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Abstract 

The present online pharmacy market lacks real-time drug-drug interaction detection during the shopping experience. This 

paper presents a unique system to detect interactions directly in e-commerce pharmacy shopping carts, reducing the risk 

of adverse drug reactions that could lead to potential hospitalizations. The hybrid system combines the current rule-based 

checking using commercial databases (DrugBank, First DataBank) with Large Language Models (LLMs) to improve 

contextual analysis through Retrieval-Augmented Generation (RAG). A three-layer design comprising of interaction 

detection, LLM enhancement, and user experience layers is proposed, to achieve under 500ms response times through 

microservices architecture and multi-tier caching, while generating user-friendly natural language explanations. A 

confidence scoring mechanism flags uncertain outputs for further pharmacy review and intervention to ensure user safety. 

The system also addresses critical limitations of current similar tools requiring use of separate interaction checkers by 

providing seamless cart-level integration. The proposed evaluation methodology targets >90% sensitivity for major 

interactions and >80% specificity to minimize pharmacist fatigue due to false positives.  
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1. Introduction 

Every day, hundreds of thousands of consumers click on 

“Add to Cart” on online pharmacy platforms and 

inadvertently create combinations of medications that 

could send them to the emergency room. There are 6 

emergency department visits for therapeutic and 

nontherapeutic medication harms per 1,000 patients, with 

about 38% of such visits subsequently requiring 

hospitalization [1]. The online pharmacy market reached 

$82.91 billion in 2023 and is projected to grow to $294.35 

billion by 2030 [2], yet current online pharmacy platforms 

focus on convenience but lack proactive safety 

mechanisms.  

Drug-drug interactions (DDIs) impose a massive public 

health and economic burden. Among patients taking any 

prescription drug, half are exposed to two or more drugs, 

and 5% take eight or more simultaneously [3]. Adverse 

drug reactions account for 4.2-30% of hospital admissions 

in the USA and Canada [4], with patients experiencing 

adverse effects staying hospitalized 1.2-3.8 days longer 
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and incurring additional costs of $2,284-$5,640 per patient 

[5]. 

Research reveals alarming gaps in current detection 

systems. An examination of 50 community pharmacies 

found potential DDIs in 39.2% of 1,000 prescriptions [6]. 

More concerning, a study of 64 Arizona pharmacies found 

only 28% correctly identified eligible interactions, with a 

median sensitivity of 0.85 for detecting well-established 

interactions [7]. Traditional clinical decision support 

systems generate excessive non-clinically relevant alerts, 

causing alert fatigue— pharmacists override 73.8% of DDI 

alerts on average [7]. This suggests that existing systems 

are poorly calibrated for both clinical and consumer 

contexts. 

At present, most online pharmacy systems defer interaction 

checking until after a purchase is made, and back-end 

pharmacy staff processes hundreds of orders. However, 

while consumers are shopping, they do not receive any 

feedback on potential harmful combinations with new or 

existing medications. Recent advancements in Large 

Language Models (LLMs) present a paradigm shift in drug 

interaction detection. Although some of these models are 

found to accurately identify DDIs, the accuracy of such 

models remains low due to limited access to high-quality 

datasets, interpretability issues, and the inability to 

consider patient-specific factors. 

Despite these challenges, specialized approaches have 

shown promise. For instance, smaller fine-tuned models 

like Phi-3.5 with 2.7 billion parameters achieved 

sensitivity of 0.978 and accuracy of 0.919 for DDI 

prediction [8]. This paper explores a hybrid system for DDI 

detection: using rule-based databases for reliable detection 

of known interactions, and LLMs providing contextual 

analysis and consumer-friendly explanations. It further 

introduces Prescription Cart Intelligence, an e-commerce 

system that leverages LLMs to detect DDIs directly within 

the shopping cart experience, transforming online 

pharmacies to proactively monitor patient safety. 

