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Abstract 

The article examines an architectural approach to resume analysis based on Retrieval-Augmented Generation (RAG), 

designed to overcome the systemic limitations of traditional keyword-matching algorithms (like TF-IDF and BM25) and 

the inherent constraints of large language models (LLMs) used in isolation under conditions of an overloaded and 

semantically heterogeneous hiring market. The relevance of the work is driven by the growth in the volume and variability 

of resumes, the need to capture latent semantic correspondences between experience phrasing and vacancy requirements, 

and the risks of algorithmic biases, as well as the plausible yet unreliable generation of personnel decisions. The study 

aims to formalize a dual-loop scheme for processing a resume corpus, in which dense semantic retrieval over vector 

representations of document fragments is coupled with answer generation strictly constrained by the retrieved context and 

complex refusal rules under insufficient grounds. The scientific novelty lies in interpreting the RAG approach as a 

mechanism of search-based non-parametric memory for a corporate resume array, where the chunking strategy 

(determined at the ingestion phase) and the retrieval parameters such as topK and similarity. Threshold, directly governing 

the scope and quality of information passed to the retrieval act as controllable regulators of the recall–noise–cost trade-

off, and where requirements for explainability, traceability, and privacy are derived from HR-specific constraints rather 

than declared post factum. It is demonstrated that separating retrieval and generation functions, offloading compute-

intensive corpus preparation into an asynchronous loop, and locally deploying models jointly reduce LLM load, decrease 

the incidence of hallucinations, and enable verifiable candidate ranking based on the semantic proximity of the experience 

to the recruiter’s query. It is concluded that the reliability of systems of this class is determined not by model strength, but 

by the architecture of source control and the discipline of context management. The article will be helpful for researchers 

and engineers developing intelligent talent selection systems, as well as for practicing recruiters and HR analysts 

implementing RAG solutions in corporate processes. 
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1. Introduction 

The contemporary hiring market is characterized by high 

competition and accelerated recruitment cycles, which 

increases the employer-side burden of initial screening: 

recruiters must review hundreds of resumes to identify a 

limited number of candidates who truly match a role 

profile (Bouhsaien & Azmani, 2025). In this setting, the 

critical factor is not only the volume of incoming 

documents but also their heterogeneity in structure and 

style of experience description, where identical 

competencies are expressed via divergent terminology. 

Meanwhile, salient details are often embedded within 

descriptions of projects, responsibilities, and work 

execution contexts. This practical problem is explicitly 



The American Journal of Engineering and Technology 
ISSN 2689-0984 Volume 07 - 2025 

 
 

The Am. J. Eng. Technol. 2025                                                                                                                         153 

recognized: the scale of resume review is significant, and 

standard screening procedures are insufficiently 

sensitive to semantic nuances and latent correspondences 

between the query and resume content (Ajjam & Al-

Raweshidy, 2025). 

Existing approaches based on keyword search provide a 

formally interpretable yet methodologically brittle 

output: they match strings rather than meaning, and thus 

readily miss relevant candidates when resume 

terminology differs from query terminology (Ajjam & 

Al-Raweshidy, 2025). This is illustrated by the case 

where a query for cloud experience fails to retrieve 

resumes containing specific mentions of cloud 

technologies, although the competence domain is 

substantively the same. Attempting to replace such 

search with a pure LLM also encounters systemic 

limitations: the model may exhibit strong generalization 

and reasoning capabilities, yet it lacks knowledge of a 

specific corporate resume repository until those data are 

explicitly provided; when the full text is directly injected 

into the prompt, context-window constraints and the 

economic inefficiency of repeatedly reprocessing the 

same fragments for each new question quickly become 

apparent. 

The objective of this work is to formulate and 

substantiate an architectural approach to resume analysis 

in which an LLM responds not in general, but by relying 

on strictly relevant fragments retrieved from a private 

resume database via semantic similarity. This principle 

is described as providing the model with an external 

knowledge base, where a dedicated retrieval subsystem 

selects relevant evidence from the resume base, and the 

generation component uses only the obtained context to 

construct an answer.  

