The American Journal of Engineering and Technology

ISSN 2689-0984 Volume 08 - 2026

The Bottom-Up Approach to Developer Experience: Empowering
Engineers to Drive Change

! Artem Mukhin
! Software Engineer Belgrade, Serbia

Received: 24™ Nov 2025 | Received Revised Version: 29" Nov 2025 | Accepted: 24 Dec 2025 | Published: 09t Jan 2026

Volume 08 Issue 01 2026 | Crossref DOI: 10.37547/tajet/\Volume08lssue01-07

Abstract

This article examines the issue of friction in software development and proposes, as an alternative and complement to top-
down initiatives, the bottom-up enhancement of Developer Experience (DevEXx). Large-scale productivity losses caused by
cognitive overload, tool inefficiencies, and organizational misalignment translate into big bucks when it happens on an
industrial scale. That is what makes this study relevant. The objective is to provide theoretical and practical justification
for empowering engineers as agents of change within DevEx governance. The study’s novelty lies in integrating three
analytical frames—DevEXx, Cognitive Load Theory, and the socio-technical congruence model—into a unified, multi-level
model of friction, and in proposing practical instruments (a friction log and the DX-champion role) that transmute local
engineer-led initiatives into mechanisms for diagnosing and correcting systemic incongruences. The main takeaways speak
to the constraints of solely top-down efforts which depend on accumulated measures and choices that disregard the daily
worker's perspective. The suggested bottom-up method demonstrates awareness of small-scale mental blocks and
establishes ways to leverage nearby worker insights into company progress. An optimal configuration likely combines both
approaches. Top-down initiatives provide empirical grounding and organizational commitment. Bottom-up efforts offer
concrete means of change and organic growth. The article will be useful to software engineering researchers, technology
organization leaders, and practicing engineers interested in systematically elevating the quality of DevEXx.

Keywords: Developer Experience, cognitive load, socio-technical congruence, bottom-up approach, software
development productivity, engineering practices.

© 2026 Artem Mukhin. This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY
4.0). The authors retain copyright and allow others to share, adapt, or redistribute the work with proper attribution.

Cite This Article: Mukhin, A. (2026). The Bottom-Up Approach to Developer Experience: Empowering Engineers to
Drive Change. The American Journal of Engineering and Technology, 8(01), 44-52.
https://doi.org/10.37547/tajet/Volume08Issue01-07

tools, and context switching. For a team of 500
engineers, this equates to an annual productivity loss of

1. Introduction

The problem of friction in software development is not a
mere aggregation of minor inconveniences; it is a
significant systemic drag on innovation and value
delivery. According to Atlassian’s State of Developer
Experience Report 2025, 90% of developers lose at least
6 hours per week, and 50% lose more than 10 hours due
to factors such as information seeking, incompatible

The Am. J. Eng. Technol. 2026

7.9 million dollars (Atlassian, 2025). These figures
foreground the economic imperative to address the issue.

Developer Experience (DevEx) is a formal discipline
dedicated to understanding and mitigating this friction. It
encompasses all facets of an engineer’s work, from
toolchain performance to cognitive and emotional states.
Historically, DevEx emerged as an extension of User

44

The American Journal of Engineering and Technology

ISSN 2689-0984

Experience (UX) principles applied to the developer as a
user of their working environment (Fagerholm & Miinch,
2013).

The central thesis of this article is that the contemporary
industry approach to DevEx is predominantly top-down
in nature. Leadership-originated initiatives,
organization-wide platform deployments, and a focus on
aggregated metrics characterize it. Although valuable,
this approach often fails to apprehend the lived realities
of developers’ workflows. Atlassian reports a widening
perception gap: 63% of developers believe leadership
does not understand their real problems, up sharply from
44% the previous year (Atlassian, 2025). This work
argues that meaningful and durable improvement
necessitates a complementary bottom-up approach that
empowers individual engineers to identify and rectify
friction.