2. Background and Related Work 

Drug interactions occur when one medication alters the 

pharmacological effect of another, potentially leading to 

adverse events or treatment failures. These interactions are 

classified as pharmacokinetic or pharmacodynamic in 

nature [9]. Pharmacokinetic interactions affect how the 

body processes drugs through absorption, distribution, 

metabolism, or elimination pathways [10]. 

Pharmacodynamic interactions occur when one drug 

affects the pharmacological response to another without 

altering its concentration [11]. The interactions are also 

classified by clinical severity, which helps determine 

intervention decisions. This is critical for e-commerce 

applications, as different severity levels will lead to 

different user experiences – from informational to blocking 

alerts. The interactions also have a significant burden on 

healthcare systems. Given that prescription regimens 

contain an average of 6.58 medications with potential for 

2.68 drug interactions per patient [12], the challenge scales 

exponentially with polypharmacy prevalence. 

2.1 Current Drug Interaction Detection systems 

Existing DDI detecting systems include standalone 

checkers, pharmacy management platforms, and clinical 

decision support systems.  

1) Standalone checkers like CVS Drug Interaction 

Checker, Drugs.com, Medscape, and Micromedex that 

are currently available to consumers, provide database 

driven interaction checking. Studies have found that 

these systems detect DDIs at varied levels, revealing 

significant inconsistency. They are also designed for 

healthcare professionals with clinical knowledge, 

making them inappropriate for direct consumer use. 

2) Pharmacy Management Systems (like PrimeRx) 

have an integrated process of interaction checking 

prior to dispensing drugs to consumers. However, a 

study of 64 Arizona pharmacies found only 28% 

correctly identified eligible interactions, with median 

sensitivity of 0.85 even for well-documented 

interactions [7]. This suggests that even professional 

grade systems miss a substantial percentage of known 

interactions. 

3) Clinical Decision Support Systems (CDSS) 

integrated into electronic health records provide real-

time alerts during prescribing workflows. Commercial 

databases such as Drug Therapy Monitoring System 

and National Drug Data File Plus power many EHR 

alerting systems. However, a study found that out of 

the 92,272 drug orders in the year 2000, 92.2% were 

overridden by the physicians at the point of 

prescribing [13]. 

 

2.2 Machine Learning for DDI Prediction 

Traditional Machine Learning approaches employed 

classical methods (including random forests and support 

vector machines) requiring manual feature engineering 

based on domain expertise [14]. While these approaches 

achieved moderate success, they were limited by the need 

for extensive labeled training data and manually crafted 

molecular descriptors. Graph Neural Networks (GNN) is 
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another approach for DDI prediction by directly processing 

molecular graph structures [15]. Unlike traditional 

methods requiring handcrafted features, GNNs learn 

representations by aggregating information from 

neighboring nodes in molecular graphs [16]. However, 

there are still significant challenges in the above methods. 

Current methods have insufficient learning ability for 

massive multi-source data and struggle with zero-shot 

scenarios for novel drug combinations [17]. More 

importantly, these models lack the ability to explain 

predictions to non-experts, and cannot incorporate patient 

health data like age, comorbidities, or dosage to determine 

relevance.  

2.3 Large Language Models in Healthcare and 

Drug Discovery 

Recent studies demonstrate LLMs' true potential across 

healthcare domains. Indeed, LLMs show extraordinary 

performance in general tasks, but their performance in 

specialized application domains is grossly limited [17]. 

Nonetheless, LLMs remain superior to traditional 

approaches in consumer-facing applications. Natural 

language generation capabilities help give simple 

explanations of complex pharmacological concepts. These 

technologies are also especially beneficial for merging data 

across various sources – drug databases, literature, and 

patient history.  

