Unlike studies focusing on specific
aspects, such as queue optimization or the choice of a
particular database, this work proposes an integrated
framework. This framework combines an event-driven
architecture as the foundation of the entire system, the

The Am. J. Eng. Technol. 2026

Volume 08 - 2026

principles of mechanical sympathy for extreme
optimization of the processing core, and a multi-tier
storage model with clearly defined data migration
policies between tiers.

The author’s hypothesis is that the integration of an
event-driven Apache Kafka bus with a high-performance
hot tier based on an In-Memory Data Grid, optimized
through the LMAX Disruptor pattern and lock-free
structures, and a cold tier based on an object storage
system using the Apache Iceberg format provides both
sub-millisecond processing of financial transactions and
cost-effective long-term archival data storage.

2. Materials and Methods

Contemporary research in the field of hybrid storage for
financial data reflects both the technological and
strategic evolution of architectures integrating in-
memory solutions with cold storage tiers. In the works of
Ionescu S. A., Diaconita V., Radu A. O. [1], the emphasis
is placed on the principles of sustainable design of
architectures oriented toward financial institutions,
where energy efficiency and adaptive scalability play a
key role. Mamidi S. [6] examines the practical
implementation of hybrid solutions based on Cassandra
and Gemfire in the context of financial services,
demonstrating the advantages of integrating
transactional and analytical workloads within a single
platform. Chi Y., et al. [5] propose an operationally
supported reconfigurable hybrid memory architecture
capable of dynamically altering the configuration
between DRAM and NVM depending on the workload
profile. The review by Song, H., et al. [2] systematizes
HTAP (Hybrid Transactional/Analytical Processing)
approaches, including balancing between response time
and storage cost.

A separate body of research is devoted to intelligent
management of data placement between memory and
storage tiers. Ren J., et al. [4] describe the application of
machine learning for automated determination of the
optimal storage tier, which minimizes access latency and
increases resource utilization efficiency. Lu K., Zhao S.,
Wan J. [9] propose the Hammer method, based on online
learning for real-time identification of hot and cold data,
which is particularly relevant for systems with variable
load. Chang J., et al. [10] integrate reinforcement
learning methods into multi-tier main memory, providing
adaptive optimization of data placement. Yuan Z., et al.

79

The American Journal of Engineering and Technology

ISSN 2689-0984

[3] focus on data classification using seasonal textual
features, proposing an approach aimed at reducing costs
in the long-term storage of large volumes of historical
information. Telenik S.T. et al. [13] focuses on
mathematical and algorithmic approaches, including
queuing theory, artificial intelligence, and systems
analysis, to improve the efficiency, reliability, and
lifecycle = management of large-scale cloud
infrastructures. The paper extends these principles to the
financial technology space, applying them to hybrid in-
memory and cold storage architectures designed to meet
the extreme performance and data archiving
requirements of high-frequency trading systems.

Issues of performance and the choice of an optimal
storage model are addressed by Rabelo Ferreira F. E. R.,
do Nascimento Fidalgo R. [7], who compare hybrid and
columnar cloud databases in the context of schema
design for distributed storage. Singh B., et al. [11]
analyze the efficiency of various cloud DBMSs in
processing stock market data, identifying bottlenecks in
throughput and the impact of architectural decisions on
latency.

The market development context is reflected in
Technavio reports for the periods 2018-2022 [12] and
2024-2028 [8], which note the steady growth of the
private and public cloud solutions sector in the financial
industry, driven by the need for big data processing and
Al adoption. Forecasts indicate the expansion of hybrid
architecture use as a compromise solution between the
flexibility of the cloud and control over critically
important information.

The analysis of results from other studies demonstrated
that the literature reveals two key lines — technological
(architectures, optimization algorithms, —memory
integration) and strategic (selection of storage models,
market trends). However, a gap remains between them:
research rarely links the micro-level of architectural
decisions with the macro-level of economic feasibility
and regulatory constraints for the financial sector.

In addition, the following aspects are insufficiently
covered:

- methods for integrating HTAP with long-term archiving
systems that take into account legal requirements for
storing financial data;

-issues of energy efficiency when working with ever-
growing historical datasets;

The Am. J. Eng. Technol. 2026

Volume 08 - 2026

- scenarios for transitioning between in-memory and cold
storage under sharp peak loads;

- the impact of cloud providers’ pricing models on
architectural choices in hybrid systems.