Atlassian’s data reveal a notable paradox: while Al-
based tools save developers substantial time (68% save
more than 10 hours per week), the sense that leadership
does not understand developers’ problems rises sharply
(Atlassian, 2025). This suggests that top-down
technological solutions (e.g., provisioning Al tools) do
not resolve the fundamental, systemic sources of friction
that developers face. The problem is not the absence of
powerful tools, but the lack of alignment between
engineers’ everyday experiences and leadership’s
strategic priorities. This paradox powerfully motivates
the article’s thesis: without an upward channel to
articulate and resolve systemic problems, top-down
solutions will fail to improve overall developer
experience.

This paper aims to: (1) propose a multi-layer model of
developer friction grounded in cognitive load theory and
socio-technical congruence; (2) articulate how bottom-
up DevEx initiatives can operate within this model; and
(3) discuss implications for combining top-down and
bottom-up approaches.

2. Materials and Methodology

The study is based on an interdisciplinary analysis that
combines empirical data from industry reports, academic
research, and conceptual models that describe developer
friction. The principal quantitative source is the State of
Developer Experience Report 2025 (Atlassian, 2025),
which quantifies productivity losses and exposes the
perception gap between engineers and leadership. This

The Am. J. Eng. Technol. 2026

Volume 08 - 2026

report serves as the statistical basis for the economic case
and for calibrating the scale of friction in terms of lost
time and resources.

The theoretical substrate comprises three interrelated
frames. First, a conceptualization of Developer
Experience as a cognitive, affective, and conative
phenomenon (Fagerholm & Miinch, 2013), offering a
micro-level perspective on individual perception.
Second, Cognitive Load Theory describes how the
scarcity of working-memory resources can be
redistributed and elucidates the process by which
external friction turns into a barrier to productivity and
learning. Third, the socio-technical congruence (STC)
model takes the analysis even higher to the macro-level
of organizational structures, thereby exposing the
systemic misalignments at their very source.

Methodologically, the study applies three triangulated
approaches. First, it compares industry models of
productivity, including DORA metrics (Harvey, 2025)
and SPACE (Forsgren et al., 2021), revealing a structural
bias toward top-down models that cannot be inclusive of
all the nuanced aspects of engineering experience.
Second, a content analysis of industry discourse is
conducted based on domain conference talks (KubeCon,
n.d.) and analytical materials (Gerdemann et al., 2024,
Forsgren, 2024), which reveals an imbalanced
articulation where leadership and platform-team voices
dominate systematic bottom-up initiatives. Third, a
systematic review of bottom-up practices is conducted,
inclusive of onboarding cases (Ju et al., 2021) and
empirical cognitive effects studies regarding
interruptions and context-switching (Mark et al., 2008).
This data helps in building a micro-level picture of
friction and corresponding practical tools, such as
friction logs and the DX-champion role.

To operationalize the triangulated approach, the study
draws on a corpus of approximately thirty industry talks
and fifteen analytical materials on developer
productivity, platform engineering, and DevEx, selected
from KubeCon + CloudNativeCon programs and major
industry outlets based on three criteria: (1) DevEx,
developer productivity, or platform engineering as a
primary focus; (2) explicit discussion of concrete
practices or governance mechanisms (e.g., metrics
programs, platform initiatives, onboarding strategies);
and (3) availability of complete recordings or texts in
English. These materials were subjected to a mixed
deductive—inductive content analysis: an initial
codebook derived from the DevEx, CLT, and STC frames

45

The American Journal of Engineering and Technology

ISSN 2689-0984

EENT3

(e.g., “top-down initiative,” “bottom-up practice,” “inner
loop,” “outer loop,” “coordination/ownership”) was
iteratively refined through open coding on a pilot subset,
after which the final codes were applied to the whole
corpus to quantify the relative prominence and co-
occurrence of top-down versus bottom-up themes. In
parallel, a systematic review of bottom-up DevEx
practices was conducted in ACM Digital Library, IEEE
Xplore, arXiv, and Google Scholar using combinations
of keywords such as “developer experience,”
“onboarding,” “context switching,” “interruptions,”
“cognitive load,” “socio-technical congruence,”
“bottom-up,” and “developer-led improvement” over the
period 2008-2025; empirical and design-oriented studies
were included if they described professional software
development settings and reported either (a) cognitive or
coordination costs (e.g., interruptions, onboarding
barriers) or (b) concrete developer-initiated interventions
affecting daily workflows, and the extracted practices
were then synthesized into thematic clusters (inner-loop
acceleration, onboarding support, self-service tooling,
coordination artifacts, communities of practice) that
directly inform the practical toolkit proposed in this
article.