2. Materials and Methodology 

The research materials comprised a corpus of scientific 

and applied sources along three intersecting lines: (1) 

digital transformation and operational constraints of 

recruitment, manifested in the high load of initial 

screening and structural heterogeneity of resumes 

(Bouhsaien & Azmani, 2025); (2) semantic matching of 

resumes and job postings as an alternative to literal 

keyword search, where sensitivity to terminological 

variability is treated as a central quality criterion (Ajjam 

& Al-Raweshidy, 2025); (3) Retrieval-Augmented 

Generation architectures as a means of grounding 

generation in retrieved evidence, together with 

engineering trade-offs of recall/noise and the economics 

of repeated queries (Gupta et al., 2024). Additionally, the 

theoretical framework incorporates work on Dense 

Retrieval as a methodological foundation for semantic 

search over document fragments (Karpukhin et al., 2020) 

and on sentence embeddings for robust comparison of 

short and medium text segments within a shared vector 

space (Reimers & Gurevych, 2019). To substantiate 

reliability requirements for personnel decisions, research 

on algorithmic bias in hiring was considered (Raghavan 

et al., 2020), along with empirical demonstrations of 

LLM propensity toward plausible yet false claims under 

insufficient context, rendering source control not an 

option but a safety-by-design principle (Lin et al., 2022). 

The methodology relies on conceptual modeling of an 

RAG system for resume analysis as a dual-loop 

computational process: an asynchronous corpus 

preparation (ingestion) loop and an interactive query-

processing loop. In the first loop, resumes are 

transformed into a text stream, segmented into semantic 

chunks, and encoded into embeddings; the chunks are 

then indexed in a vector store, where search is 

implemented as a nearest-neighbor problem, typically 

requiring approximate methods to maintain latency at a 

practical level (Gupta et al., 2024). In the second loop, 

the recruiter’s query is encoded into the same space, top-

K chunks are retrieved by semantic similarity 

(Karpukhin et al., 2020), after which generation is 

constrained strictly to the retrieved context and 

augmented with a strict refusal rule when retrieval 

provides insufficient or low-confidence evidence, to 

minimize hallucination risk and improve verifiability 

through references to specific resume fragments (Lin et 

al., 2022). The parameters topK and chunk size are 

treated as controllable regulators of the recall–noise–cost 

trade-off. At the same time, explainability and robustness 

to linguistic variability are considered fixed requirements 

derived from the nature of recruiting and the risks 

associated with automated decision-making (Ajjam & 

Al-Raweshidy, 2025; Raghavan et al., 2020). 

3. Results and Discussion 

Within the considered approach, the resume analysis task 

is formalized as transforming an unstructured set of 

candidate documents into a system that, upon a recruiter 

query, outputs either a substantiated natural-language 

answer or an ordered list of candidates with stated 

reasons for relevance. The input comprises resumes as 

files, each document containing heterogeneous 

information about experience, skills, achievements, 

varying in format, detail, and overall completeness. 
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Additionally, a recruiter query in natural language is 

provided, which may be a question about a specific 

candidate or a profile description (who fits a role 

requiring a given stack and domain). The output must 

include, first, a natural-language response grounded in 

resume facts, and second, in a search scenario, a ranking 

of candidates by degree of match to the query, preferably 

with relevance scoring and references to the fragments 

supporting the decision. This design follows the general 

idea of generation augmented by retrieved context: 

relevant fragments are first selected from an external 

store, and the generator then constructs the answer by 

treating these fragments as non-parametric memory that 

can be updated independently of the model. 

To implement this formulation, a dual-loop computation 

scheme is introduced. In the first loop, executed 

asynchronously relative to user requests, each document 

is split into coherent semantic segments. For each 

segment, a vector representation is constructed that 

enables measuring similarity by meaning rather than 

string overlap. The segments and their metadata are then 

stored in a vector database. The second loop, invoked per 

query, maps the query text into a vector representation 

and performs nearest-segment search, subsequently 

constraining the context to the first K retrieved 

fragments. The conceptual justification for dense 

retrieval over vector representations in context search is 

supported by open-domain question answering research, 

where dense retrieval methods substantially improve the 

accuracy of retrieving relevant passages compared to 

sparse search models (Karpukhin et al., 2020). The 

choice of the embedding model is critical because it 

determines the geometry of the semantic space. In this 

regard, specialized sentence-level models are 

particularly suitable, as they provide cosine-comparable 

representations and are explicitly designed for the 

semantic matching of short and medium-length text 

fragments (Reimers & Gurevych, 2019). 

