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Abstract

The present online pharmacy market lacks real-time drug-drug interaction detection during the shopping experience. This
paper presents a unique system to detect interactions directly in e-commerce pharmacy shopping carts, reducing the risk
of adverse drug reactions that could lead to potential hospitalizations. The hybrid system combines the current rule-based
checking using commercial databases (DrugBank, First DataBank) with Large Language Models (LLMSs) to improve
contextual analysis through Retrieval-Augmented Generation (RAG). A three-layer design comprising of interaction
detection, LLM enhancement, and user experience layers is proposed, to achieve under 500ms response times through
microservices architecture and multi-tier caching, while generating user-friendly natural language explanations. A
confidence scoring mechanism flags uncertain outputs for further pharmacy review and intervention to ensure user safety.
The system also addresses critical limitations of current similar tools requiring use of separate interaction checkers by
providing seamless cart-level integration. The proposed evaluation methodology targets >90% sensitivity for major
interactions and >80% specificity to minimize pharmacist fatigue due to false positives.
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1. Introduction

Every day, hundreds of thousands of consumers click on focus on convenience but lack proactive safety

“Add to Cart” on online pharmacy platforms and
inadvertently create combinations of medications that
could send them to the emergency room. There are 6
emergency department visits for therapeutic and
nontherapeutic medication harms per 1,000 patients, with
about 38% of such wvisits subsequently requiring
hospitalization [1]. The online pharmacy market reached
$82.91 billion in 2023 and is projected to grow to $294.35
billion by 2030 [2], yet current online pharmacy platforms
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mechanisms.

Drug-drug interactions (DDIs) impose a massive public
health and economic burden. Among patients taking any
prescription drug, half are exposed to two or more drugs,
and 5% take eight or more simultaneously [3]. Adverse
drug reactions account for 4.2-30% of hospital admissions
in the USA and Canada [4], with patients experiencing
adverse effects staying hospitalized 1.2-3.8 days longer
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and incurring additional costs of $2,284-$5,640 per patient
[5].

Research reveals alarming gaps in current detection
systems. An examination of 50 community pharmacies
found potential DDIs in 39.2% of 1,000 prescriptions [6].
More concerning, a study of 64 Arizona pharmacies found
only 28% correctly identified eligible interactions, with a
median sensitivity of 0.85 for detecting well-established
interactions [7]. Traditional clinical decision support
systems generate excessive non-clinically relevant alerts,
causing alert fatigue— pharmacists override 73.8% of DDI
alerts on average [7]. This suggests that existing systems
are poorly calibrated for both clinical and consumer
contexts.

At present, most online pharmacy systems defer interaction
checking until after a purchase is made, and back-end
pharmacy staff processes hundreds of orders. However,
while consumers are shopping, they do not receive any
feedback on potential harmful combinations with new or
existing medications. Recent advancements in Large
Language Models (LLMs) present a paradigm shift in drug
interaction detection. Although some of these models are
found to accurately identify DDIs, the accuracy of such
models remains low due to limited access to high-quality
datasets, interpretability issues, and the inability to
consider patient-specific factors.

Despite these challenges, specialized approaches have
shown promise. For instance, smaller fine-tuned models
like Phi-3.5 with 2.7 billion parameters achieved
sensitivity of 0.978 and accuracy of 0.919 for DDI
prediction [8]. This paper explores a hybrid system for DDI
detection: using rule-based databases for reliable detection
of known interactions, and LLMs providing contextual
analysis and consumer-friendly explanations. It further
introduces Prescription Cart Intelligence, an e-commerce
system that leverages LLMs to detect DDIs directly within
the shopping cart experience, transforming online
pharmacies to proactively monitor patient safety.

2. Background and Related Work

Drug interactions occur when one medication alters the
pharmacological effect of another, potentially leading to
adverse events or treatment failures. These interactions are
classified as pharmacokinetic or pharmacodynamic in
nature [9]. Pharmacokinetic interactions affect how the
body processes drugs through absorption, distribution,
metabolism, or elimination pathways [10].
Pharmacodynamic interactions occur when one drug
affects the pharmacological response to another without
altering its concentration [11]. The interactions are also
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classified by clinical severity, which helps determine
intervention decisions. This is critical for e-commerce
applications, as different severity levels will lead to
different user experiences — from informational to blocking
alerts. The interactions also have a significant burden on
healthcare systems. Given that prescription regimens
contain an average of 6.58 medications with potential for
2.68 drug interactions per patient [12], the challenge scales
exponentially with polypharmacy prevalence.

2.1 Current Drug Interaction Detection systems

Existing DDI detecting systems include standalone
checkers, pharmacy management platforms, and clinical
decision support systems.

