
The American Journal of Engineering and Technology
ISSN 2689-0984 Volume 08 - 2026

The Am. J. Eng. Technol. 2026 44

The Bottom-Up Approach to Developer Experience: Empowering

Engineers to Drive Change

1 Artem Mukhin
1 Software Engineer Belgrade, Serbia

Received: 24th Nov 2025 | Received Revised Version: 29th Nov 2025 | Accepted: 24th Dec 2025 | Published: 09th Jan 2026

Volume 08 Issue 01 2026 | Crossref DOI: 10.37547/tajet/Volume08Issue01-07

Abstract

This article examines the issue of friction in software development and proposes, as an alternative and complement to top-

down initiatives, the bottom-up enhancement of Developer Experience (DevEx). Large-scale productivity losses caused by

cognitive overload, tool inefficiencies, and organizational misalignment translate into big bucks when it happens on an

industrial scale. That is what makes this study relevant. The objective is to provide theoretical and practical justification

for empowering engineers as agents of change within DevEx governance. The study’s novelty lies in integrating three

analytical frames—DevEx, Cognitive Load Theory, and the socio-technical congruence model—into a unified, multi-level

model of friction, and in proposing practical instruments (a friction log and the DX-champion role) that transmute local

engineer-led initiatives into mechanisms for diagnosing and correcting systemic incongruences. The main takeaways speak

to the constraints of solely top-down efforts which depend on accumulated measures and choices that disregard the daily

worker's perspective. The suggested bottom-up method demonstrates awareness of small-scale mental blocks and

establishes ways to leverage nearby worker insights into company progress. An optimal configuration likely combines both

approaches. Top-down initiatives provide empirical grounding and organizational commitment. Bottom-up efforts offer

concrete means of change and organic growth. The article will be useful to software engineering researchers, technology

organization leaders, and practicing engineers interested in systematically elevating the quality of DevEx.

Keywords: Developer Experience, cognitive load, socio-technical congruence, bottom-up approach, software

development productivity, engineering practices.

© 2026 Artem Mukhin. This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY

4.0). The authors retain copyright and allow others to share, adapt, or redistribute the work with proper attribution.

Cite This Article: Mukhin, A. (2026). The Bottom-Up Approach to Developer Experience: Empowering Engineers to

Drive Change. The American Journal of Engineering and Technology, 8(01), 44–52.

https://doi.org/10.37547/tajet/Volume08Issue01-07

1. Introduction

The problem of friction in software development is not a

mere aggregation of minor inconveniences; it is a

significant systemic drag on innovation and value

delivery. According to Atlassian’s State of Developer

Experience Report 2025, 90% of developers lose at least

6 hours per week, and 50% lose more than 10 hours due

to factors such as information seeking, incompatible

tools, and context switching. For a team of 500

engineers, this equates to an annual productivity loss of

7.9 million dollars (Atlassian, 2025). These figures

foreground the economic imperative to address the issue.

Developer Experience (DevEx) is a formal discipline

dedicated to understanding and mitigating this friction. It

encompasses all facets of an engineer’s work, from

toolchain performance to cognitive and emotional states.

Historically, DevEx emerged as an extension of User

The American Journal of Engineering and Technology
ISSN 2689-0984 Volume 08 - 2026

The Am. J. Eng. Technol. 2026 45

Experience (UX) principles applied to the developer as a

user of their working environment (Fagerholm & Münch,

2013).

The central thesis of this article is that the contemporary

industry approach to DevEx is predominantly top-down

in nature. Leadership-originated initiatives,

organization-wide platform deployments, and a focus on

aggregated metrics characterize it. Although valuable,

this approach often fails to apprehend the lived realities

of developers’ workflows. Atlassian reports a widening

perception gap: 63% of developers believe leadership

does not understand their real problems, up sharply from

44% the previous year (Atlassian, 2025). This work

argues that meaningful and durable improvement

necessitates a complementary bottom-up approach that

empowers individual engineers to identify and rectify

friction.