3. Results and Discussion

The academic lineage of DevEx can be traced to the
foundational work of Fagerholm and Miinch, who
defined it as how developers think and feel about their
activities in their work environment (Fagerholm &
Miinch, 2013). Their conceptual model comprises three
principal dimensions, providing a multifaceted lens that
moves beyond simplistic performance metrics:

e Cognitive dimension (Cognition) - the developer’s
perception of infrastructure, tools, and processes.

e Affective dimension (Affect) - the emotional state
associated with work, including satisfaction and
frustration.

e Conative dimension (Conation) - motivation, action
orientation, and the sense of value contribution.

The concept has evolved, yielding more practice-
oriented models, such as the DX Framework by Greiler,
Storey, and Noda, which are intended to narrow the
theory—practice gap. Strong DevEx is tightly coupled
with achieving a flow state—deep task immersion that
enables peak performance. Thus, high-quality DevEx is
a necessary precondition for entering flow.

The Am. J. Eng. Technol. 2026

Volume 08 - 2026

Cognitive Load Theory (CLT) provides the principal
mechanism for explaining friction in developers’ work
(Baxter et al., 2025). CLT distinguishes three types of
load on human working memory:

e Intrinsic load - complexity inherent to the task or
software system.

e Extrancous load - mental effort imposed by the work
environment—poorly designed tools, convoluted
processes, fragmented information, and slow
feedback loops.

e Germane load - effort directed toward deep learning,
sense-making, and the formation of mental schemas
(Gkintoni et al., 2025).

The core argument is that poor DevEx manifests as
elevated extraneous cognitive load. This load consumes
scarce working-memory resources, leaving fewer
cognitive capacities for the intrinsic and germane loads
required for problem solving and innovation (Mark et al.,
2008). Empirical studies on the cost of interruptions and
context switching corroborate this theoretical claim.
Although interrupted workers may complete tasks faster,
they do so at the expense of significantly higher stress,
frustration, and exertion (Mark et al., 2008).

The concept of Socio-Technical Congruence (STC),
developed by Cataldo, Herbsleb, and Carley, furnishes a
macro-level model for understanding systemic friction
(Cataldo et al., 2008). STC posits that performance is
maximized when patterns of coordination in the
development team (the social structure) align with the
coordination needs dictated by dependencies in the
codebase (the technical structure).

Incongruence is a primary source of friction. It arises
when developers who need to collaborate (due to shared
code dependencies) do not, or when developers who do
not need to collaborate are compelled into superfluous
communication. A key implication of this model—that
high congruence substantially reduces time-to-resolution
for change requests—offers a powerful explanation for
why seemingly minor process improvements can exert
disproportionate influence on performance.

The following figures present a network visualization of
socio-technical congruence (STC) in two states: before
(Figure 1) and after (Figure 2) targeted intervention. The
visualization links the technical structure (modules and
their dependencies) with actual communication channels
among responsible developers and teams. According to
the multi-level friction model, divergences between these

46

The American Journal of Engineering and Technology

ISSN 2689-0984

Volume 08 - 2026

layers (low congruence) are systemic root causes of
increased extraneous cognitive load and the attendant

Module A

Develope
Dev Bob

Dev Alice

s
---------- P Dev Carol

—>

Y

decline in development efficiency.

Technical modules

Module B

Module C

Fig. 1. Socio-technical incongruence, low (compiled by author)

The Before panel highlights key points of mismatch—dependency edges not covered by communication links—
which we label gaps and treat as priorities for intervention.

Module A /P Module B /¥ Module C
evelopers
Dev Alice
DevBob | oy carol -/

Technical modules

Fig. 2. Socio-technical congruence, high (compiled by author)

The After panel illustrates a scenario in which
communication is aligned with technical dependencies;
expected effects include an increase in the local STC
index, a reduction in median time-to-resolve PRs, and
fewer cross-team escalations.

