The American Journal of Engineering and Technology
ISSN 2689-0984 Volume 07 - 2025

RAG for Smarter Resume Analysis: Beyond Basic LLMs

!'Igor Zuykov
! Chief Software Engineer, G-71 Inc.Ashkelon, Israel

Received: 18" Nov 2025 | Received Revised Version: 28" Nov 2025 | Accepted: 19 Dec 2025 | Published: 31%" Dec 2025

Volume 07 Issue 12 2025 | Crossref DOI: 10.37547/tajet/\VolumeO7Issuel2-16

Abstract

The article examines an architectural approach to resume analysis based on Retrieval-Augmented Generation (RAG),
designed to overcome the systemic limitations of traditional keyword-matching algorithms (like TF-IDF and BM25) and
the inherent constraints of large language models (LLMs) used in isolation under conditions of an overloaded and
semantically heterogeneous hiring market. The relevance of the work is driven by the growth in the volume and variability
of resumes, the need to capture latent semantic correspondences between experience phrasing and vacancy requirements,
and the risks of algorithmic biases, as well as the plausible yet unreliable generation of personnel decisions. The study
aims to formalize a dual-loop scheme for processing a resume corpus, in which dense semantic retrieval over vector
representations of document fragments is coupled with answer generation strictly constrained by the retrieved context and
complex refusal rules under insufficient grounds. The scientific novelty lies in interpreting the RAG approach as a
mechanism of search-based non-parametric memory for a corporate resume array, where the chunking strategy
(determined at the ingestion phase) and the retrieval parameters such as topK and similarity. Threshold, directly governing
the scope and quality of information passed to the retrieval act as controllable regulators of the recall-noise—cost trade-
off, and where requirements for explainability, traceability, and privacy are derived from HR-specific constraints rather
than declared post factum. It is demonstrated that separating retrieval and generation functions, offloading compute-
intensive corpus preparation into an asynchronous loop, and locally deploying models jointly reduce LLM load, decrease
the incidence of hallucinations, and enable verifiable candidate ranking based on the semantic proximity of the experience
to the recruiter’s query. It is concluded that the reliability of systems of this class is determined not by model strength, but
by the architecture of source control and the discipline of context management. The article will be helpful for researchers
and engineers developing intelligent talent selection systems, as well as for practicing recruiters and HR analysts
implementing RAG solutions in corporate processes.

Keywords: resume analysis, Retrieval-Augmented Generation, semantic search, dense retrieval, vector representations

© 2025 Igor Zuykov. This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).
The authors retain copyright and allow others to share, adapt, or redistribute the work with proper attribution.

Cite This Article: Zuykov, L. (2025). RAG for Smarter Resume Analysis: Beyond Basic LLMs. The American Journal of
Engineering and Technology, 7(12), 152—163. https://doi.org/10.37547/tajet/Volume07Issuel2-16

1. Introduction critical factor is not only the volume of incoming
documents but also their heterogeneity in structure and
style of experience description, where identical
competencies are expressed via divergent terminology.
Meanwhile, salient details are often embedded within
descriptions of projects, responsibilities, and work

The contemporary hiring market is characterized by high
competition and accelerated recruitment cycles, which
increases the employer-side burden of initial screening:
recruiters must review hundreds of resumes to identify a
limited number of candidates who truly match a role

execution contexts. This practical problem is explicitly
profile (Bouhsaien & Azmani, 2025). In this setting, the

The Am. J. Eng. Technol. 2025 152

The American Journal of Engineering and Technology

ISSN 2689-0984

recognized: the scale of resume review is significant, and
standard screening procedures are insufficiently
sensitive to semantic nuances and latent correspondences
between the query and resume content (Ajjam & Al-
Raweshidy, 2025).

Existing approaches based on keyword search provide a
formally interpretable yet methodologically brittle
output: they match strings rather than meaning, and thus
readily miss relevant candidates when resume
terminology differs from query terminology (Ajjam &
Al-Raweshidy, 2025). This is illustrated by the case
where a query for cloud experience fails to retrieve
resumes containing specific mentions of cloud
technologies, although the competence domain is
substantively the same. Attempting to replace such
search with a pure LLM also encounters systemic
limitations: the model may exhibit strong generalization
and reasoning capabilities, yet it lacks knowledge of a
specific corporate resume repository until those data are
explicitly provided; when the full text is directly injected
into the prompt, context-window constraints and the
economic inefficiency of repeatedly reprocessing the
same fragments for each new question quickly become
apparent.