Atlassian’s data reveal a notable paradox: while AI-

based tools save developers substantial time (68% save

more than 10 hours per week), the sense that leadership

does not understand developers’ problems rises sharply

(Atlassian, 2025). This suggests that top-down

technological solutions (e.g., provisioning AI tools) do

not resolve the fundamental, systemic sources of friction

that developers face. The problem is not the absence of

powerful tools, but the lack of alignment between

engineers’ everyday experiences and leadership’s

strategic priorities. This paradox powerfully motivates

the article’s thesis: without an upward channel to

articulate and resolve systemic problems, top-down

solutions will fail to improve overall developer

experience.

This paper aims to: (1) propose a multi-layer model of

developer friction grounded in cognitive load theory and

socio-technical congruence; (2) articulate how bottom-

up DevEx initiatives can operate within this model; and

(3) discuss implications for combining top-down and

bottom-up approaches.

2. Materials and Methodology

The study is based on an interdisciplinary analysis that

combines empirical data from industry reports, academic

research, and conceptual models that describe developer

friction. The principal quantitative source is the State of

Developer Experience Report 2025 (Atlassian, 2025),

which quantifies productivity losses and exposes the

perception gap between engineers and leadership. This

report serves as the statistical basis for the economic case

and for calibrating the scale of friction in terms of lost

time and resources.

The theoretical substrate comprises three interrelated

frames. First, a conceptualization of Developer

Experience as a cognitive, affective, and conative

phenomenon (Fagerholm & Münch, 2013), offering a

micro-level perspective on individual perception.

Second, Cognitive Load Theory describes how the

scarcity of working-memory resources can be

redistributed and elucidates the process by which

external friction turns into a barrier to productivity and

learning. Third, the socio-technical congruence (STC)

model takes the analysis even higher to the macro-level

of organizational structures, thereby exposing the

systemic misalignments at their very source.

Methodologically, the study applies three triangulated

approaches. First, it compares industry models of

productivity, including DORA metrics (Harvey, 2025)

and SPACE (Forsgren et al., 2021), revealing a structural

bias toward top-down models that cannot be inclusive of

all the nuanced aspects of engineering experience.

Second, a content analysis of industry discourse is

conducted based on domain conference talks (KubeCon,

n.d.) and analytical materials (Gerdemann et al., 2024;

Forsgren, 2024), which reveals an imbalanced

articulation where leadership and platform-team voices

dominate systematic bottom-up initiatives. Third, a

systematic review of bottom-up practices is conducted,

inclusive of onboarding cases (Ju et al., 2021) and

empirical cognitive effects studies regarding

interruptions and context-switching (Mark et al., 2008).

This data helps in building a micro-level picture of

friction and corresponding practical tools, such as

friction logs and the DX-champion role.

To operationalize the triangulated approach, the study

draws on a corpus of approximately thirty industry talks

and fifteen analytical materials on developer

productivity, platform engineering, and DevEx, selected

from KubeCon + CloudNativeCon programs and major

industry outlets based on three criteria: (1) DevEx,

developer productivity, or platform engineering as a

primary focus; (2) explicit discussion of concrete

practices or governance mechanisms (e.g., metrics

programs, platform initiatives, onboarding strategies);

and (3) availability of complete recordings or texts in

English. These materials were subjected to a mixed

deductive–inductive content analysis: an initial

codebook derived from the DevEx, CLT, and STC frames

The American Journal of Engineering and Technology
ISSN 2689-0984 Volume 08 - 2026

The Am. J. Eng. Technol. 2026 46

(e.g., “top-down initiative,” “bottom-up practice,” “inner

loop,” “outer loop,” “coordination/ownership”) was

iteratively refined through open coding on a pilot subset,

after which the final codes were applied to the whole

corpus to quantify the relative prominence and co-

occurrence of top-down versus bottom-up themes. In

parallel, a systematic review of bottom-up DevEx

practices was conducted in ACM Digital Library, IEEE

Xplore, arXiv, and Google Scholar using combinations

of keywords such as “developer experience,”

“onboarding,” “context switching,” “interruptions,”

“cognitive load,” “socio-technical congruence,”

“bottom-up,” and “developer-led improvement” over the

period 2008–2025; empirical and design-oriented studies

were included if they described professional software

development settings and reported either (a) cognitive or

coordination costs (e.g., interruptions, onboarding

barriers) or (b) concrete developer-initiated interventions

affecting daily workflows, and the extracted practices

were then synthesized into thematic clusters (inner-loop

acceleration, onboarding support, self-service tooling,

coordination artifacts, communities of practice) that

directly inform the practical toolkit proposed in this

article.