The Am. J. Eng. Technol. 2026

These three theories—DevEx, CLT, and STC—are not
independent; together they constitute a multi-level causal
model of friction in development. At the macro-level,
socio-technical incongruence (e.g., a developer needs
information from another team but lacks a clear channel)

47

The American Journal of Engineering and Technology

ISSN 2689-0984

creates conditions for friction: a systemic root cause. At
the meso-level, this systemic friction materializes as
concrete DevEx problems: slow feedback loops (waiting
on another team’s response), fragmented tooling (using
disparate systems), and inefficient processes (manual
handoffs). Finally, at the micro-level, these DevEx
problems directly result in a high extraneous cognitive
load for the individual developer. The mental effort spent
navigating an incongruent system (e.g., searching for
documentation, context switching while awaiting code
review) taxes cognitive resources, impedes entry into
flow, and yields negative affective consequences
(frustration, stress) described in the original DevEx
definition. This unified model explains why bottom-up
improvements are practical: they are initiated by those
most sensitive to the micro-level cognitive load induced
by macro-level systemic incongruence. A manager sees a
process diagram; a developer feels the mental friction of
its deficits.

Consider two influential performance models: DORA
and SPACE. DORA metrics (deployment frequency, lead
time for changes, change failure rate, mean time to
restore) primarily measure outcomes of the outer loop of
development—the delivery pipeline. While important,
these metrics are lagging indicators of system
performance and do not directly reflect the experience of
the developer’s inner loop. There is concern that DORA
metrics can be misused to compare teams or individuals,
encouraging metric gaming (Harvey, 2025).

The SPACE model (Satisfaction, Performance, Activity,
Communication, and Efficiency/Flow) is presented as a
more holistic model that includes developer well-being.
But usually, it is a top-down strategy that starts with
leadership choosing which metrics to “track” across the
organization. While this can be sold as empowerment at
the developer level, in reality, it happens at the
organizational level (Forsgren et al., 2021). This proves
that while such models may be extremely valuable, they
institutionalize a top-down view of developers as objects
of measurement rather than agents of improvement.

Industry discourse shows a pronounced skew toward top-
down perspectives. Most of them hold roles with
‘Manager’, ‘Director’ or ‘Platform Lead’ in the title,
discussing large-scale, top-down initiatives such as
developer platform toolchain standardization and team-
level metric programs (KubeCon, n.d.). There are very
few rank-and-file engineers who give talks on grassroots
efforts. While academic work heavily leans toward
bottom-up phenomena, developer behavior, and

The Am. J. Eng. Technol. 2026

Volume 08 - 2026

onboarding barriers, this does not seem to be reflected in
the practical industry discourse (Ju et al., 2021).

This imbalance engenders a self-reinforcing cycle.
Conference organizers seek speakers who can narrate
large-scale, high-impact initiatives, as these are
perceived as more valuable to an audience of leaders and
budget decision-makers. Managers and directors are
precisely those who lead such top-down projects and
have full visibility into them. Individual developers
spearheading smaller bottom-up initiatives often lack a
formal platform or mandate to present at major
conferences. Consequently, conference discourse
becomes dominated by managers speaking about top-
down solutions. Attendees (usually other managers) infer
that the correct way to pursue DevEx is via large, top-
down platform initiatives. They return to their companies
and champion similar projects, perpetuating the cycle.
This creates an industry-wide blind spot: the most
effective, context-dependent, and high-leverage
improvements—those surfaced bottom-up—are
systematically underrepresented and undervalued in
public discourse, amplifying the very top-down bias this
article seeks to contest.

The trend toward Platform Engineering is the principal
technological response to DevEx challenges. Platforms
aim to improve DevEx by providing a standardized, self-
service layer that abstracts infrastructure complexity
(Gerdemann et al., 2024). The advantages are evident:
increased coherence, reduced cognitive load associated
with operations, and accelerated onboarding.

Yet this top-down approach has potential drawbacks. If a
platform team becomes decoupled from its developer-
customers, it risks paving a road that leads where
developers do not need to go. The platform itself can
become a fresh source of friction and extraneous
cognitive load if its interfaces are unintuitive or its
capabilities misaligned with real workflows (Forsgren,
2024).

The approach is summarized as a practical toolkit that
any engineer can employ and illustrated in Figure 3.