System requirements are conveniently divided into 

functional and non-functional. In terms of accuracy, 

candidate ranking is expected to be robust to phrasing 

variability in resumes and queries and not to degrade 

under synonyms and indirect mentions; accuracy should 

be treated in two senses: the quality of retrieving relevant 

fragments and the correctness of the final answer, which 

must not add information absent from the resumes. In 

terms of explainability, the system must expose the 

grounds for its responses in the form of concrete, 

actionable fragments; otherwise, it becomes a black box, 

particularly hazardous in HR processes where decisions 

carry significant social consequences. In terms of 

privacy, resumes and their derived representations must 

remain within the organizational perimeter, and access to 

the store and query logs must be controlled. This 

requirement is a foundational requirement for 

responsible deployment, as maintaining data sovereignty 

within the organizational perimeter is essential for 

conducting the internal audits, bias testing, and fairness 

validations required to mitigate the documented risks of 

automated hiring systems (Raghavan et al., 2020). 

From a cost perspective, minimizing repeated 

computations is essential: compute-intensive preparation 

operations (document parsing and embedding 

construction) should be shifted into the ingestion loop so 

that interactive queries rely on a prebuilt index. For 

latency, a near-dialogue mode is required: the user 

perceives the system as an assistant, so response time 

should be determined by retrieval plus generation time; 

increasing K improves context recall but raises latency 

and increases the risk of context noising by including 

fragments that are thematically close but not factually 

relevant to the query. This trade-off is typical for 

retrieval-augmented generation systems and has been 

discussed in the survey literature on the subject (Gupta et 

al., 2024). 

Typical user scenarios follow naturally from this 

formalization. The first scenario is a per-candidate 

question-answer mode: the query is framed as clarifying 

a fact or competence, and the system returns a concise 

answer grounded in specific lines of experience and 

projects, avoiding conjecture. The second scenario is 

candidate search by skills and domains: the query 

specifies a profile, the system retrieves semantically 

similar fragments, aggregates them at the candidate level, 

and produces a ranking with explanations of why 

candidates appear in top positions. The third scenario is 

candidate comparison: the user provides comparison 

criteria, and the system, preserving grounding in resume 

text, synthesizes differences across relevant aspects, 

indicating which fragments support the conclusions; 

here, constraining generation to retrieved context and 

explicitly refusing under insufficient data are significant, 

because otherwise the model begins to fill gaps with 

plausible but unverifiable assertions, contradicting the 

aims of reliable screening. 

Semantic search in recruitment relies on vector 

representations of text in which proximity reflects 

semantic similarity rather than string overlap. This shift 
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is significant for resumes, where competencies are often 

expressed indirectly through descriptions of projects and 

responsibilities, and therefore are poorly captured by 

literal matching. The practical foundation of such 

systems consists of models that encode sentences and 

paragraphs into compact vectors suitable for cosine 

similarity comparison; notably, sentence-level model 

families are optimized explicitly for semantic similarity 

and text clustering tasks (Reimers & Gurevych, 2019). In 

a related line of work on dense retrieval for question 

answering, it is shown that a dual-encoder architecture 

(encoding questions and passages separately) enables the 

effective retrieval of relevant excerpts without relying on 

sparse features, which is methodologically similar to 

searching over a resume corpus (Karpukhin et al., 2020). 

When the number of resume segments becomes large, a 

central engineering issue arises: performing fast nearest-

neighbor searches in high-dimensional spaces. Vector 

stores typically implement approximate search using 

indexes that strike a balance between accuracy and 

latency. To address this, we employ a graph-based 

approximate nearest neighbor (ANN) index, specifically 

the Hierarchical Navigable Small World (HNSW) graph. 

In HNSW, the search begins at coarse levels of the graph 

and refines at lower ones, providing a practical 

operational compromise between query latency and 

retrieval recall (Ponomarenko, 2025). 

At the intersection of retrieval and generation, an 

approach has formed in which answers are constructed 

not only from the parameters of a language model but 

also from retrieved fragments of external memory: first, 

relevant segments are retrieved; then these segments are 

added to the query context; only afterward is generation 

invoked, already grounded in the retrieved evidence. 

However, the key risk remains: language models tend to 

produce plausible yet incorrect claims, especially when 

context is incomplete or contradictory. Research on 

truthfulness in generation introduces target question sets 

that reveal systematic false answers, underscoring the 

need for explicit self-control mechanisms in applied 

systems (Lin et al., 2022). Therefore, practical 

implementations of retrieval-augmented generation 

typically enforce strict contextual constraints, requiring 

reliance only on provided fragments, and introduce 

refusal behavior when retrieval does not return sufficient 

grounds; this reduces the likelihood of inventing details 

and makes the system more controllable in an HR setting 

where the cost of error is particularly high. 