3. Results and Discussion

The academic lineage of DevEx can be traced to the

foundational work of Fagerholm and Münch, who

defined it as how developers think and feel about their

activities in their work environment (Fagerholm &

Münch, 2013). Their conceptual model comprises three

principal dimensions, providing a multifaceted lens that

moves beyond simplistic performance metrics:

• Cognitive dimension (Cognition) - the developer’s

perception of infrastructure, tools, and processes.

• Affective dimension (Affect) - the emotional state

associated with work, including satisfaction and

frustration.

• Conative dimension (Conation) - motivation, action

orientation, and the sense of value contribution.

The concept has evolved, yielding more practice-

oriented models, such as the DX Framework by Greiler,

Storey, and Noda, which are intended to narrow the

theory–practice gap. Strong DevEx is tightly coupled

with achieving a flow state—deep task immersion that

enables peak performance. Thus, high-quality DevEx is

a necessary precondition for entering flow.

Cognitive Load Theory (CLT) provides the principal

mechanism for explaining friction in developers’ work

(Baxter et al., 2025). CLT distinguishes three types of

load on human working memory:

• Intrinsic load - complexity inherent to the task or

software system.

• Extraneous load - mental effort imposed by the work

environment—poorly designed tools, convoluted

processes, fragmented information, and slow

feedback loops.

• Germane load - effort directed toward deep learning,

sense-making, and the formation of mental schemas

(Gkintoni et al., 2025).

The core argument is that poor DevEx manifests as

elevated extraneous cognitive load. This load consumes

scarce working-memory resources, leaving fewer

cognitive capacities for the intrinsic and germane loads

required for problem solving and innovation (Mark et al.,

2008). Empirical studies on the cost of interruptions and

context switching corroborate this theoretical claim.

Although interrupted workers may complete tasks faster,

they do so at the expense of significantly higher stress,

frustration, and exertion (Mark et al., 2008).

The concept of Socio-Technical Congruence (STC),

developed by Cataldo, Herbsleb, and Carley, furnishes a

macro-level model for understanding systemic friction

(Cataldo et al., 2008). STC posits that performance is

maximized when patterns of coordination in the

development team (the social structure) align with the

coordination needs dictated by dependencies in the

codebase (the technical structure).

Incongruence is a primary source of friction. It arises

when developers who need to collaborate (due to shared

code dependencies) do not, or when developers who do

not need to collaborate are compelled into superfluous

communication. A key implication of this model—that

high congruence substantially reduces time-to-resolution

for change requests—offers a powerful explanation for

why seemingly minor process improvements can exert

disproportionate influence on performance.

The following figures present a network visualization of

socio-technical congruence (STC) in two states: before

(Figure 1) and after (Figure 2) targeted intervention. The

visualization links the technical structure (modules and

their dependencies) with actual communication channels

among responsible developers and teams. According to

the multi-level friction model, divergences between these

The American Journal of Engineering and Technology
ISSN 2689-0984 Volume 08 - 2026

The Am. J. Eng. Technol. 2026 47

layers (low congruence) are systemic root causes of

increased extraneous cognitive load and the attendant

decline in development efficiency.

Fig. 1. Socio-technical incongruence, low (compiled by author)

The Before panel highlights key points of mismatch—dependency edges not covered by communication links—

which we label gaps and treat as priorities for intervention.

Fig. 2. Socio-technical congruence, high (compiled by author)

The After panel illustrates a scenario in which

communication is aligned with technical dependencies;

expected effects include an increase in the local STC

index, a reduction in median time-to-resolve PRs, and

fewer cross-team escalations.