Method 1: Friction Log. A systematic, low-overhead
means to record problematic moments in a developer’s
work. Borrowed from product management, the friction
log is a document that captures difficulties or frustrations
encountered during the workflow. For developers, these
may include slow builds, tangled documentation, flaky
tests, or non-intuitive APIs. Benefits include making the

48

The American Journal of Engineering and Technology

ISSN 2689-0984

Volume 08 - 2026

invisible visible, providing data-based grounds for
prioritization, and cultivating empathy.

Method 2: DX-Champion. The DX-champion is
formalized as the social analogue of the friction log. Not
necessarily a formal role, it is a responsibility voluntarily
assumed by an engineer to:

1. Collect and synthesize friction logs and peer

Friction Log

Creation
Developers Champion
document workflow synthesizes logs and
issues feedback

feedback.

2. Identify patterns and prioritize the
consequential problems.

3. [Initiate minor improvements (e.g., write a script,
enhance documentation).

4. Report outcomes and the value of improvements to
leadership, acting as a bridge between the
development team and leaders.

most

Improvement
Initiatives

Leadership
Engagement
Leaders allocate

resources for
scaling

Champion proposes
and implements
solutions

Fig. 3. Enhancing Developer Experience through Feedback (compiled by author)

These bottom-up tools can be construed as socio-
technical probes. A friction log is not merely a list of
complaints; it is an instrument for gathering qualitative
data to locate points of socio-technical incongruence. An
entry such as Had to message three people in Slack to
find the required configuration file is a direct symptom
of misalignment between a technical need (access to
configuration) and the social structure (no clear owner or
documentation). The DX-champion functions as the
analyst of these data. By synthesizing logs, they do more
than find bugs; they conduct a qualitative analysis of the
organization’s socio-technical system from the
perspective of those who bear its costs most acutely. The
small improvements they propose (e.g., Let’s create a
single, versioned configuration guide) are not mere fixes;
they are targeted interventions designed to raise socio-
technical congruence. This reframes bottom-up tools
from simple improvement hacks into sophisticated,
developer-driven methods for diagnosing and resolving
systemic organizational —problems—the practical
application of STC that requires no formal mandate or

The Am. J. Eng. Technol. 2026

managerial oversight to initiate.

Both approaches are necessary and most effective in
tandem. The ideal model is symbiosis. Developers and
DX-champions use friction logs to surface real problems,
experiment with small-scale solutions, and ensure a
continuous stream of high-quality qualitative data about
the state of developer experience. A top-down amplifier
then engages. Leadership and platform teams heed this
feedback, provide resources (time, budget) to promising
initiatives, use their strategic vantage to identify
organization-wide regularities, and create platforms and
standards that scale successful bottom-up solutions
across the organization.

Recommendations for leaders follow. Rather than simply
deploying measurement systems, leaders should create
conditions for bottom-up feedback to emerge: fostering
psychological safety, actively collecting and responding
to friction logs, and identifying and empowering
potential DX-champions within their teams. Their role

49

The American Journal of Engineering and Technology

ISSN 2689-0984

shifts from director to facilitator.

Recommendations for developer’s concern becoming
effective agents of change: articulating friction in terms
of business impact (e.g., This slow build costs X hours
per week, delaying feature delivery), starting with small,
visible fixes to earn trust, and forming alliances with
other developers to demonstrate that a problem is shared
rather than idiosyncratic.

To illustrate how the proposed framework manifests in
real-world settings, this section presents several brief
case vignettes from large software organizations.
Research indicates that bottom-up initiatives in
Developer Experience (DevEx) can reshape
organizations just as effectively as large top-down
programs. Within a large-scale commercial software
product, the systematic articulation of the need for
sustained DX work led to the creation of a dedicated
DevEx function that had not previously existed. This
established a permanent upward channel through which
day-to-day friction could be translated into the language
of business priorities and technical plans. In terms of
socio-technical congruence (STC), such a function adds
a coordination node between teams and their
dependencies; in terms of Cognitive Load Theory (CLT),
it directs effort toward reducing extraneous load in the
developer’s inner loop.