2.4 E-commerce technology in Healthcare 

The online pharmacy market is growing rapidly with 

multiple platforms increasingly incorporating AI 

technologies. AI-driven recommendation engines suggest 

personalized OTC products based on health profiles and 

purchase history. AI chatbots provide customer support and 

automated prescription verification (PharmbotAI). While 

platforms are still adopting AI for operational efficiency, 

online pharmacies have yet to successfully integrate safety 

interventions into their shopping workflows. Interaction 

checking is primarily a back-end pharmacy function which 

occurs after the consumer has already made a purchase, and 

no major platform provides real-time DDI alerts during cart 

assembly or prior to checkout. This represents a significant 

gap where e-commerce technology has not yet been 

applied to a critical safety concern. There are a few 

challenges in this approach: 

1) Response time requirements are different – clinical 

systems tolerate multi-second delays while e-

commerce users expect sub-500ms interactions. 

2) Real-time state management is complex – interaction 

risk depends on the complete cart contents plus any 

medications users are already taking. 

3) Liability concerns arise when consumer-facing 

systems provide medical guidance without pharmacist 

supervision. 

 

3. System Design and Architecture 

Here we walk through the proposed architecture of our 

LLM-powered prescription cart intelligence system. This 

section describes the high-level design, core components, 

data flow, and integration of touchpoints that enable real-

time drug interaction detection within an e-commerce 

shopping experience. 

This system implements a hybrid architecture that 

combines deterministic rule-based interaction checking 

with LLM-powered contextual analysis. The design 

balances the regulatory compliance and reliability of 

commercial drug databases while leveraging the natural 

language reasoning and explanation capabilities of large 

language models. This is a multi-tiered architecture 

consisting of 3 functional layers – the Interaction Layer 

(DDI checking using commercial drug databases), the 

LLM layer (contextual analysis, severity assessment, and 

natural language explanation), and the User Experience 

layer (present alerts through progressive disclosure 

mechanisms). 

https://www.pharmbotai.com/prescription-verification-with-ai/
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Figure 1: System Design and Architecture of LLM-Powered Prescription cart

3.1 Interaction Detection Layer (Rule-based) 

This layer integrates commercial drug interaction 

databases that provide comprehensive documentation of 

DDIs to perform deterministic DDI checking. 

1) Drug Database Integration – connect DrugBank’s 

commercial API, which returns structures JSON 

responses with severity ratings (minor, moderate, 

major), interaction mechanisms, and management 

recommendations and can be batched up to 40 drugs 

[18]. 

2) Drug Normalization Pipeline – extract active 

ingredients via regular expressions, match them to 

RxNorm Concept Unique Identifiers, map RxCUI 

codes to DrugBank IDs, and normalize dosage 

information if required. This is required since e-

commerce product catalogs have various naming 

conventions while interaction databases are 

standardized. 

3) Response Time Optimization – cache drug identifier 

mappings, interaction results for drug in Redis or 

similar data stores to obtain 500ms response times. 

Modifications to the cart can be handled by parallel 

API calls, and mappings can have different TTLs 

(time-to-live) as required. 

 

3.2 LLM Layer 

This layer augments rule-based detection with contextual 

analysis using Retrieval-Augmented Generation (RAG) to 

ground responses in authoritative drug information while 

leveraging LLMs’ reasoning capabilities. 

1) Retrieval-Augmented Generation – optimizes LLM 

output by referencing an authoritative knowledge base 

outside training data sources before generating 

responses. When the system detects an interaction 

through rule-based checking, it will retrieve relevant 

information from DrugBank and FDA drug labels. It 

then formats the retrieved information into a 

structured prompt for the LLM. Finally, it generates 

consumer-appropriate explanations, severity 

assessments, and recommendations. 

2) Prompt Engineering Framework – uses refined 

prompts that structure LLM tasks for maximum 

accuracy and reliability. The LLM identifies the 

interaction type (pharmacokinetic vs. 

pharmacodynamic), then extracts relevant patient 

information from cart data, and finally synthesizes 

information into consumer-appropriate language. 