To address these gaps, this work introduces HyFDS —
an architecture that, to the author’s knowledge, is the first
to unify Kafka as an event backbone, an LMAX-
optimized in-memory hot tier, and an Iceberg-based cold
tier in a single financial storage model.

In turn, further research should focus on an end-to-end
methodology linking algorithmic optimization with
business models and regulatory aspects of operating
hybrid storage facilities in the financial sector.

3. Results and Discussion

To address the stated problem, a multilayer architecture
HyFDS (Hybrid Financial Data Store) is proposed, based
on the principles of the event-driven approach (Event-
Driven Architecture, EDA). The system is decomposed
into logical layers, each specialized for its role, from
event ingestion and routing to long-term persistence.

Level 1: Ingest & Event Backbone. The backbone
component is Apache Kafka. All incoming streams—
market quotes, trade orders, system notifications—are
published as events to the corresponding Kafka topics.
This scheme ensures loose coupling of components and
their independent evolution and scaling. Kafka provides
high throughput, horizontal scalability, and fault
tolerance through data replication.

Level 2: Hot Tier. This level is intended for operational
hot data that require minimal access and processing
latency. It is implemented using an In-Memory Data Grid
(IMDG) and stores active orders, current positions, and
market data for the last trading day. The entire layer is
engineered to ensure latencies of no more than 1
millisecond.

Level 3: Cold Tier. This level represents a cost-effective
long-term store for cold historical data, including
executed trades from previous years, complete event
logs, and archival quotes. The key requirements for this
layer are reliability, scalability, and a low cost of storage
per terabyte.

Level 4: Data Lifecycle Management. A specialized
component responsible for the automatic and transparent

80

The American Journal of Engineering and Technology

ISSN 2689-0984

migration of data between the “hot” and “cold” tiers
based on predefined policies [3, 9].

Volume 08 - 2026

Figure 1 shows the Apache Kafka architecture diagram,
illustrating the data flow between its components.

Lifecycle Management

Apache Kafka

Hot Tier

ol

Cold Tier

Fig. 1. Apache Kafka architecture diagram [3, 9].

The key advantage of the proposed architecture lies in
using Kafka not merely as a message queue, but as a
unified nervous system for the entire platform. Unlike
traditional systems, where separate and often
unsynchronized paths exist for real-time data processing
and subsequent batch loading into the analytical storage,
HyFDS uses a single event stream. Kafka, by its nature,
is a persistent, replicated event log that not only delivers
messages but also stores them and allows history to be
rewound. This enables the same Kafka event stream to
simultaneously perform three critically important
functions:

Serve as a low-latency data delivery bus for the trading
engine (Business Logic Processor).

Act as a data source for populating and updating the state
of the Hot Tier.

Serve as a reliable buffer for asynchronous, fault-tolerant
data recording into the Cold Tier.

This approach radically simplifies the architecture,
eliminating the need for complex and fragile ETL

The Am. J. Eng. Technol. 2026

processes. Moreover, it guarantees that both the Hot and
Cold tiers are derived from the same immutable event
log. This is a fundamental property for ensuring data
integrity, performing audits, and, most importantly,
enabling full and consistent system recovery after
failures [4, 7].

To meet the strict requirement of latency below 1 ms,
designing the Hot Tier requires a multi-layer
optimization approach covering application architecture,
algorithms, and infrastructure.

At the core of the Hot Tier lies the Business Logic
Processor, designed with principles of mechanical
sympathy toward modern hardware. The most effective
approach here is the architecture proposed by LMAX
Exchange. Its key principles are:

- Single-Threaded Business Logic: Instead of
parallelizing business logic across multiple threads and
dealing with synchronization issues, LMAX executes all
critical logic (order matching, risk management) in a
single thread. This completely eliminates the need for

81

The American Journal of Engineering and Technology

ISSN 2689-0984

locks, mutexes, and semaphores, and therefore also
removes related overhead from context switching, OS
scheduler intervention, and potential deadlocks.

- Ring Buffer: For passing data between threads (for
example, between the thread receiving data from the
network and the business logic thread), instead of
traditional blocking queues, a lock-free data structure is
used — the ring buffer, known as the Disruptor. This
buffer is a preallocated array in memory, which avoids
dynamic memory allocation at runtime. Its design is
cache-friendly, minimizing costly cache misses.