A first-order effect was the radical acceleration of the
local mobile edit-build—run cycle. The typical delay
between saving in the IDE and observing changes on a
device or emulator had been on the order of one to two
minutes, repeatedly breaking flow. Optimizing the
pipeline reduced the wait time to a matter of seconds,
sharply improving feedback quality and the subjective
work experience. In CLT terms, this constitutes a direct
reduction of extraneous load by eliminating waiting and
context switching; in DevEx terms, it restores the
conditions necessary for entering and maintaining a flow
state.

In parallel, a DX portal was implemented to aggregate
data on dependencies and npm package vulnerabilities
across the codebase. During a large-scale security
remediation effort, this interface enabled the rapid
identification and prioritization of updates, facilitating
planning with shared, inspection-friendly data. The
portal functions as a coordination artifact: technically
dispersed signals become a single source of truth, and the
cost of alignment falls. In STC terms, it increases
transparency across teams and code artifacts, thereby

The Am. J. Eng. Technol. 2026

Volume 08 - 2026

raising congruence.

Preparation was also undertaken for the removal of a
widely used library from a large codebase. Usage sites
were inventoried and classified, the potential for
automation was estimated, and a migration plan was
produced with a Gantt chart, documentation, and
scripts/codemods. Execution was paused for
organizational reasons, but the methodology itself—
discovery, partial automation, and staged rollout—
remains reusable and applicable. This approach again
aligns social and technical layers: a common plan, clear
migration windows, and explicit rollback points reduce
unplanned communications and escalations.

Beyond strictly engineering interventions, product-grade
recommendations on Ul performance and user
experience were prepared. The combination of design
and engineering sharpened problem framing and
produced solutions that reduce cognitive “noise” for both
developers and end wusers. Taken together, such
interventions increase the proportion of germane
cognitive effort by removing friction in common
scenarios.

Practices did not remain local. Results and approaches
were disseminated through an internal company
community, enabling knowledge diffusion and reuse of
successful patterns. Strengthening network ties across
teams increased socio-technical congruence without
formal reorganization.

A similar bottom-up logic proved effective in another
large organization. In an internal developer tools unit,
two productivity tools were designed and built end-to-
end on the basis of studied team needs. Most of the user
experience was planned up front, allowing the tools to
address recognizable daily “grit” and eliminate manual
glue work. The result was shorter durations for typical
workflows and fewer context switches.

In a commercial division, a self-service media-planning
tool replaced the manual work of two to three analysts.
Managers were able to perform calculations in seconds
or minutes instead of waiting more than a day, and to
adjust plans in real time during client meetings.
Architecturally, the solution evolved from a versioned
Excel prototype to a full interface on MS Access, and
then to a React-based web application. After being
handed off to another team, it was released externally and
integrated into the product line. Removing this human
gate between request and calculation is a canonical

50

The American Journal of Engineering and Technology

ISSN 2689-0984

instance of increased congruence: technical capability
brought into alignment with the organization’s
coordination structure.

To support decision-making, OLAP/MDX was mastered
to extract the exact aggregates required, and automated
reports were configured in SSRS, allowing managers and
planners to self-serve standardized data. This reduced
reliance on narrow bottlenecks, accelerated the iteration
cadence, and minimized “search” communication around
metrics. Additionally, an internal communication venue
was launched and moderated, reaching more than 800
participants by 2022. A single locus for questions and
answers, together with curated FAQs, sped expert
discovery and fostered de facto standards.

From these episodes emerges a reproducible set of
practices. Assigning a rotating DX champion with
sustained, lightweight focus on papercuts and friction
logs; running short sprints to accelerate the inner loop
with explicit targets; establishing a minimal dependency-
hygiene portal with a “fix-next” queue; applying a
method for large-scale change based on discovery,
automation, and wave-based rollout; preferring self-
service over human gates; and cultivating a community
of practice—all of these reduce extraneous cognitive
load while increasing the alignment of social and
technical dependencies. The metrics most suitable for
tracking within this approach include edit-to-run loop
time, median and percentile review wait times, CI
queueing time, and time-to-first-meaningful-
contribution for newcomers.