3) LLM API Selection and Fallback Strategy – support 

multiple LLM providers including Anthropic Claude, 

OpenAI GPT-4, and Google Gemini through a unified 

adapter interface. If the primary LLM API fails, the 

system will fall back to secondary option to ensure 

continuous operation. If both fail, default to rule-based 

interaction warnings. 

4) Confidence Scoring and Uncertainty Handling – the 

system implements a confidence scoring mechanism 

to evaluate LLM responses for uncertainty markers, 

hallucination indicators, and consistency with respect 

to retrieved context. Responses are scored on a 0-1 

scale, and anything scoring below 0.7 is flagged for 
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pharmacist review rather than being shown directly to 

consumers. 

 

3.3 User Experience Layer 

The UX layer displays back-end interaction detection as 

actionable guidance for consumers through alert 

mechanisms and progressive disclosure. 

1) Alert System – implements severity-based 

notifications that are displayed near cart items. Minor 

interactions (informational, requires simple 

monitoring like taking medications at different time of 

day), Moderate interactions (warning, recommend 

pharmacist or healthcare provider consultation with 

contact information), and Major interactions 

(blocking checkout, required to remove item or 

pharmacy intervention for override). 

2) Natural Language Explanation – uses LLM generated 

simple explanations to complex drug interactions that 

consumers can understand. Medical terminology is 

substituted with consumer-friendly alternatives 

("anticoagulation" → "blood thinning," "QT 

prolongation" → "heart rhythm changes"). 

3) Progressive Disclosure – interface enables controlled 

display of information to avoid overwhelming users 

while also ensuring detailed information is available if 

needed. Options like “Learn More” and “Why am I 

seeing this?” provide secondary level of information, 

references, and links to data sources that help build 

user trust. 

4) Integration with E-commerce flow – empowers 

consumers to view interactions at multiple steps in 

their journey. Product detail pages (potential 

interactions based on items in cart), Cart page 

(aggregated interaction warnings and filter on drug 

combinations), and Checkout page (final validation 

and blocking if required). 

 

3.4 Data Management and Privacy 

The system also effectively maintains user medication lists 

while protecting sensitive health information. This is 

critical to ensure patient safety and high-quality interaction 

results. 

1) Medication profile management – users are 

recommended to list prescription and OTC 

medications using RxNorm codes, with optional 

dosage/frequency fields. Data is encrypted at rest and 

in transit, and the system cross checks new cart items 

against stored medications. 

2) Privacy and Compliance – all interactions are HIPAA 

compliant, and no health information is shared in LLM 

API calls. Users can control if the system can 

view/edit/delete their profile data and trigger deletion 

across associated logs if required. 

3) Audit Logging and Monitoring – all interactions are 

logged with timestamps, drug identifiers, LLM 

responses, confidence scores, and user actions for 

quality assurance, performance monitoring, and 

regulatory compliance. 

 

3.5 Scalability and Performance 

The system must handle high-volume traffic patterns 

typical of e-commerce platforms while maintaining high 

availability, consistency, and response times. 

1) Microservices Architecture – each component (drug 

normalization, rule-based checking, LLM layer, UI 

API) deploys as an independent microservice (with 

Kubernetes) and scales automatically based on CPU 

utilization or queue depth. The system scales from 

baseline 100 requests/second to peak 1000+ 

requests/second within 2-3 minutes during traffic 

spikes. 

2) Caching – enables minimizing external API calls. In-

memory (within services for frequently access data), 

Redis cluster (to store interaction results from drug 

databases), and CDN caching (for static assets). The 

system also employs mechanisms to invalidate the 

caches based on schedules or event-based triggers 

(drug databases update). 

3) Performance monitoring – use real-time dashboards to 

track API response time distributions (p50, p75, p95, 

p99), cache hit rates, LLM API latency, and user action 

distributions, with alerts triggering when p95 times 

exceed 500ms or error rates exceed 1%. 