The proposed approach relies on the idea of generation 

augmented by retrieval: the system does not attempt to 

remember all resumes within the parameters of a 

language model. It does not require the user to search for 

keyword overlaps manually, but instead constructs an 

intermediate layer of semantic memory. This memory is 

formed from resume fragments represented as vectors, 

enabling the retrieval of only those parts of texts that 

truly contain relevant signals of experience and skills. As 

a result, the answer becomes simultaneously more 

accurate and more verifiable because it is tied to concrete 

evidence in documents rather than probabilistic 

guesswork. 

In applied terms, each user query is treated as an 

operation over a resume corpus with two possible 

outputs: either a concise answer to a question about a 

candidate or a ranked list of candidates by degree of fit 

to criteria. The core principle is functional separation: 

search is responsible for retrieving context, while the 

language model is responsible for coherent exposition 

and response normalization. This separation reduces 

generative load, lowers the cost of repeated queries over 

the same corpus, and makes system behavior more stable 

as the number of documents grows. 

The first phase, corpus preparation, begins with 

extracting text from resumes, including file formats 

where structure is visually rather than logically defined. 

At this step, obtaining a maximally clean text stream is 

crucial: remove formatting artifacts, preserve the order of 

semantic blocks, and, where possible, retain section 

markers such as work experience, education, and skills 

lists so that they can be used later as metadata. Even with 

strong extraction, unavoidable heterogeneity remains: 

one candidate lists responsibilities as bullet points, 

another uses continuous prose, and a third emphasizes 

project titles; therefore, subsequent stages must be 

invariant to such stylistic fluctuations. 

Next, the text is split into fragments, where splitting must 

be semantic rather than purely mechanical: overly large 

chunks dilute the signal and increase the risk that 

irrelevant details enter the context, while overly small 

chunks destroy causal relationships and reduce 

informativeness. Each chunk is transformed into a vector 

representation that encodes meaning and enables 

proximity measurement between the query and the chunk 

via vector-space geometry. The resulting vectors are 

indexed in a vector store, along with metadata that links 

each chunk to a specific candidate, resume section, and 

position in the document. This is critical for subsequent 
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aggregation of results at the candidate level and for 

explainability. The algorithm of the first phase is shown 

in Fig. 1. 

 

Fig. 1. Ingestion Phase 

The second phase, query processing, begins by mapping 

the recruiter’s query text into a vector representation in 

the same feature space as the resume chunks. A nearest-

neighbor search by semantic similarity is then 

performed, selecting a limited set of the first K results to 

maintain a balance between recall and noise. The K 

constraint functions as a throttle: increasing K raises the 

probability of capturing all relevant evidence but 

simultaneously expands the context and can degrade 

generation accuracy if the context includes fragments 

that are thematically close yet factually unrelated to the 

query. 

At the final step, retrieved fragments are aggregated into 

a single context and provided to the language model 

together with complex response rules. The rules specify 

that formulations must rely only on the provided context 

and must not add new facts; if retrieved fragments do not 

contain sufficient grounds, the system must explicitly 

report the absence of data rather than fill gaps with 

assumptions. Depending on the query type, generation 

returns either a coherent answer indicating which 

experience elements substantiate the conclusion or a 

candidate ranking, where each candidate’s position is 

explained by the sum of discovered evidence and its 

relevance, thereby closing the loop from semantic 

retrieval to controlled, verifiable interpretation. The 

algorithm of the second phase is shown in Fig. 2. 

 

Fig. 2. Intelligent Retrieval 

An essential element of the approach is the design of the 

model prompt template, which codifies strict 

interpretation rules: the model must answer exclusively 

within the provided context and, in the absence of 

context, must directly report inability to respond. This 

rule makes system behavior predictable and reduces the 

probability of fabricated assertions when the resume 

lacks supporting evidence or retrieval fails to find 

relevant fragments. Practically, this is implemented by 

placing retrieved pieces into a separate context block 

within the prompt, after which generation becomes 

context-conditioned and oriented toward resume facts 

rather than conjecture. 

The solution architecture comprises a backend service, a 

vector store, an LLM runtime, and a client interface, all 

of which utilize a clear data exchange protocol. The 

backend ingests resumes and user queries, performs 

document preparation, and orchestrates the retrieval of 

relevant fragments. The vector store provides fast 

semantic similarity search, while the LLM runtime 

produces the final answer. The client interface supports 

resume upload and a dialogue-style query mode. As a 

concrete implementation, a server on the Spring Boot 

platform with Spring AI dependency to interact with the 

LLM is proposed, utilizing a PostgreSQL database with 

pgvector  extension as the vector store, a local Ollama 

runtime for model execution, a React web interface, and 

container orchestration via Docker Compose, resulting in 

a reproducible deployment suitable for a local 

operational perimeter. 