Within the article’s model, these observations illustrate
how DevEx micro-practices return working memory to
the task at hand, how cognitive load is reallocated away
from extraneous demands toward intrinsic and germane
effort, and how socio-technical congruence increases
through coordination artifacts and transparent paths.
Bottom-up improvements operate as socio-technical
probes, revealing local bottlenecks, generating data for
prioritization, and then scaling with the participation of
platform and leadership teams. The result is the sought-
after symbiosis in DX governance, with reality and speed
supplied from below and resilience and scale supplied
from above.

4. Conclusion

The analysis underscores that friction in software
development is neither epiphenomenal nor a local

The Am. J. Eng. Technol. 2026

Volume 08 - 2026

inefficiencys; it is a fundamental constraint on innovation
and organizational dynamics. Classical top-down
approaches—platform initiatives and organization-level
metrics—are important, yet limited insofar as they
primarily operate with aggregated indicators and
strategic decisions that do not capture the micro-level of
engineers’ everyday experiences. Thus, they risk
reproducing precisely the mismatches between technical
dependencies and social structures that the STC theory
identifies as systemic sources of friction.

The cognitive, affective, and conative dimensions of
Developer Experience, combined with cognitive load
and the STC model, form a holistic, multi-level
analytical framework. One direct corollary is that the
higher the extraneous cognitive load, the more blocked
the path to flow becomes, and therefore the lower the
ratings on the affective indicators that point to systemic
inefficiency. Thus, any sustainable DevEx improvements
must result from mechanisms that minimize extraneous
load. Here, bottom-up practices, the friction log, and the
DX-champion role assume decisive importance. They
not only surface micro-problems but also become
instruments for diagnosing
incongruence, rendering visible the hidden rifts between
an organization’s social and technical structures.

socio-technical

Accordingly, the bottom-up concept is not reducible to
local tweaks or hacks, but constitutes a systemic
feedback loop embedded within organizational
development. When engineers act as initiators of change,
they serve as forces for socio-technical alignment,
thereby translating cognitive dissonance at the individual
level into macro-level adjustments within the
organizational process. In this approach, top-down
initiatives do not remain mere directions from above but
become means through which validated solutions from
below are adopted and subsequently institutionalized.

The best architecture for governing developer experience
is a balance of two forces. One supplies feeling and
reality from the bottom up, while the other gives support
and size from the top down. Their coupling minimizes
the cognitive tax on developers, raises socio-technical
congruence, and ultimately transforms DevEx from a
peripheral discipline into a strategic determinant of
organizational competitiveness.

References

1. Atlassian. (2025). State of Developer Experience

51

The American Journal of Engineering and Technology

ISSN 2689-0984

Report 2025. Atlassian.
https://www.atlassian.com/teams/software-
development/state-of-developer-experience-2025

2. Baxter, K. A., Sachdeva, N., & Baker, S. (2025).
The Application of Cognitive Load Theory to the
Design of Health and Behavior Change Programs:
Principles and Recommendations. Health
Education & Behavior, 52(4), 469-477.
https://doi.org/10.1177/10901981251327185

3. Cataldo, M., Herbsleb, J. D., & Carley, K. M.
(2008). Socio-technical congruence: a framework
for assessing the impact of technical and work
dependencies on software development
productivity. Proceedings of the Second ACM-IEEE
International Symposium on Empirical Software
Engineering and Measurement - ESEM 08, 2-11.
https://doi.org/10.1145/1414004.1414008

4. Fagerholm, F., & Miinch, J. (2013). Developer
Experience: Concept and Definition. Arxiv.
https://doi.org/10.48550/arxiv.1312.1452

5. Forsgren, N. (2024, January 23). Quantifying the
impact of developer experience. Microsoft Azure.
https://azure.microsoft.com/en-us/blog/quantifying-
the-impact-of-developer-experience/

6. Forsgren, N., Storey, M.-A., & Maddila, C. (2021).
The SPACE of Developer Productivity. ACM.
https://queue.acm.org/detail.cfm?id=3454124

7. Gerdemann, D., McLaren, L., Werner, S., & Hesse,

The Am. J. Eng. Technol. 2026

10.

11.

12.