1) Standalone checkers like CVS Drug Interaction
Checker, Drugs.com, Medscape, and Micromedex that
are currently available to consumers, provide database
driven interaction checking. Studies have found that
these systems detect DDIs at varied levels, revealing
significant inconsistency. They are also designed for
healthcare professionals with clinical knowledge,
making them inappropriate for direct consumer use.

2) Pharmacy Management Systems (like PrimeRx)
have an integrated process of interaction checking
prior to dispensing drugs to consumers. However, a
study of 64 Arizona pharmacies found only 28%
correctly identified eligible interactions, with median
sensitivity of 0.85 even for well-documented
interactions [7]. This suggests that even professional
grade systems miss a substantial percentage of known
interactions.

3) Clinical Decision Support (CDSS)
integrated into electronic health records provide real-
time alerts during prescribing workflows. Commercial
databases such as Drug Therapy Monitoring System
and National Drug Data File Plus power many EHR
alerting systems. However, a study found that out of
the 92,272 drug orders in the year 2000, 92.2% were
overridden by the physicians at the point of
prescribing [13].

Systems

2.2 Machine Learning for DDI Prediction

Traditional Machine Learning approaches employed
classical methods (including random forests and support
vector machines) requiring manual feature engineering
based on domain expertise [14]. While these approaches
achieved moderate success, they were limited by the need
for extensive labeled training data and manually crafted
molecular descriptors. Graph Neural Networks (GNN) is
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another approach for DDI prediction by directly processing
molecular graph structures [15]. Unlike traditional
methods requiring handcrafted features, GNNs learn
representations by aggregating
neighboring nodes in molecular graphs [16]. However,
there are still significant challenges in the above methods.
Current methods have insufficient learning ability for
massive multi-source data and struggle with zero-shot
scenarios for novel drug combinations [17]. More

information from

importantly, these models lack the ability to explain
predictions to non-experts, and cannot incorporate patient
health data like age, comorbidities, or dosage to determine
relevance.

2.3 Large Language Models in Healthcare and
Drug Discovery

Recent studies demonstrate LLMs' true potential across
healthcare domains. Indeed, LLMs show extraordinary
performance in general tasks, but their performance in
specialized application domains is grossly limited [17].
Nonetheless, LLMs remain traditional
approaches in consumer-facing applications. Natural
simple

superior to

language generation capabilities help give
explanations of complex pharmacological concepts. These
technologies are also especially beneficial for merging data
across various sources — drug databases, literature, and
patient history.

2.4 E-commerce technology in Healthcare

The online pharmacy market is growing rapidly with
multiple platforms increasingly
technologies. Al-driven recommendation engines suggest
personalized OTC products based on health profiles and

incorporating Al

purchase history. Al chatbots provide customer support and
automated prescription verification (PharmbotAl). While
platforms are still adopting Al for operational efficiency,
online pharmacies have yet to successfully integrate safety
interventions into their shopping workflows. Interaction

The Am. J. Eng. Technol. 2025

Volume 07 - 2025

checking is primarily a back-end pharmacy function which
occurs after the consumer has already made a purchase, and
no major platform provides real-time DDI alerts during cart
assembly or prior to checkout. This represents a significant
gap where e-commerce technology has not yet been
applied to a critical safety concern. There are a few
challenges in this approach:

1) Response time requirements are different — clinical
systems tolerate multi-second delays while e-
commerce users expect sub-500ms interactions.

2) Real-time state management is complex — interaction
risk depends on the complete cart contents plus any
medications users are already taking.

3) Liability concerns arise when consumer-facing
systems provide medical guidance without pharmacist
supervision.

3. System Design and Architecture

Here we walk through the proposed architecture of our
LLM-powered prescription cart intelligence system. This
section describes the high-level design, core components,
data flow, and integration of touchpoints that enable real-
time drug interaction detection within an e-commerce
shopping experience.

This system implements a hybrid architecture that
combines deterministic rule-based interaction checking
with LLM-powered contextual analysis. The design
balances the regulatory compliance and reliability of
commercial drug databases while leveraging the natural
language reasoning and explanation capabilities of large
language models. This is a multi-tiered architecture
consisting of 3 functional layers — the Interaction Layer
(DDI checking using commercial drug databases), the
LLM layer (contextual analysis, severity assessment, and
natural language explanation), and the User Experience
layer (present alerts through progressive disclosure
mechanisms).
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Figure 1: System Design and Architecture of LLM-Powered Prescription cart

3.1 Interaction Detection Layer (Rule-based)
layer integrates commercial drug interaction

databases that provide comprehensive documentation of
DDIs to perform deterministic DDI checking.