These three theories—DevEx, CLT, and STC—are not

independent; together they constitute a multi-level causal

model of friction in development. At the macro-level,

socio-technical incongruence (e.g., a developer needs

information from another team but lacks a clear channel)

The American Journal of Engineering and Technology
ISSN 2689-0984 Volume 08 - 2026

The Am. J. Eng. Technol. 2026 48

creates conditions for friction: a systemic root cause. At

the meso-level, this systemic friction materializes as

concrete DevEx problems: slow feedback loops (waiting

on another team’s response), fragmented tooling (using

disparate systems), and inefficient processes (manual

handoffs). Finally, at the micro-level, these DevEx

problems directly result in a high extraneous cognitive

load for the individual developer. The mental effort spent

navigating an incongruent system (e.g., searching for

documentation, context switching while awaiting code

review) taxes cognitive resources, impedes entry into

flow, and yields negative affective consequences

(frustration, stress) described in the original DevEx

definition. This unified model explains why bottom-up

improvements are practical: they are initiated by those

most sensitive to the micro-level cognitive load induced

by macro-level systemic incongruence. A manager sees a

process diagram; a developer feels the mental friction of

its deficits.

Consider two influential performance models: DORA

and SPACE. DORA metrics (deployment frequency, lead

time for changes, change failure rate, mean time to

restore) primarily measure outcomes of the outer loop of

development—the delivery pipeline. While important,

these metrics are lagging indicators of system

performance and do not directly reflect the experience of

the developer’s inner loop. There is concern that DORA

metrics can be misused to compare teams or individuals,

encouraging metric gaming (Harvey, 2025).

The SPACE model (Satisfaction, Performance, Activity,

Communication, and Efficiency/Flow) is presented as a

more holistic model that includes developer well-being.

But usually, it is a top-down strategy that starts with

leadership choosing which metrics to “track” across the

organization. While this can be sold as empowerment at

the developer level, in reality, it happens at the

organizational level (Forsgren et al., 2021). This proves

that while such models may be extremely valuable, they

institutionalize a top-down view of developers as objects

of measurement rather than agents of improvement.

Industry discourse shows a pronounced skew toward top-

down perspectives. Most of them hold roles with

‘Manager’, ‘Director’ or ‘Platform Lead’ in the title,

discussing large-scale, top-down initiatives such as

developer platform toolchain standardization and team-

level metric programs (KubeCon, n.d.). There are very

few rank-and-file engineers who give talks on grassroots

efforts. While academic work heavily leans toward

bottom-up phenomena, developer behavior, and

onboarding barriers, this does not seem to be reflected in

the practical industry discourse (Ju et al., 2021).

This imbalance engenders a self-reinforcing cycle.

Conference organizers seek speakers who can narrate

large-scale, high-impact initiatives, as these are

perceived as more valuable to an audience of leaders and

budget decision-makers. Managers and directors are

precisely those who lead such top-down projects and

have full visibility into them. Individual developers

spearheading smaller bottom-up initiatives often lack a

formal platform or mandate to present at major

conferences. Consequently, conference discourse

becomes dominated by managers speaking about top-

down solutions. Attendees (usually other managers) infer

that the correct way to pursue DevEx is via large, top-

down platform initiatives. They return to their companies

and champion similar projects, perpetuating the cycle.

This creates an industry-wide blind spot: the most

effective, context-dependent, and high-leverage

improvements—those surfaced bottom-up—are

systematically underrepresented and undervalued in

public discourse, amplifying the very top-down bias this

article seeks to contest.

The trend toward Platform Engineering is the principal

technological response to DevEx challenges. Platforms

aim to improve DevEx by providing a standardized, self-

service layer that abstracts infrastructure complexity

(Gerdemann et al., 2024). The advantages are evident:

increased coherence, reduced cognitive load associated

with operations, and accelerated onboarding.

Yet this top-down approach has potential drawbacks. If a

platform team becomes decoupled from its developer-

customers, it risks paving a road that leads where

developers do not need to go. The platform itself can

become a fresh source of friction and extraneous

cognitive load if its interfaces are unintuitive or its

capabilities misaligned with real workflows (Forsgren,

2024).

The approach is summarized as a practical toolkit that

any engineer can employ and illustrated in Figure 3.