The objective of this work is to formulate and
substantiate an architectural approach to resume analysis
in which an LLM responds not in general, but by relying
on strictly relevant fragments retrieved from a private
resume database via semantic similarity. This principle
is described as providing the model with an external
knowledge base, where a dedicated retrieval subsystem
selects relevant evidence from the resume base, and the
generation component uses only the obtained context to
construct an answer.

2. Materials and Methodology

The research materials comprised a corpus of scientific
and applied sources along three intersecting lines: (1)
digital transformation and operational constraints of
recruitment, manifested in the high load of initial
screening and structural heterogeneity of resumes
(Bouhsaien & Azmani, 2025); (2) semantic matching of
resumes and job postings as an alternative to literal
keyword search, where sensitivity to terminological
variability is treated as a central quality criterion (Ajjam
& Al-Raweshidy, 2025); (3) Retrieval-Augmented
Generation architectures as a means of grounding
generation in retrieved evidence, together with
engineering trade-offs of recall/noise and the economics

The Am. J. Eng. Technol. 2025

Volume 07 - 2025

of repeated queries (Gupta et al., 2024). Additionally, the
theoretical framework incorporates work on Dense
Retrieval as a methodological foundation for semantic
search over document fragments (Karpukhin et al., 2020)
and on sentence embeddings for robust comparison of
short and medium text segments within a shared vector
space (Reimers & Gurevych, 2019). To substantiate
reliability requirements for personnel decisions, research
on algorithmic bias in hiring was considered (Raghavan
et al.,, 2020), along with empirical demonstrations of
LLM propensity toward plausible yet false claims under
insufficient context, rendering source control not an
option but a safety-by-design principle (Lin et al., 2022).

The methodology relies on conceptual modeling of an
RAG system for resume analysis as a dual-loop
computational process: an asynchronous corpus
preparation (ingestion) loop and an interactive query-
processing loop. In the first loop, resumes are
transformed into a text stream, segmented into semantic
chunks, and encoded into embeddings; the chunks are
then indexed in a vector store, where search is
implemented as a nearest-neighbor problem, typically
requiring approximate methods to maintain latency at a
practical level (Gupta et al., 2024). In the second loop,
the recruiter’s query is encoded into the same space, top-
K chunks are retrieved by semantic similarity
(Karpukhin et al.,, 2020), after which generation is
constrained strictly to the retrieved context and
augmented with a strict refusal rule when retrieval
provides insufficient or low-confidence evidence, to
minimize hallucination risk and improve verifiability
through references to specific resume fragments (Lin et
al., 2022). The parameters topK and chunk size are
treated as controllable regulators of the recall-noise—cost
trade-off. At the same time, explainability and robustness
to linguistic variability are considered fixed requirements
derived from the nature of recruiting and the risks
associated with automated decision-making (Ajjam &
Al-Raweshidy, 2025; Raghavan et al., 2020).

3. Results and Discussion

Within the considered approach, the resume analysis task
is formalized as transforming an unstructured set of
candidate documents into a system that, upon a recruiter
query, outputs either a substantiated natural-language
answer or an ordered list of candidates with stated
reasons for relevance. The input comprises resumes as
files, each document containing heterogeneous
information about experience, skills, achievements,
varying in format, detail, and overall completeness.

153

The American Journal of Engineering and Technology

ISSN 2689-0984

Additionally, a recruiter query in natural language is
provided, which may be a question about a specific
candidate or a profile description (who fits a role
requiring a given stack and domain). The output must
include, first, a natural-language response grounded in
resume facts, and second, in a search scenario, a ranking
of candidates by degree of match to the query, preferably
with relevance scoring and references to the fragments
supporting the decision. This design follows the general
idea of generation augmented by retrieved context:
relevant fragments are first selected from an external
store, and the generator then constructs the answer by
treating these fragments as non-parametric memory that
can be updated independently of the model.

To implement this formulation, a dual-loop computation
scheme is introduced. In the first loop, executed
asynchronously relative to user requests, each document
is split into coherent semantic segments. For each
segment, a vector representation is constructed that
enables measuring similarity by meaning rather than
string overlap. The segments and their metadata are then
stored in a vector database. The second loop, invoked per
query, maps the query text into a vector representation
and performs nearest-segment search, subsequently
constraining the context to the first K retrieved
fragments. The conceptual justification for dense
retrieval over vector representations in context search is
supported by open-domain question answering research,
where dense retrieval methods substantially improve the
accuracy of retrieving relevant passages compared to
sparse search models (Karpukhin et al., 2020). The
choice of the embedding model is critical because it
determines the geometry of the semantic space. In this
regard, specialized sentence-level models are
particularly suitable, as they provide cosine-comparable
representations and are explicitly designed for the
semantic matching of short and medium-length text
fragments (Reimers & Gurevych, 2019).