In the author’s applied experience designing trading
infrastructures, similar architectural optimizations have
demonstrated scalability to millions of daily transactions
with sub-millisecond latencies. This confirms that the
HyFDS approach is not only theoretical but also
practically validated in high-load financial
environments.

In those system components where a single thread is
insufficient and parallelism is required (for example, for
statistical data aggregation, logging, or interaction with

Volume 08 - 2026

external systems), traditional locks should be avoided. In
this case, lock-free data structures should be used. They
employ low-level atomic CPU instructions, such as
Compare-And-Swap (CAS), to manage access to shared
data without blocking threads [10, 11].

Under high contention, which is the norm for financial
systems, lock-free implementations of structures such as
FIFO queues and sorted lists significantly outperform
their blocking counterparts in both performance and
energy efficiency. For example, a lock-free FIFO queue
where producers and consumers work from opposite
ends can show almost twice the throughput compared to
a mutex-based version, since head and tail operations can
be executed in parallel [13]. However, this advantage is
not absolute. Under low contention, the overhead of
atomic operations and retry loops can make lock-free
code slower. Moreover, the performance of certain lock-
free algorithms can degrade under a very large number
of competing threads due to cache coherence issues and
frequent CAS failures. The choice between blocking and
lock-free approaches should be based on the analysis of
the specific use case, as reflected in Table 1.

Table 1. Comparative analysis of the performance of Lock-Free and blocking data structures under high contention
/4,7, 10, 11]

Data Structure Level of Lock-Free Lock-Free Key Considerations
Contention Performance Energy
(vs Locking) Efficiency (vs
Locking)
FIFO Queue High Significantly Significantly | Ideal for pipelines. The advantage is due to
(Producer/Consu higher (up to higher the parallelism of head and tail operations.
mer) 2x)

Double-Ended High Lower or Lower or In implementations where head and tail are

Queue (Deque) slightly higher comparable updated atomically together, there is no

internal parallelism, which negates the

advantages of lock-free.
Sorted List High Significantly Significantly Demonstrates nearly linear speedup. Each
higher higher node can be updated independently,
providing high parallelism.

To ensure horizontal scalability and high availability of
the hot tier beyond a single server, In-Memory Data
Grids (IMDG) are used. IMDG distribute data in RAM
across a cluster of servers, providing a unified interface

The Am. J. Eng. Technol. 2026

for accessing them. The leading solutions in this field are
Apache Ignite, Hazelcast, and Redis.

Thus, achieving a high level of performance in the hot
tier is not the result of a single technological choice, but

82

The American Journal of Engineering and Technology

ISSN 2689-0984

the consequence of coordinated optimizations at multiple
levels of abstraction. The requirement of latency <1 ms
cannot be met simply by choosing a fast database, since
latency accumulates at every stage: from network
interaction and deserialization to queuing, executing
business logic, and committing a transaction. HyFDS
implements a hierarchical optimization approach:

- At the architectural level, the LMAX Disruptor pattern
is used to completely eliminate locks in the system core.

- At the algorithmic level, where multithreading is
required, lock-free data structures are applied to
minimize conflicts at the CPU level.

- At the infrastructure level, a high-performance
distributed IMDG (Apache Ignite) is used to provide
horizontal scalability and fault tolerance.

This multi-level approach makes it possible to
systematically attack the latency problem on all fronts,
from software architecture to hardware specifics and
distributed infrastructure.

Next, within the framework of the study, it is necessary
to proceed to the examination of the specifics of
managing the cold storage and the data lifecycle.
Effective management is the second key task of a hybrid
architecture. The main criteria here are low storage cost,
unlimited scalability, and sufficient performance for
executing analytical queries [5, 6].

There are several approaches to implementing cold
storage:

- Object storages (e.g., Amazon S3, Google Cloud
Storage): They are the most cost-effective solution for
storing data at the petabyte scale. However, direct
querying of raw files in object storage is generally
inefficient. Modern analytical systems such as Apache
Doris can use S3 as a cold tier, automatically retrieving
data on demand, but this is associated with certain delays.

- Hadoop Distributed File System (HDFS): The
traditional foundation of the Big Data ecosystem, tightly
integrated with analytical frameworks such as Apache
Spark and Hive. HDFS is less cost-effective and more
complex to administer compared to cloud object
storages.

- Columnar DBMS (e.g., HBase, ClickHouse): HBase is
well suited for storing massive datasets, but its read
performance is limited by disk access speed. ClickHouse
is optimized for analytical queries (OLAP), but its

The Am. J. Eng. Technol. 2026

Volume 08 - 2026

operation can be more expensive compared to object
storages.