1)

2)

3)

Drug Database Integration — connect DrugBank’s
commercial API, which returns structures JSON
responses with severity ratings (minor, moderate,
major), interaction mechanisms, and management
recommendations and can be batched up to 40 drugs
[18].

Drug Normalization Pipeline extract active
ingredients via regular expressions, match them to
RxNorm Concept Unique Identifiers, map RxCUI

codes to DrugBank IDs, and normalize dosage

information if required. This is required since e-
commerce product catalogs have various naming
conventions while interaction databases are
standardized.

Response Time Optimization — cache drug identifier
mappings, interaction results for drug in Redis or
similar data stores to obtain 500ms response times.
Modifications to the cart can be handled by parallel
API calls, and mappings can have different TTLs

(time-to-live) as required.

3.2 LLM Layer

This layer augments rule-based detection with contextual
analysis using Retrieval-Augmented Generation (RAG) to
ground responses in authoritative drug information while
leveraging LLMs’ reasoning capabilities.

The Am. J. Eng. Technol. 2025

1)

2)

3)

4)

Retrieval-Augmented Generation — optimizes LLM
output by referencing an authoritative knowledge base
outside training data sources before generating
responses. When the system detects an interaction
through rule-based checking, it will retrieve relevant
information from DrugBank and FDA drug labels. It
then formats the retrieved information into a
structured prompt for the LLM. Finally, it generates
consumer-appropriate explanations,
assessments, and recommendations.

Prompt Engineering Framework — wuses refined
prompts that structure LLM tasks for maximum
accuracy and reliability. The LLM identifies the
interaction type (pharmacokinetic
pharmacodynamic), then extracts relevant patient
information from cart data, and finally synthesizes
information into consumer-appropriate language.

LLM API Selection and Fallback Strategy — support
multiple LLM providers including Anthropic Claude,
OpenAl GPT-4, and Google Gemini through a unified
adapter interface. If the primary LLM API fails, the
system will fall back to secondary option to ensure

severity

VS.

continuous operation. If both fail, default to rule-based
interaction warnings.

Confidence Scoring and Uncertainty Handling — the
system implements a confidence scoring mechanism
to evaluate LLM responses for uncertainty markers,
hallucination indicators, and consistency with respect
to retrieved context. Responses are scored on a 0-1
scale, and anything scoring below 0.7 is flagged for
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pharmacist review rather than being shown directly to
consumers.

3.3 User Experience Layer

The UX layer displays back-end interaction detection as
actionable guidance for consumers through alert
mechanisms and progressive disclosure.

1) Alert System — implements severity-based
notifications that are displayed near cart items. Minor
interactions  (informational,  requires  simple
monitoring like taking medications at different time of
day), Moderate interactions (warning, recommend
pharmacist or healthcare provider consultation with
contact information), and Major interactions
(blocking checkout, required to remove item or
pharmacy intervention for override).

2) Natural Language Explanation — uses LLM generated
simple explanations to complex drug interactions that
consumers can understand. Medical terminology is
substituted with consumer-friendly alternatives
("anticoagulation" —  "blood thinning," "QT
prolongation" — "heart rhythm changes").

3) Progressive Disclosure — interface enables controlled
display of information to avoid overwhelming users
while also ensuring detailed information is available if
needed. Options like “Learn More” and “Why am I
seeing this?” provide secondary level of information,
references, and links to data sources that help build
user trust.

4) Integration with E-commerce flow — empowers
consumers to view interactions at multiple steps in
their journey. Product detail pages (potential
interactions based on items in cart), Cart page
(aggregated interaction warnings and filter on drug
combinations), and Checkout page (final validation
and blocking if required).

3.4 Data Management and Privacy

The system also effectively maintains user medication lists

while protecting sensitive health information. This is

critical to ensure patient safety and high-quality interaction
results.

1) Medication profile management — users are
recommended to list prescription and OTC
medications using RxNorm codes, with optional
dosage/frequency fields. Data is encrypted at rest and
in transit, and the system cross checks new cart items
against stored medications.
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2) Privacy and Compliance — all interactions are HIPAA
compliant, and no health information is shared in LLM
API calls. Users can control if the system can
view/edit/delete their profile data and trigger deletion
across associated logs if required.

3) Audit Logging and Monitoring — all interactions are
logged with timestamps, drug identifiers, LLM
responses, confidence scores, and user actions for
quality assurance, performance monitoring, and
regulatory compliance.

3.5 Scalability and Performance

The system must handle high-volume traffic patterns
typical of e-commerce platforms while maintaining high
availability, consistency, and response times.

1) Microservices Architecture — each component (drug
normalization, rule-based checking, LLM layer, UI
API) deploys as an independent microservice (with
Kubernetes) and scales automatically based on CPU
utilization or queue depth. The system scales from
baseline 100 requests/second to peak 1000+
requests/second within 2-3 minutes during traffic
spikes.