Method 1: Friction Log. A systematic, low-overhead

means to record problematic moments in a developer’s

work. Borrowed from product management, the friction

log is a document that captures difficulties or frustrations

encountered during the workflow. For developers, these

may include slow builds, tangled documentation, flaky

tests, or non-intuitive APIs. Benefits include making the

The American Journal of Engineering and Technology
ISSN 2689-0984 Volume 08 - 2026

The Am. J. Eng. Technol. 2026 49

invisible visible, providing data-based grounds for

prioritization, and cultivating empathy.

Method 2: DX-Champion. The DX-champion is

formalized as the social analogue of the friction log. Not

necessarily a formal role, it is a responsibility voluntarily

assumed by an engineer to:

1. Collect and synthesize friction logs and peer

feedback.

2. Identify patterns and prioritize the most

consequential problems.

3. Initiate minor improvements (e.g., write a script,

enhance documentation).

4. Report outcomes and the value of improvements to

leadership, acting as a bridge between the

development team and leaders.

Fig. 3. Enhancing Developer Experience through Feedback (compiled by author)

These bottom-up tools can be construed as socio-

technical probes. A friction log is not merely a list of

complaints; it is an instrument for gathering qualitative

data to locate points of socio-technical incongruence. An

entry such as Had to message three people in Slack to

find the required configuration file is a direct symptom

of misalignment between a technical need (access to

configuration) and the social structure (no clear owner or

documentation). The DX-champion functions as the

analyst of these data. By synthesizing logs, they do more

than find bugs; they conduct a qualitative analysis of the

organization’s socio-technical system from the

perspective of those who bear its costs most acutely. The

small improvements they propose (e.g., Let’s create a

single, versioned configuration guide) are not mere fixes;

they are targeted interventions designed to raise socio-

technical congruence. This reframes bottom-up tools

from simple improvement hacks into sophisticated,

developer-driven methods for diagnosing and resolving

systemic organizational problems—the practical

application of STC that requires no formal mandate or

managerial oversight to initiate.

Both approaches are necessary and most effective in

tandem. The ideal model is symbiosis. Developers and

DX-champions use friction logs to surface real problems,

experiment with small-scale solutions, and ensure a

continuous stream of high-quality qualitative data about

the state of developer experience. A top-down amplifier

then engages. Leadership and platform teams heed this

feedback, provide resources (time, budget) to promising

initiatives, use their strategic vantage to identify

organization-wide regularities, and create platforms and

standards that scale successful bottom-up solutions

across the organization.

Recommendations for leaders follow. Rather than simply

deploying measurement systems, leaders should create

conditions for bottom-up feedback to emerge: fostering

psychological safety, actively collecting and responding

to friction logs, and identifying and empowering

potential DX-champions within their teams. Their role

The American Journal of Engineering and Technology
ISSN 2689-0984 Volume 08 - 2026

The Am. J. Eng. Technol. 2026 50

shifts from director to facilitator.

Recommendations for developer’s concern becoming

effective agents of change: articulating friction in terms

of business impact (e.g., This slow build costs X hours

per week, delaying feature delivery), starting with small,

visible fixes to earn trust, and forming alliances with

other developers to demonstrate that a problem is shared

rather than idiosyncratic.

To illustrate how the proposed framework manifests in

real-world settings, this section presents several brief

case vignettes from large software organizations.

Research indicates that bottom-up initiatives in

Developer Experience (DevEx) can reshape

organizations just as effectively as large top-down

programs. Within a large-scale commercial software

product, the systematic articulation of the need for

sustained DX work led to the creation of a dedicated

DevEx function that had not previously existed. This

established a permanent upward channel through which

day-to-day friction could be translated into the language

of business priorities and technical plans. In terms of

socio-technical congruence (STC), such a function adds

a coordination node between teams and their

dependencies; in terms of Cognitive Load Theory (CLT),

it directs effort toward reducing extraneous load in the

developer’s inner loop.