Volume 08 - 2026

D. (2024, August 19). Speeding up sofiware
development. Kearney.
https://www.kearney.com/service/digital-
analytics/article/speeding-up-software-development
Gkintoni, E., Antonopoulou, H., Sortwell, A., &
Halkiopoulos, C. (2025). Challenging Cognitive
Load Theory: The Role of Educational
Neuroscience and Artificial Intelligence in
Redefining Learning Efficacy. Brain Sciences,
15(2), 203.

https://doi.org/10.3390/brainsci1 5020203

Harvey, N. (2025). DORA s sofiware delivery
metrics: the four keys. DORA.
https://dora.dev/guides/dora-metrics-four-keys/

Ju, A, Sajnani, H., Kelly, S., & Herzig, K. (2021).
A Case Study of Onboarding in Software Teams:
Tasks and Strategies. Arxiv.
https://doi.org/10.48550/arxiv.2103.05055
KubeCon. (n.d.). Keynote Speakers. LF Events.
Retrieved August 11, 2025, from
https://events.linuxfoundation.org/archive/2024/ku
becon-cloudnativecon-north-
america/program/keynote-speakers/

Mark, G., Gudith, D., & Klocke, U. (2008). The
cost of interrupted work. Proceedings of the
Twenty-Sixth Annual CHI Conference on Human
Factors in Computing Systems - CHI "08, 107-110.
https://doi.org/10.1145/1357054.1357072

52

https://www.atlassian.com/teams/software-development/state-of-developer-experience-2025
https://www.atlassian.com/teams/software-development/state-of-developer-experience-2025
https://www.atlassian.com/teams/software-development/state-of-developer-experience-2025
https://www.atlassian.com/teams/software-development/state-of-developer-experience-2025
https://doi.org/10.1177/10901981251327185
https://doi.org/10.1177/10901981251327185
https://doi.org/10.1177/10901981251327185
https://doi.org/10.1145/1414004.1414008
https://doi.org/10.1145/1414004.1414008
https://doi.org/10.1145/1414004.1414008
https://doi.org/10.48550/arxiv.1312.1452
https://doi.org/10.48550/arxiv.1312.1452
https://doi.org/10.48550/arxiv.1312.1452
https://azure.microsoft.com/en-us/blog/quantifying-the-impact-of-developer-experience/
https://azure.microsoft.com/en-us/blog/quantifying-the-impact-of-developer-experience/
https://azure.microsoft.com/en-us/blog/quantifying-the-impact-of-developer-experience/
https://azure.microsoft.com/en-us/blog/quantifying-the-impact-of-developer-experience/
https://queue.acm.org/detail.cfm?id=3454124
https://queue.acm.org/detail.cfm?id=3454124
https://queue.acm.org/detail.cfm?id=3454124
https://www.kearney.com/service/digital-analytics/article/speeding-up-software-development
https://www.kearney.com/service/digital-analytics/article/speeding-up-software-development
https://www.kearney.com/service/digital-analytics/article/speeding-up-software-development
https://www.kearney.com/service/digital-analytics/article/speeding-up-software-development
https://doi.org/10.3390/brainsci15020203
https://doi.org/10.3390/brainsci15020203
https://doi.org/10.3390/brainsci15020203
https://dora.dev/guides/dora-metrics-four-keys/
https://dora.dev/guides/dora-metrics-four-keys/
https://dora.dev/guides/dora-metrics-four-keys/
https://doi.org/10.48550/arxiv.2103.05055
https://doi.org/10.48550/arxiv.2103.05055
https://doi.org/10.48550/arxiv.2103.05055
https://events.linuxfoundation.org/archive/2024/kubecon-cloudnativecon-north-america/program/keynote-speakers/
https://events.linuxfoundation.org/archive/2024/kubecon-cloudnativecon-north-america/program/keynote-speakers/
https://events.linuxfoundation.org/archive/2024/kubecon-cloudnativecon-north-america/program/keynote-speakers/
https://events.linuxfoundation.org/archive/2024/kubecon-cloudnativecon-north-america/program/keynote-speakers/
https://events.linuxfoundation.org/archive/2024/kubecon-cloudnativecon-north-america/program/keynote-speakers/
https://doi.org/10.1145/1357054.1357072
https://doi.org/10.1145/1357054.1357072
https://doi.org/10.1145/1357054.1357072