2) Caching — enables minimizing external API calls. In-
memory (within services for frequently access data),
Redis cluster (to store interaction results from drug
databases), and CDN caching (for static assets). The
system also employs mechanisms to invalidate the
caches based on schedules or event-based triggers
(drug databases update).

3) Performance monitoring — use real-time dashboards to
track API response time distributions (p50, p75, p95,
p99), cache hit rates, LLM API latency, and user action
distributions, with alerts triggering when p95 times
exceed 500ms or error rates exceed 1%.

4. Proposed Evaluation Methodology

To validate the proposed system's effectiveness, a
comprehensive evaluation framework must assess
detection accuracy, system performance, and user
experience.

The evaluation would employ standard metrics used in
DDI detection research — sensitivity (ability to detect true
interactions), specificity (ability to correctly identify non-
interactions), positive predictive value (PPV), and negative
predictive value (NPV) which are calculated from true
positives (TPs), true negatives (TNs), false positives (FPs),
and false negatives (FNs) [19], using the formulas in Fig.
2 below. Our hybrid system should target >90% sensitivity
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for major/contraindicated interactions to surpass existing
tools, while maintaining >85% specificity to minimize
false positives that contribute to alert fatigue.

Sensitivity = TP/(TP + FN)

Speci ficity = TN /(FP + TN)

PPV = TP/(TP + FP)

NPV = TN/(TN + FN)

Figure 2: Formula to evaluate Sensitivity, Specificity,
Post Predictive Value, and Negative Predictive Value [19]

Volume 07 - 2025

System performance benchmarks must include response
time distributions (p50, p95, p99) under varying loads
(100-1000+ requests/second), with success defined as
<500ms p95 latency and 99.9% availability. User
acceptance would be assessed through controlled trials in
alert comprehension rates, action distributions (removed
items, contacted pharmacists, acknowledged) and cart
abandonment rates during transactions with the LLM-
enriched system versus rule-based baseline.

5. Discussion

This hybrid architecture overcomes major shortcomings of
current drug interaction detection systems by integrating
deterministic rule-based verification with LLM-driven
contextual analysis, leading to advantages over the current
methods.

Hybrid LLM-Powered System for Real-Time Drug Interaction
Detection in E-Commerce

-

zéf; Hybrid Architecture

N\ . h
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Figure 3: Core components of a hybris LLM-powered system for real-time drug interaction detection in e-commerce

In contrast to other existing Drug Interaction checkers,
which require users to navigate away from shopping to
manually fill out medications, our system also integrates
easily with the cart-level feature, enhancing the likelihood
that they will check for interaction before a purchase is
made. By creating a RAG-based grounding mechanism,
the hallucination problem seen in standalone LLMs can be
alleviated. It anchors LLM outputs to authoritative drug
databases and generates explanations that are consumer-
appropriate. In addition, confidence scoring mechanics and
pharmacist review queue create a human-in-the-loop safety
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net to alleviate the concerns of deploying Al machines in
healthcare applications.

Nevertheless, the implementation still has some problems,
including dependency upon commercial API availability
and costs, and restricted individual context for patients
without their complete medical histories. Despite these
limitations, the system is an important leap for consumer-
facing pharmaceutical safety by illustrating that proactive
clinical decision support can be seamlessly infused into e-
commerce workflows with no adverse impact on user
experience or system performance.
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6. Conclusion and Future Work

This paper presents a new LLM-powered drug-drug
interaction detection system which is designed to be used
within e-commerce pharmacy shopping carts. It helps
address a critical safety gap in the online pharmacy market.
The proposed hybrid architecture combines deterministic

rule-based checking using commercial databases
(DrugBank, First Databank) with LLM-enhanced
contextual analysis  through Retrieval-Augmented

Generation, which helps achieve more reliable detection.
The three-layer system design — comprising interaction
detection, LLM enhancement, and user experience layers —
demonstrates that proactive clinical decision support can
be integrated into consumer-facing applications. By
implementing severity-based progressive disclosure,
confidence scoring mechanisms, and HIPAA-compliant
data management, the system balances patient safety with
user experience.

Future work should focus on empirical validation through
real-world data to measure detection, accuracy, user
acceptance, and potential healthcare cost savings by
preventing adverse drug reactions and hospitalizations.
Technical enhancements can include usage of more fine-
tuned models (like Phi-3.5) that can extend to drug-food
interactions. The system can also be extended to integrate
with electronic health records to get access to complete
medication histories and patient-specific risk factors and
adding multi-language support would facilitate reach to a
larger user base.
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