System requirements are conveniently divided into
functional and non-functional. In terms of accuracy,
candidate ranking is expected to be robust to phrasing
variability in resumes and queries and not to degrade
under synonyms and indirect mentions; accuracy should
be treated in two senses: the quality of retrieving relevant
fragments and the correctness of the final answer, which
must not add information absent from the resumes. In
terms of explainability, the system must expose the
grounds for its responses in the form of concrete,
actionable fragments; otherwise, it becomes a black box,

The Am. J. Eng. Technol. 2025

Volume 07 - 2025

particularly hazardous in HR processes where decisions
carry significant social consequences. In terms of
privacy, resumes and their derived representations must
remain within the organizational perimeter, and access to
the store and query logs must be controlled. This
requirement is a foundational requirement for
responsible deployment, as maintaining data sovereignty
within the organizational perimeter is essential for
conducting the internal audits, bias testing, and fairness
validations required to mitigate the documented risks of
automated hiring systems (Raghavan et al., 2020).

From a cost perspective, minimizing repeated
computations is essential: compute-intensive preparation
operations (document parsing and embedding
construction) should be shifted into the ingestion loop so
that interactive queries rely on a prebuilt index. For
latency, a near-dialogue mode is required: the user
perceives the system as an assistant, so response time
should be determined by retrieval plus generation time;
increasing K improves context recall but raises latency
and increases the risk of context noising by including
fragments that are thematically close but not factually
relevant to the query. This trade-off is typical for
retrieval-augmented generation systems and has been
discussed in the survey literature on the subject (Gupta et
al., 2024).

Typical user scenarios follow naturally from this
formalization. The first scenario is a per-candidate
question-answer mode: the query is framed as clarifying
a fact or competence, and the system returns a concise
answer grounded in specific lines of experience and
projects, avoiding conjecture. The second scenario is
candidate search by skills and domains: the query
specifies a profile, the system retrieves semantically
similar fragments, aggregates them at the candidate level,
and produces a ranking with explanations of why
candidates appear in top positions. The third scenario is
candidate comparison: the user provides comparison
criteria, and the system, preserving grounding in resume
text, synthesizes differences across relevant aspects,
indicating which fragments support the conclusions;
here, constraining generation to retrieved context and
explicitly refusing under insufficient data are significant,
because otherwise the model begins to fill gaps with
plausible but unverifiable assertions, contradicting the
aims of reliable screening.

Semantic search in recruitment relies on vector
representations of text in which proximity reflects
semantic similarity rather than string overlap. This shift

154

The American Journal of Engineering and Technology

ISSN 2689-0984

is significant for resumes, where competencies are often
expressed indirectly through descriptions of projects and
responsibilities, and therefore are poorly captured by
literal matching. The practical foundation of such
systems consists of models that encode sentences and
paragraphs into compact vectors suitable for cosine
similarity comparison; notably, sentence-level model
families are optimized explicitly for semantic similarity
and text clustering tasks (Reimers & Gurevych, 2019). In
a related line of work on dense retrieval for question
answering, it is shown that a dual-encoder architecture
(encoding questions and passages separately) enables the
effective retrieval of relevant excerpts without relying on
sparse features, which is methodologically similar to
searching over a resume corpus (Karpukhin et al., 2020).
When the number of resume segments becomes large, a
central engineering issue arises: performing fast nearest-
neighbor searches in high-dimensional spaces. Vector
stores typically implement approximate search using
indexes that strike a balance between accuracy and
latency. To address this, we employ a graph-based
approximate nearest neighbor (ANN) index, specifically
the Hierarchical Navigable Small World (HNSW) graph.
In HNSW, the search begins at coarse levels of the graph
and refines at lower ones, providing a practical
operational compromise between query latency and
retrieval recall (Ponomarenko, 2025).