Two practical considerations drive technology selection: 

minimizing external dependencies and simplifying 

operations. A local model runtime stores resumes and 

derived representations within the infrastructure. In 

contrast, a vector store, implemented as an extension to 

a relational database, simplifies administration and 

ensures compatibility with standard corporate data 

storage practices. Container orchestration through 

Compose provides a unified launch scenario: separate 

services bring up the database with vector extension, an 

administrative interface, and the local model server, 

including preloading of the selected model, standardizing 

environments for development and testing. The server-

side application interface design assumes at least two 

operation classes: resume upload and query execution, 

returning either an answer or a ranking. Typical flow: 

Resume file received from client, server extracts and 

splits the text into fixed chunks, saves chunk embeddings 

in a vector DB. The typical chunk size ranges from 350 
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bytes to 10,000 bytes, but can be split on a separator 

designed for splitting, typically around 800 bytes.  

To keep the entire pipeline inside the organizational 

perimeter, the implementation can be grounded on a local 

LLM runtime and a relational vector store. In this 

configuration, Ollama is used as the local inference 

service, the Mistral model acts as the generative engine, 

and PostgreSQL with the pgvector extension functions as 

the vector database for semantic retrieval. This choice is 

operationally conservative: it reduces reliance on 

external APIs, makes data flows auditable, and allows 

model and infrastructure versions to be pinned for 

reproducibility across experiments and pilots.  

From a deployment standpoint, there are two equivalent 

topologies. In the first, Ollama runs directly on the host 

machine, exposing a local HTTP endpoint (commonly 

http://localhost:11434) while PostgreSQL with pgvector 

is started in the container. In the second, both the 

database and Ollama are started via Docker Compose, 

which simplifies “one-command” startup and enforces 

consistent environments across machines. The practical 

difference is not conceptual but operational: the local 

Ollama option may be more convenient during iterative 

development, whereas the fully containerized option 

provides a uniform runtime boundary that is easier to 

replicate in staging.  

A minimal prerequisite for local inference is ensuring 

that the Mistral model is available to Ollama.  

When PostgreSQL with pgvector is launched in Docker, 

along with an administrative UI, a Compose 

configuration can define a database service and a 

pgAdmin service, specifying explicit ports, credentials, 

and a persistent volume for data durability. This provides 

a stable vector store endpoint while keeping operational 

state in a mounted directory rather than inside ephemeral 

containers. Insert the following Docker Compose 

fragment as the database-only option, as shown in Figure 

3. 

 

Fig. 3. Launch pgvector in Docker 

In a fully containerized topology, the Compose file can 

be extended with an Ollama service that starts the server 

process and preloads the Mistral model inside the 

container, persisting model artifacts via a mounted 

volume. This yields a self-contained runtime where the 

LLM endpoint and the vector database are co-started and 

can be managed uniformly. Insert the following 

Compose fragment as the “database + Ollama” option, as 

shown in Figure 4. 

 

Fig. 4. Ollama and pgvector in Docker 

Once the Compose configuration is prepared, the 

infrastructure is started by bringing the stack up in 

detached mode, which creates the networked services 

required for ingestion and retrieval. The exact command 

to start is “docker-compose up -d”. 

Once the infrastructure is initialized, the ingestion 

pipeline instantiates the conceptual model described 

earlier: upon resume upload, the backend extracts textual 

http://localhost:11434/
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content, splits the document into chunks, converts each 

chunk into an embedding, and writes both vectors and 

metadata into pgvector.  

A subtle but consequential engineering decision is to 

separate the embedding model from the generative 

model. While Spring AI can reuse the same model for 

Q&A and embeddings, retrieval quality typically 

improves when embeddings are produced by a model 

explicitly intended for vector representations. In this 

case, the embedding model is selected via configuration 

(for example, through the parameter 

spring.ai.ollama.embedding.model), allowing the 

retrieval subsystem to be optimized independently of the 

generator’s stylistic and reasoning behavior.  

The following (Fig. 5) illustrates a representative 

ingestion routine, concretely implementing the steps 

outlined above: reading a PDF resource, splitting into 

chunks, generating embeddings, and persisting them to 

the vector store. 