For the HyFDS architecture, a modern hybrid approach
is proposed: the use of the Apache Iceberg tabular format
on top of the S3 object storage. Apache Iceberg addresses
the key issues of “raw” files in S3: it provides a table
abstraction, supports ACID transactions for analytical
operations, enables data versioning, and offers efficient
partition pruning. This ensures seamless integration with
leading analytical engines (Spark, Trino, Doris). Thus, it
becomes possible to combine the low cost and scalability
of S3 with the manageability, reliability, and
performance typical of traditional data warehouses.

The process of moving data from the “hot” tier to the
“cold” tier must be automated and governed by policies.
As a basis, the principle proposed in the RHTSDB
(Redis-HBase Time Series Database) model can be
adopted, where data is separated according to access
frequency: new and frequently used data are stored in
Redis (hot), while older and rarely used data are stored
in HBase (cold).

In the HyFDS architecture, this function is performed by
the Data Lifecycle Manager component. It periodically
scans data in the “hot” tier (Apache Ignite) and, based on
a set of rules, determines which data should be migrated.
The marked data is asynchronously copied to the “cold”
storage (to an Iceberg table on S3) and, after successful
verification, deleted from the IMDG, freeing up
expensive RAM [3, 4].

The choice of migration policy is not only a technical
decision but also an important economic one. The cost of
storing 1 TB of data in RAM is orders of magnitude
higher than the cost of storing the same volume in S3.
The business requires instantaneous access to operational
data but can tolerate a delay of several seconds when
querying an archive that is a year old. Therefore, the
“temperature” of data serves as a proxy metric for its
current business value. By implementing the migration
policy, the Data Lifecycle Manager becomes not merely
a technical utility but a tool for financial and operational
management of the system. Too aggressive a migration
reduces infrastructure costs but may increase latency for
some analytical queries. Too conservative a migration
unjustifiably increases operating expenses. The author
formalizes this balance into a repeatable lifecycle
framework that enables financial institutions to reduce
storage costs while meeting regulatory retention
requirements. This elevates the Data Lifecycle Manager

83

The American Journal of Engineering and Technology

ISSN 2689-0984

from a technical utility to a strategic tool for compliance
and financial efficiency.

To ensure data consistency during operations affecting
multiple nodes or services, there are two main
approaches:

Two-Phase Commit (2PC): A classical protocol ensuring
strict atomicity (ACID). It guarantees that a distributed
transaction will either complete successfully on all
participating nodes or be fully rolled back on all of them.
The main drawback of 2PC is its blocking nature.
Participants lock resources until they receive the final
command from the coordinator, which increases latency
and creates a single point of failure in the coordinator.

Saga Pattern: An alternative based on the BASE
philosophy (Basically Available, Soft state, Eventually
consistent). A long transaction is broken into a sequence
of local transactions, each executed in a separate service.
For each local transaction, there must exist a
compensating transaction that reverses its effect. Saga is
non-blocking, more performant, and fault-tolerant, but it

Volume 08 - 2026

provides only eventual consistency, which may be
unacceptable for certain operations.

In the HyFDS architecture, it is not advisable to apply a
single approach across the entire system. The choice
should depend on the business requirements of a
particular operation (see Table 2).

For critical, short-lived operations within the Hot Tier,
where strict atomicity is required (for example, the
execution of a trade affecting multiple partitions in the
IMDG), the use of optimized versions of 2PC or
consensus protocols such as Paxos or Raft is justified.
Modern databases such as CockroachDB implement
non-blocking variants of 2PC (e.g., Parallel Commits),
which significantly reduce latency [9, 10].

For long-running business workflows that traverse
multiple services—for example, “new client registration
— KYC verification — account funding — trading
authorization”—the Saga pattern is the preferred
coordination paradigm. Holding locks or otherwise
monopolizing resources for the entire lifecycle of such a
workflow is inadmissible.