At the intersection of retrieval and generation, an
approach has formed in which answers are constructed
not only from the parameters of a language model but
also from retrieved fragments of external memory: first,
relevant segments are retrieved; then these segments are
added to the query context; only afterward is generation
invoked, already grounded in the retrieved evidence.
However, the key risk remains: language models tend to
produce plausible yet incorrect claims, especially when
context is incomplete or contradictory. Research on
truthfulness in generation introduces target question sets
that reveal systematic false answers, underscoring the
need for explicit self-control mechanisms in applied
systems (Lin et al., 2022). Therefore, practical
implementations of retrieval-augmented generation
typically enforce strict contextual constraints, requiring
reliance only on provided fragments, and introduce
refusal behavior when retrieval does not return sufficient
grounds; this reduces the likelihood of inventing details
and makes the system more controllable in an HR setting
where the cost of error is particularly high.

The Am. J. Eng. Technol. 2025

Volume 07 - 2025

The proposed approach relies on the idea of generation
augmented by retrieval: the system does not attempt to
remember all resumes within the parameters of a
language model. It does not require the user to search for
keyword overlaps manually, but instead constructs an
intermediate layer of semantic memory. This memory is
formed from resume fragments represented as vectors,
enabling the retrieval of only those parts of texts that
truly contain relevant signals of experience and skills. As
a result, the answer becomes simultaneously more
accurate and more verifiable because it is tied to concrete
evidence in documents rather than probabilistic
guesswork.

In applied terms, each user query is treated as an
operation over a resume corpus with two possible
outputs: either a concise answer to a question about a
candidate or a ranked list of candidates by degree of fit
to criteria. The core principle is functional separation:
search is responsible for retrieving context, while the
language model is responsible for coherent exposition
and response normalization. This separation reduces
generative load, lowers the cost of repeated queries over
the same corpus, and makes system behavior more stable
as the number of documents grows.

The first phase, corpus preparation, begins with
extracting text from resumes, including file formats
where structure is visually rather than logically defined.
At this step, obtaining a maximally clean text stream is
crucial: remove formatting artifacts, preserve the order of
semantic blocks, and, where possible, retain section
markers such as work experience, education, and skills
lists so that they can be used later as metadata. Even with
strong extraction, unavoidable heterogeneity remains:
one candidate lists responsibilities as bullet points,
another uses continuous prose, and a third emphasizes
project titles; therefore, subsequent stages must be
invariant to such stylistic fluctuations.

Next, the text is split into fragments, where splitting must
be semantic rather than purely mechanical: overly large
chunks dilute the signal and increase the risk that
irrelevant details enter the context, while overly small
chunks destroy causal relationships and reduce
informativeness. Each chunk is transformed into a vector
representation that encodes meaning and enables
proximity measurement between the query and the chunk
via vector-space geometry. The resulting vectors are
indexed in a vector store, along with metadata that links
each chunk to a specific candidate, resume section, and
position in the document. This is critical for subsequent

155

The American Journal of Engineering and Technology

ISSN 2689-0984

aggregation of results at the candidate level and for
explainability. The algorithm of the first phase is shown
in Fig. 1.

Agplcasan store
— embeddings
Exractda trom spincata convert chunks
unstructured data_——| erns! sources 10 chunks o embeddngs e

" load data

=
/ through API

Fig. 1. Ingestion Phase

The second phase, query processing, begins by mapping
the recruiter’s query text into a vector representation in
the same feature space as the resume chunks. A nearest-
neighbor search by semantic similarity is then
performed, selecting a limited set of the first K results to
maintain a balance between recall and noise. The K
constraint functions as a throttle: increasing K raises the
probability of capturing all relevant evidence but
simultaneously expands the context and can degrade
generation accuracy if the context includes fragments
that are thematically close yet factually unrelated to the

query.

At the final step, retrieved fragments are aggregated into
a single context and provided to the language model
together with complex response rules. The rules specify
that formulations must rely only on the provided context
and must not add new facts; if retrieved fragments do not
contain sufficient grounds, the system must explicitly
report the absence of data rather than fill gaps with
assumptions. Depending on the query type, generation
returns either a coherent answer indicating which
experience elements substantiate the conclusion or a
candidate ranking, where each candidate’s position is
explained by the sum of discovered evidence and its
relevance, thereby closing the loop from semantic
retrieval to controlled, verifiable interpretation. The
algorithm of the second phase is shown in Fig. 2.