A first-order effect was the radical acceleration of the

local mobile edit–build–run cycle. The typical delay

between saving in the IDE and observing changes on a

device or emulator had been on the order of one to two

minutes, repeatedly breaking flow. Optimizing the

pipeline reduced the wait time to a matter of seconds,

sharply improving feedback quality and the subjective

work experience. In CLT terms, this constitutes a direct

reduction of extraneous load by eliminating waiting and

context switching; in DevEx terms, it restores the

conditions necessary for entering and maintaining a flow

state.

In parallel, a DX portal was implemented to aggregate

data on dependencies and npm package vulnerabilities

across the codebase. During a large-scale security

remediation effort, this interface enabled the rapid

identification and prioritization of updates, facilitating

planning with shared, inspection-friendly data. The

portal functions as a coordination artifact: technically

dispersed signals become a single source of truth, and the

cost of alignment falls. In STC terms, it increases

transparency across teams and code artifacts, thereby

raising congruence.

Preparation was also undertaken for the removal of a

widely used library from a large codebase. Usage sites

were inventoried and classified, the potential for

automation was estimated, and a migration plan was

produced with a Gantt chart, documentation, and

scripts/codemods. Execution was paused for

organizational reasons, but the methodology itself—

discovery, partial automation, and staged rollout—

remains reusable and applicable. This approach again

aligns social and technical layers: a common plan, clear

migration windows, and explicit rollback points reduce

unplanned communications and escalations.

Beyond strictly engineering interventions, product-grade

recommendations on UI performance and user

experience were prepared. The combination of design

and engineering sharpened problem framing and

produced solutions that reduce cognitive “noise” for both

developers and end users. Taken together, such

interventions increase the proportion of germane

cognitive effort by removing friction in common

scenarios.

Practices did not remain local. Results and approaches

were disseminated through an internal company

community, enabling knowledge diffusion and reuse of

successful patterns. Strengthening network ties across

teams increased socio-technical congruence without

formal reorganization.

A similar bottom-up logic proved effective in another

large organization. In an internal developer tools unit,

two productivity tools were designed and built end-to-

end on the basis of studied team needs. Most of the user

experience was planned up front, allowing the tools to

address recognizable daily “grit” and eliminate manual

glue work. The result was shorter durations for typical

workflows and fewer context switches.

In a commercial division, a self-service media-planning

tool replaced the manual work of two to three analysts.

Managers were able to perform calculations in seconds

or minutes instead of waiting more than a day, and to

adjust plans in real time during client meetings.

Architecturally, the solution evolved from a versioned

Excel prototype to a full interface on MS Access, and

then to a React-based web application. After being

handed off to another team, it was released externally and

integrated into the product line. Removing this human

gate between request and calculation is a canonical

The American Journal of Engineering and Technology
ISSN 2689-0984 Volume 08 - 2026

The Am. J. Eng. Technol. 2026 51

instance of increased congruence: technical capability

brought into alignment with the organization’s

coordination structure.

To support decision-making, OLAP/MDX was mastered

to extract the exact aggregates required, and automated

reports were configured in SSRS, allowing managers and

planners to self-serve standardized data. This reduced

reliance on narrow bottlenecks, accelerated the iteration

cadence, and minimized “search” communication around

metrics. Additionally, an internal communication venue

was launched and moderated, reaching more than 800

participants by 2022. A single locus for questions and

answers, together with curated FAQs, sped expert

discovery and fostered de facto standards.

From these episodes emerges a reproducible set of

practices. Assigning a rotating DX champion with

sustained, lightweight focus on papercuts and friction

logs; running short sprints to accelerate the inner loop

with explicit targets; establishing a minimal dependency-

hygiene portal with a “fix-next” queue; applying a

method for large-scale change based on discovery,

automation, and wave-based rollout; preferring self-

service over human gates; and cultivating a community

of practice—all of these reduce extraneous cognitive

load while increasing the alignment of social and

technical dependencies. The metrics most suitable for

tracking within this approach include edit-to-run loop

time, median and percentile review wait times, CI

queueing time, and time-to-first-meaningful-

contribution for newcomers.

Within the article’s model, these observations illustrate

how DevEx micro-practices return working memory to

the task at hand, how cognitive load is reallocated away

from extraneous demands toward intrinsic and germane

effort, and how socio-technical congruence increases

through coordination artifacts and transparent paths.