Table 2. Decision Matrix: 2PC vs. Saga [3, 4, 9, 10]

Criterion

Two-Phase Commit (2PC)

Saga Pattern

Consistency guarantees

Strict (ACID), synchronous

Eventual (BASE), asynchronous

Performance/Latency

Low/High (due to locks)

High/Low (non-blocking)

Fault tolerance

Low (sensitive to coordinator failure)

High (decentralized)

Implementation
complexity

Relatively simple in standard DBMS,
but complex in recovery

Requires complex compensation logic
and monitoring

Typical scenario in

Atomic update of multiple records in

Long business process (for example,

HyFDS IMDG

customer onboarding)

A Disaster Recovery (DR) plan must ensure attainment
of two key target metrics. The first — Recovery Time
Objective (RTO), that is, the maximum allowable
duration of downtime; for mission-critical trading
infrastructure this value should approach zero. The
second — Recovery Point Objective (RPO), that is, the
maximum allowable volume of data loss from the

The Am. J. Eng. Technol. 2026

moment of failure; for financial transactions the
requirement for RPO is also zero.

The HyFDS architecture satisfies these conditions
through multi-tier replication and event logging
mechanisms. Replication is implemented at all levels of
the system: Apache Kafka provides geographically
distributed replication of event streams across multiple
data centers; Apache Ignite supports both synchronous

84

The American Journal of Engineering and Technology

ISSN 2689-0984

and asynchronous replication of clusters between sites;
cold storage based on S3 by default uses cross-region
replication [2, 7].

The recovery procedure is built on the principle of an
immutable event log (Event Sourcing), where Kafka
serves as the unified repository of all state changes. This
approach significantly simplifies returning the system to
a consistent state. In the event of complete unavailability
of the primary data center, the standby site is activated,
and the state of the hot tier (In-Memory Data Grid,
IMDG) is fully reconstructed by sequentially replaying
the replicated Kafka event log from the last consistent
point. This methodology enables exceptionally small
RTO and RPO, which is critical for ensuring the
continuity of financial operations.

4. Conclusion

This study validates the HyFDS hybrid data storage
architecture, an original framework authored to resolve
the fundamental contradiction of modern financial
systems: the need for extreme performance alongside
scalable archival. By combining Kafka as the event
backbone, an LMAX-optimized IMDG hot tier, and
Iceberg-enabled cold storage, the architecture achieves
both sub-millisecond processing and petabyte-scale
archival at sustainable cost. Beyond trading, HyFDS has
broader implications for fraud detection, compliance
auditing, and regulatory reporting, highlighting its
significance to the wider fintech sector. The research
objective is achieved through a carefully thought-out
synthesis of advanced technologies and architectural
patterns. Key provisions and components of the
architecture: An event foundation based on Apache
Kafka, acting as the unified nervous system of the
platform, providing loose coupling, scalability, and
serving as the single source of truth for all state changes.
A high-performance hot layer based on an In-Memory
Data Grid (Apache Ignite), whose performance is
maximized through hierarchical optimization:
application of the LMAX Disruptor pattern to eliminate
locking in critical business logic and the use of non-
blocking data structures in auxiliary multithreaded
components. A cost-effective and scalable cold layer on
S3 object storage with the Apache Iceberg table format,
combining low storage cost with manageability and
efficiency of analytical queries. The architecture
formalizes data lifecycle management strategies through
automated migration between layers, supports

The Am. J. Eng. Technol. 2026

Volume 08 - 2026

transactional integrity with a hybrid approach
(2PC/Saga), and ensures business continuity through
multi-level replication and disaster recovery plans that
rely on the event log.

References

1. Ionescu, S.-A., Diaconita, V., & Radu, A.-O.
(2025). Engineering Sustainable Data Architectures
for Modern Financial Institutions. Electronics,
14(8), 1650.
https://doi.org/10.3390/electronics 14081650

2. Song, H,, et al. (2024). A survey on hybrid
transactional and analytical processing. The VLDB
Journal, 33, 1485-1515.

3. Yuan, Z., et al. (2024). Cost-effective data
classification storage through text seasonal
features. Future Generation Computer Systems,
158, 472-487.

4. Ren,J.,etal. (2021). A machine learning assisted
data placement mechanism for hybrid storage
systems. Journal of Systems Architecture, 120.
https://doi.org/10.1016/j.sysarc.2021.102295

5. Chi, Y., Liu, H,, Peng, G., Liao, X., & Jin, H.
(2022). Transformer: An OS-Supported
Reconfigurable Hybrid Memory Architecture.
Applied Sciences, 12(24), 12995.
https://doi.org/10.3390/app122412995

6. Mamidi, S. (2025). Next-generation data
management: Hybrid approaches with Cassandra
and Gemfire in financial services. International
Journal of Scientific Research in Computer
Science, Engineering and Information Technology,
11(2), 1563—

1574 .https://doi.org/10.32628/CSEIT25112531

7. Rabelo Ferreira, F. E. R., & do Nascimento
Fidalgo, R. (2024). A Performance Analysis of
Hybrid and Columnar Cloud Databases for
Efficient Schema Design in Distributed Data
Warehouse as a Service. Data, 9(8), 99.
https://doi.org/10.3390/data9080099

8. Technavio. Private and public cloud market in
financial services to grow by USD 106.43 billion
(2024-2028), driven by big data demand; Al
driving market transformation. PR Newswire.