Application

user query convert user prompt+
prompt to Semantic search user query +
embedding relevant context
LLm

User

search relevant
data by us

a by user
prompt embedding

Vector DB

Fig. 2. Intelligent Retrieval

The Am. J. Eng. Technol. 2025

Volume 07 - 2025

An essential element of the approach is the design of the
model prompt template, which codifies strict
interpretation rules: the model must answer exclusively
within the provided context and, in the absence of
context, must directly report inability to respond. This
rule makes system behavior predictable and reduces the
probability of fabricated assertions when the resume
lacks supporting evidence or retrieval fails to find
relevant fragments. Practically, this is implemented by
placing retrieved pieces into a separate context block
within the prompt, after which generation becomes
context-conditioned and oriented toward resume facts
rather than conjecture.

The solution architecture comprises a backend service, a
vector store, an LLM runtime, and a client interface, all
of which utilize a clear data exchange protocol. The
backend ingests resumes and user queries, performs
document preparation, and orchestrates the retrieval of
relevant fragments. The vector store provides fast
semantic similarity search, while the LLM runtime
produces the final answer. The client interface supports
resume upload and a dialogue-style query mode. As a
concrete implementation, a server on the Spring Boot
platform with Spring Al dependency to interact with the
LLM is proposed, utilizing a PostgreSQL database with
pgvector extension as the vector store, a local Ollama
runtime for model execution, a React web interface, and
container orchestration via Docker Compose, resulting in
a reproducible deployment suitable for a local
operational perimeter.

Two practical considerations drive technology selection:
minimizing external dependencies and simplifying
operations. A local model runtime stores resumes and
derived representations within the infrastructure. In
contrast, a vector store, implemented as an extension to
a relational database, simplifies administration and
ensures compatibility with standard corporate data
storage practices. Container orchestration through
Compose provides a unified launch scenario: separate
services bring up the database with vector extension, an
administrative interface, and the local model server,
including preloading of the selected model, standardizing
environments for development and testing. The server-
side application interface design assumes at least two
operation classes: resume upload and query execution,
returning either an answer or a ranking. Typical flow:
Resume file received from client, server extracts and
splits the text into fixed chunks, saves chunk embeddings
in a vector DB. The typical chunk size ranges from 350

156

The American Journal of Engineering and Technology

ISSN 2689-0984

bytes to 10,000 bytes, but can be split on a separator
designed for splitting, typically around 800 bytes.

To keep the entire pipeline inside the organizational
perimeter, the implementation can be grounded on a local
LLM runtime and a relational vector store. In this
configuration, Ollama is used as the local inference
service, the Mistral model acts as the generative engine,
and PostgreSQL with the pgvector extension functions as
the vector database for semantic retrieval. This choice is
operationally conservative: it reduces reliance on
external APIs, makes data flows auditable, and allows
model and infrastructure versions to be pinned for
reproducibility across experiments and pilots.

From a deployment standpoint, there are two equivalent
topologies. In the first, Ollama runs directly on the host
machine, exposing a local HTTP endpoint (commonly
http://localhost: 11434) while PostgreSQL with pgvector
is started in the container. In the second, both the
database and Ollama are started via Docker Compose,
which simplifies “one-command” startup and enforces
consistent environments across machines. The practical
difference is not conceptual but operational: the local
Ollama option may be more convenient during iterative
development, whereas the fully containerized option
provides a uniform runtime boundary that is easier to
replicate in staging.

A minimal prerequisite for local inference is ensuring
that the Mistral model is available to Ollama.

When PostgreSQL with pgvector is launched in Docker,
along with an administrative Ul, a Compose
configuration can define a database service and a
pgAdmin service, specifying explicit ports, credentials,
and a persistent volume for data durability. This provides
a stable vector store endpoint while keeping operational
state in a mounted directory rather than inside ephemeral
containers. Insert the following Docker Compose
fragment as the database-only option, as shown in Figure
3.

The Am. J. Eng. Technol. 2025

Volume 07 - 2025

services:
pgvector-db:
image: pgvector/pgvector:pglé

- POSTGRES_DB=app_db
- POSTGRES_USER=app_user
- POSTGRES_PASSWORD=app_pwd
volumes:
- ./volume-data/postgres:/var/lib/postgresql/data

pgadmin:

container_name: pgadmin_container

image: dpage/pgadmind

environment:
PGADMIN_DEFAULT_EMAIL: ${PGADMIN_DEFAULT_EMATL:-pgadmin4@pgadmin.org}
PGADMIN_DEFAULT_PASSWORD: ${PGADMIN_DEFAULT_PASSWORD:-admin}

volumes:
- ./_config/servers.json:/pgadmin4/servers.json

port

Fig. 3. Launch pgvector in Docker

In a fully containerized topology, the Compose file can
be extended with an Ollama service that starts the server
process and preloads the Mistral model inside the
container, persisting model artifacts via a mounted
volume. This yields a self-contained runtime where the
LLM endpoint and the vector database are co-started and
can be managed uniformly. Insert the following
Compose fragment as the “database + Ollama” option, as
shown in Figure 4.