Bottom-up improvements operate as socio-technical

probes, revealing local bottlenecks, generating data for

prioritization, and then scaling with the participation of

platform and leadership teams. The result is the sought-

after symbiosis in DX governance, with reality and speed

supplied from below and resilience and scale supplied

from above.

4. Conclusion

The analysis underscores that friction in software

development is neither epiphenomenal nor a local

inefficiency; it is a fundamental constraint on innovation

and organizational dynamics. Classical top-down

approaches—platform initiatives and organization-level

metrics—are important, yet limited insofar as they

primarily operate with aggregated indicators and

strategic decisions that do not capture the micro-level of

engineers’ everyday experiences. Thus, they risk

reproducing precisely the mismatches between technical

dependencies and social structures that the STC theory

identifies as systemic sources of friction.

The cognitive, affective, and conative dimensions of

Developer Experience, combined with cognitive load

and the STC model, form a holistic, multi-level

analytical framework. One direct corollary is that the

higher the extraneous cognitive load, the more blocked

the path to flow becomes, and therefore the lower the

ratings on the affective indicators that point to systemic

inefficiency. Thus, any sustainable DevEx improvements

must result from mechanisms that minimize extraneous

load. Here, bottom-up practices, the friction log, and the

DX-champion role assume decisive importance. They

not only surface micro-problems but also become

instruments for diagnosing socio-technical

incongruence, rendering visible the hidden rifts between

an organization’s social and technical structures.

Accordingly, the bottom-up concept is not reducible to

local tweaks or hacks, but constitutes a systemic

feedback loop embedded within organizational

development. When engineers act as initiators of change,

they serve as forces for socio-technical alignment,

thereby translating cognitive dissonance at the individual

level into macro-level adjustments within the

organizational process. In this approach, top-down

initiatives do not remain mere directions from above but

become means through which validated solutions from

below are adopted and subsequently institutionalized.

The best architecture for governing developer experience

is a balance of two forces. One supplies feeling and

reality from the bottom up, while the other gives support

and size from the top down. Their coupling minimizes

the cognitive tax on developers, raises socio-technical

congruence, and ultimately transforms DevEx from a

peripheral discipline into a strategic determinant of

organizational competitiveness.

References

1. Atlassian. (2025). State of Developer Experience

The American Journal of Engineering and Technology
ISSN 2689-0984 Volume 08 - 2026

The Am. J. Eng. Technol. 2026 52

Report 2025. Atlassian.

https://www.atlassian.com/teams/software-

development/state-of-developer-experience-2025

2. Baxter, K. A., Sachdeva, N., & Baker, S. (2025).

The Application of Cognitive Load Theory to the

Design of Health and Behavior Change Programs:

Principles and Recommendations. Health

Education & Behavior, 52(4), 469–477.

https://doi.org/10.1177/10901981251327185

3. Cataldo, M., Herbsleb, J. D., & Carley, K. M.

(2008). Socio-technical congruence: a framework

for assessing the impact of technical and work

dependencies on software development

productivity. Proceedings of the Second ACM-IEEE

International Symposium on Empirical Software

Engineering and Measurement - ESEM ’08, 2-11.

https://doi.org/10.1145/1414004.1414008

4. Fagerholm, F., & Münch, J. (2013). Developer

Experience: Concept and Definition. Arxiv.

https://doi.org/10.48550/arxiv.1312.1452

5. Forsgren, N. (2024, January 23). Quantifying the

impact of developer experience. Microsoft Azure.

https://azure.microsoft.com/en-us/blog/quantifying-

the-impact-of-developer-experience/

6. Forsgren, N., Storey, M.-A., & Maddila, C. (2021).

The SPACE of Developer Productivity. ACM.

https://queue.acm.org/detail.cfm?id=3454124

7. Gerdemann, D., McLaren, L., Werner, S., & Hesse,

D. (2024, August 19). Speeding up software

development. Kearney.