 

Fig. 5. Code example of Ingestion Phase 

On the retrieval-and-generation side, the key mechanism 

that enforces grounding is an advisor that automatically 

performs vector search and injects retrieved fragments 

into a prompt template. The template explicitly binds the 

model’s output to the provided context. It requires a 

refusal behavior when the context is empty, thereby 

turning “lack of evidence” into a controlled, observable 

outcome rather than an invitation to fabricate plausible 

details. A concrete Spring AI configuration that 

implements this pattern is shown in Fig. 6. It defines the 

prompt template, fixes the TOP_K retrieval parameter, 

and wires the QuestionAnswerAdvisor to the vector 

store. 

 

Fig. 6. Core RAG configuration 

Finally, an end-to-end system validation can be 

performed by sending a query request to the backend 

API, confirming that the system executes retrieval 

against pgvector and that the model produces an answer 

constrained to the retrieved resume fragments. The 

following request exemplifies this verification 

procedure. 

 

Fig. 7. Example of a request 

Model choice determines the style and robustness of the 

entire system and is therefore appropriately treated as a 

managed configuration rather than a one-time decision. 

The embedding model defines the quality of matching 

queries to resume fragments, while the generative model 

determines clarity, coherence, and formulation 

discipline. With local deployment, the organization gains 

additional control over privacy and reproducibility: 

model versions can be pinned, quality changes can be 

tracked across updates, and compute resources can be 

allocated to the required load profile. This makes the 

system suitable for prototyping and pilot deployments, as 

well as for careful scaling while maintaining 
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controllability and compliance with corporate data-

perimeter requirements. 

4. Conclusion 

The architecture proposed in the article conceptualizes 

resume analysis as a task of semantically governed 

retrieval followed by generation, where the central 

methodological commitment is a departure from literal 

string matching and a rejection of a self-sufficient LLM 

as the sole decision mechanism. In the context of 

overloaded initial screening and high variability of 

language descriptions of experience, this stance is 

fundamentally justified: key relevance signals are 

concentrated in project and responsibility context rather 

than in superficially matching terms, rendering keyword 

approaches structurally vulnerable and prone to missing 

relevant candidates. Thus, RAG functions not as a 

cosmetic interface enhancement but as a shift of the 

system into a different regime of epistemic discipline: the 

model ceases to answer from memory and instead 

answers from an exposed corpus of evidence retrieved by 

semantic similarity. 

The scientific significance of the solution is articulated 

through the formalization of a dual-loop computation 

scheme: an asynchronous ingestion phase creates non-

parametric memory of the corpus via semantic 

segmentation and vector indexing. In contrast, the 

interactive query phase reduces to nearest-fragment 

retrieval and strict top K context limitation. This 

decomposition simultaneously addresses the economics 

of repeated queries, reduces dependence on context 

window size, and introduces a controlled compromise 

between recall and noise, which in an HR setting 

becomes a systemic risk rather than a minor engineering 

detail. It is separately emphasized that the choice of 

embedding model and segmentation parameters defines 

the geometry of the semantic space and, therefore, 

retrieval quality; for this reason, dense retrieval and 

sentence-level models are treated as a methodological 

foundation rather than interchangeable components. 

The practical viability of the approach is determined by 

describing accuracy, explainability, privacy, cost, and 

latency as interdependent constraints rather than 

independent desiderata. The most important conclusion 

is the necessity of complex protocol rules for generation: 

an answer is permissible only within the boundaries of 

retrieved context, and under insufficient grounds, the 

system must refuse; otherwise, the mechanism of 

plausible fact completion is inevitably activated, which 

is incompatible with verifiable screening. In this sense, 

the work establishes a mature engineering-scientific 

position: reliability in an RAG scenario is achieved not 

by the strength of the generative model, but by source-

control architecture, fragment traceability, and refusal 

discipline, making the system applicable to real 

recruiting processes while preserving controllability and 

reproducibility within the corporate perimeter. 
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Fig. 1. Ingestion Phase 

 

 

 

Fig. 2. Intelligent Retrieval 

 

 

https://doi.org/10.48550/arxiv.1908.10084
https://doi.org/10.48550/arxiv.1908.10084
https://doi.org/10.48550/arxiv.1908.10084


The American Journal of Engineering and Technology 
ISSN 2689-0984 Volume 07 - 2025 

 
 

The Am. J. Eng. Technol. 2025                                                                                                                         161 

 

Fig. 3. Launch pgvector in Docker 

 

 

Fig. 4. Ollama and pgvector in Docker 
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Fig. 5. Code example of Ingestion Phase 

 

 

Fig. 6. Core RAG configuration 
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Fig. 7. Example of a request 

 

 

 

  

 