85

https://doi.org/10.3390/electronics14081650
https://doi.org/10.1016/j.sysarc.2021.102295
https://doi.org/10.3390/app122412995
http://dx.doi.org/10.32628/CSEIT25112531
https://doi.org/10.3390/data9080099

The American Journal of Engineering and Technology
ISSN 2689-0984

10.

Retivered from:
https://Www.prnewswire.com/news-
releases/private-and-public-cloud-market-in-
financial-services-to-grow-by-usd-106-43-billion-
2024-2028-driven-by-big-data-demand-ai-driving-

market-transformation---technavio-
302352741.html?utm_source (date of access:
10.07.2025)

Lu, K., Zhao, S., & Wan, J. (2024). Hammer:
Towards efficient hot-cold data identification via
online learning. arXiv, 1-10.

Chang, J., et al. (2024). Idt: Intelligent data
placement for multi-tiered main memory with
reinforcement learning. In Proceedings of the 33rd
International Symposium on High-Performance
Parallel and Distributed Computing, 69-82.
https://doi.org/10.1145/3625549.3658659

The Am. J. Eng. Technol. 2026

11.

12.

13.

Volume 08 - 2026

Singh, B., Martyr, R., Medland, T., Astin, J.,
Hunter, G., & Nebel, J. C. (2022). Cloud based
evaluation of databases for stock market data.
Journal of Cloud Computing, 11, 53.

Technavio. Private and public cloud market in the
financial services industry 2018-2022 (historical
market size). Retivered from:
https://www.technavio.com/report/private-and-
public-cloud-market-in-the-financial-services-
industry-analysis (date of access: 10.07.2025)

Telenik S.T. et al. Development and research of
models, methods and technologies of planning,
programming and management cloudy IT-
infrastructures. Retivered
from:https://nrat.ukrintei.ua/en/searchdoc/0216U00
5227/ (date of access: 10.07.2025)

86

https://www.prnewswire.com/news-releases/private-and-public-cloud-market-in-financial-services-to-grow-by-usd-106-43-billion-2024-2028-driven-by-big-data-demand-ai-driving-market-transformation---technavio-302352741.html?utm_source=chatgpt.com
https://www.prnewswire.com/news-releases/private-and-public-cloud-market-in-financial-services-to-grow-by-usd-106-43-billion-2024-2028-driven-by-big-data-demand-ai-driving-market-transformation---technavio-302352741.html?utm_source=chatgpt.com
https://www.prnewswire.com/news-releases/private-and-public-cloud-market-in-financial-services-to-grow-by-usd-106-43-billion-2024-2028-driven-by-big-data-demand-ai-driving-market-transformation---technavio-302352741.html?utm_source=chatgpt.com
https://www.prnewswire.com/news-releases/private-and-public-cloud-market-in-financial-services-to-grow-by-usd-106-43-billion-2024-2028-driven-by-big-data-demand-ai-driving-market-transformation---technavio-302352741.html?utm_source=chatgpt.com
https://www.prnewswire.com/news-releases/private-and-public-cloud-market-in-financial-services-to-grow-by-usd-106-43-billion-2024-2028-driven-by-big-data-demand-ai-driving-market-transformation---technavio-302352741.html?utm_source=chatgpt.com
https://www.prnewswire.com/news-releases/private-and-public-cloud-market-in-financial-services-to-grow-by-usd-106-43-billion-2024-2028-driven-by-big-data-demand-ai-driving-market-transformation---technavio-302352741.html?utm_source=chatgpt.com
https://doi.org/10.1145/3625549.3658659
https://www.technavio.com/report/private-and-public-cloud-market-in-the-financial-services-industry-analysis
https://www.technavio.com/report/private-and-public-cloud-market-in-the-financial-services-industry-analysis
https://www.technavio.com/report/private-and-public-cloud-market-in-the-financial-services-industry-analysis