https://www.kearney.com/service/digital-

analytics/article/speeding-up-software-development

8. Gkintoni, E., Antonopoulou, H., Sortwell, A., &

Halkiopoulos, C. (2025). Challenging Cognitive

Load Theory: The Role of Educational

Neuroscience and Artificial Intelligence in

Redefining Learning Efficacy. Brain Sciences,

15(2), 203.

https://doi.org/10.3390/brainsci15020203

9. Harvey, N. (2025). DORA’s software delivery

metrics: the four keys. DORA.

https://dora.dev/guides/dora-metrics-four-keys/

10. Ju, A., Sajnani, H., Kelly, S., & Herzig, K. (2021).

A Case Study of Onboarding in Software Teams:

Tasks and Strategies. Arxiv.

https://doi.org/10.48550/arxiv.2103.05055

11. KubeCon. (n.d.). Keynote Speakers. LF Events.

Retrieved August 11, 2025, from

https://events.linuxfoundation.org/archive/2024/ku

becon-cloudnativecon-north-

america/program/keynote-speakers/

12. Mark, G., Gudith, D., & Klocke, U. (2008). The

cost of interrupted work. Proceedings of the

Twenty-Sixth Annual CHI Conference on Human

Factors in Computing Systems - CHI ’08, 107–110.

https://doi.org/10.1145/1357054.1357072

https://www.atlassian.com/teams/software-development/state-of-developer-experience-2025
https://www.atlassian.com/teams/software-development/state-of-developer-experience-2025
https://www.atlassian.com/teams/software-development/state-of-developer-experience-2025
https://www.atlassian.com/teams/software-development/state-of-developer-experience-2025
https://doi.org/10.1177/10901981251327185
https://doi.org/10.1177/10901981251327185
https://doi.org/10.1177/10901981251327185
https://doi.org/10.1145/1414004.1414008
https://doi.org/10.1145/1414004.1414008
https://doi.org/10.1145/1414004.1414008
https://doi.org/10.48550/arxiv.1312.1452
https://doi.org/10.48550/arxiv.1312.1452
https://doi.org/10.48550/arxiv.1312.1452
https://azure.microsoft.com/en-us/blog/quantifying-the-impact-of-developer-experience/
https://azure.microsoft.com/en-us/blog/quantifying-the-impact-of-developer-experience/
https://azure.microsoft.com/en-us/blog/quantifying-the-impact-of-developer-experience/
https://azure.microsoft.com/en-us/blog/quantifying-the-impact-of-developer-experience/
https://queue.acm.org/detail.cfm?id=3454124
https://queue.acm.org/detail.cfm?id=3454124
https://queue.acm.org/detail.cfm?id=3454124
https://www.kearney.com/service/digital-analytics/article/speeding-up-software-development
https://www.kearney.com/service/digital-analytics/article/speeding-up-software-development
https://www.kearney.com/service/digital-analytics/article/speeding-up-software-development
https://www.kearney.com/service/digital-analytics/article/speeding-up-software-development
https://doi.org/10.3390/brainsci15020203
https://doi.org/10.3390/brainsci15020203
https://doi.org/10.3390/brainsci15020203
https://dora.dev/guides/dora-metrics-four-keys/
https://dora.dev/guides/dora-metrics-four-keys/
https://dora.dev/guides/dora-metrics-four-keys/
https://doi.org/10.48550/arxiv.2103.05055
https://doi.org/10.48550/arxiv.2103.05055
https://doi.org/10.48550/arxiv.2103.05055
https://events.linuxfoundation.org/archive/2024/kubecon-cloudnativecon-north-america/program/keynote-speakers/
https://events.linuxfoundation.org/archive/2024/kubecon-cloudnativecon-north-america/program/keynote-speakers/
https://events.linuxfoundation.org/archive/2024/kubecon-cloudnativecon-north-america/program/keynote-speakers/
https://events.linuxfoundation.org/archive/2024/kubecon-cloudnativecon-north-america/program/keynote-speakers/
https://events.linuxfoundation.org/archive/2024/kubecon-cloudnativecon-north-america/program/keynote-speakers/
https://doi.org/10.1145/1357054.1357072
https://doi.org/10.1145/1357054.1357072
https://doi.org/10.1145/1357054.1357072