 

4. Proposed Evaluation Methodology 

To validate the proposed system's effectiveness, a 

comprehensive evaluation framework must assess 

detection accuracy, system performance, and user 

experience.  

The evaluation would employ standard metrics used in 

DDI detection research – sensitivity (ability to detect true 

interactions), specificity (ability to correctly identify non-

interactions), positive predictive value (PPV), and negative 

predictive value (NPV) which are calculated from true 

positives (TPs), true negatives (TNs), false positives (FPs), 

and false negatives (FNs) [19], using the formulas in Fig. 

2 below. Our hybrid system should target >90% sensitivity 
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for major/contraindicated interactions to surpass existing 

tools, while maintaining >85% specificity to minimize 

false positives that contribute to alert fatigue. 

 

Figure 2: Formula to evaluate Sensitivity, Specificity, 

Post Predictive Value, and Negative Predictive Value [19] 

System performance benchmarks must include response 

time distributions (p50, p95, p99) under varying loads 

(100-1000+ requests/second), with success defined as 

<500ms p95 latency and 99.9% availability. User 

acceptance would be assessed through controlled trials in 

alert comprehension rates, action distributions (removed 

items, contacted pharmacists, acknowledged) and cart 

abandonment rates during transactions with the LLM-

enriched system versus rule-based baseline. 

5. Discussion 

This hybrid architecture overcomes major shortcomings of 

current drug interaction detection systems by integrating 

deterministic rule-based verification with LLM-driven 

contextual analysis, leading to advantages over the current 

methods. 

  

Figure 3: Core components of a hybris LLM-powered system for real-time drug interaction detection in e-commerce

In contrast to other existing Drug Interaction checkers, 

which require users to navigate away from shopping to 

manually fill out medications, our system also integrates 

easily with the cart-level feature, enhancing the likelihood 

that they will check for interaction before a purchase is 

made. By creating a RAG-based grounding mechanism, 

the hallucination problem seen in standalone LLMs can be 

alleviated. It anchors LLM outputs to authoritative drug 

databases and generates explanations that are consumer-

appropriate. In addition, confidence scoring mechanics and 

pharmacist review queue create a human-in-the-loop safety 

net to alleviate the concerns of deploying AI machines in 

healthcare applications. 

Nevertheless, the implementation still has some problems, 

including dependency upon commercial API availability 

and costs, and restricted individual context for patients 

without their complete medical histories. Despite these 

limitations, the system is an important leap for consumer-

facing pharmaceutical safety by illustrating that proactive 

clinical decision support can be seamlessly infused into e-

commerce workflows with no adverse impact on user 

experience or system performance. 
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6. Conclusion and Future Work 

This paper presents a new LLM-powered drug-drug 

interaction detection system which is designed to be used 

within e-commerce pharmacy shopping carts. It helps 

address a critical safety gap in the online pharmacy market. 

The proposed hybrid architecture combines deterministic 

rule-based checking using commercial databases 

(DrugBank, First Databank) with LLM-enhanced 

contextual analysis through Retrieval-Augmented 

Generation, which helps achieve more reliable detection. 

The three-layer system design – comprising interaction 

detection, LLM enhancement, and user experience layers – 

demonstrates that proactive clinical decision support can 

be integrated into consumer-facing applications. By 

implementing severity-based progressive disclosure, 

confidence scoring mechanisms, and HIPAA-compliant 

data management, the system balances patient safety with 

user experience. 

Future work should focus on empirical validation through 

real-world data to measure detection, accuracy, user 

acceptance, and potential healthcare cost savings by 

preventing adverse drug reactions and hospitalizations. 

Technical enhancements can include usage of more fine-

tuned models (like Phi-3.5) that can extend to drug-food 

interactions. The system can also be extended to integrate 

with electronic health records to get access to complete 

medication histories and patient-specific risk factors and 

adding multi-language support would facilitate reach to a 

larger user base. 
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