services:
pgvector-db:
image: pgvector/pgvector:pgl6
port
- "5
environment:
- POSTGRES_DB=app_db
- POSTGRES_USER=app_user
- POSTGRES_PASSWORD=app_pwd
volumes:
- ./volume-data/postgres:/var/lib/postgresql/data

pgadmin:

contailner_name: pgadmin_container

image: dpage/pgadmin4

environment:
PGADMIN_DEFAULT_EMAIL: ${PGADMIN_DEFAULT_EMAIL :-pgadmin4@pgadmin.org}
PGADMIN_DEFAULT _PASSWORD: ${PGADMIN_DEFAULT_PASSWORD:-admin}

volumes:
- ./_config/servers.js /pgadmind/servers.json

ports:
_‘i

ollama:
image: ollama/ollama
container_name: ollama

restart: unless-stopped

Fig. 4. Ollama and pgvector in Docker

Once the Compose configuration is prepared, the
infrastructure is started by bringing the stack up in
detached mode, which creates the networked services
required for ingestion and retrieval. The exact command
to start is “docker-compose up -d”’.

Once the infrastructure is initialized, the ingestion
pipeline instantiates the conceptual model described
earlier: upon resume upload, the backend extracts textual

157

http://localhost:11434/

The American Journal of Engineering and Technology

ISSN 2689-0984

content, splits the document into chunks, converts each
chunk into an embedding, and writes both vectors and
metadata into pgvector.

A subtle but consequential engineering decision is to
separate the embedding model from the generative
model. While Spring Al can reuse the same model for
Q&A and embeddings, retrieval quality typically
improves when embeddings are produced by a model
explicitly intended for vector representations. In this
case, the embedding model is selected via configuration
(for example, through the parameter
spring.ai.ollama.embedding.model), allowing the
retrieval subsystem to be optimized independently of the
generator’s stylistic and reasoning behavior.

The following (Fig. 5) illustrates a representative
ingestion routine, concretely implementing the steps
outlined above: reading a PDF resource, splitting into
chunks, generating embeddings, and persisting them to
the vector store.

(9H

nto chunks and store them as en

->

= new

Fig. 5. Code example of Ingestion Phase

On the retrieval-and-generation side, the key mechanism
that enforces grounding is an advisor that automatically
performs vector search and injects retrieved fragments
into a prompt template. The template explicitly binds the
model’s output to the provided context. It requires a
refusal behavior when the context is empty, thereby
turning “lack of evidence” into a controlled, observable
outcome rather than an invitation to fabricate plausible
details. A concrete Spring Al configuration that
implements this pattern is shown in Fig. 6. It defines the
prompt template, fixes the TOP_K retrieval parameter,
and wires the QuestionAnswerAdvisor to the vector
store.

The Am. J. Eng. Technol. 2025

Volume 07 - 2025

isor;
tore. QuestionAnswerAdvisor;

e vectorStore;

ient chatClient(Chat {
rn builder.defaultadviso) build()

getRagAdviser() {
tionAnswerAdvisor.builder(vectorStore)

Fig. 6. Core RAG configuration

Finally, an end-to-end system validation can be
performed by sending a query request to the backend
API, confirming that the system executes retrieval
against pgvector and that the model produces an answer
constrained to the retrieved resume fragments. The
following request exemplifies this verification
procedure.

Fig. 7. Example of a request

Model choice determines the style and robustness of the
entire system and is therefore appropriately treated as a
managed configuration rather than a one-time decision.
The embedding model defines the quality of matching
queries to resume fragments, while the generative model
determines clarity, coherence, and formulation
discipline. With local deployment, the organization gains
additional control over privacy and reproducibility:
model versions can be pinned, quality changes can be
tracked across updates, and compute resources can be
allocated to the required load profile. This makes the
system suitable for prototyping and pilot deployments, as
well as for careful scaling while maintaining

158

The American Journal of Engineering and Technology

ISSN 2689-0984

controllability and compliance with corporate data-
perimeter requirements.

4. Conclusion

The architecture proposed in the article conceptualizes
resume analysis as a task of semantically governed
retrieval followed by generation, where the central
methodological commitment is a departure from literal
string matching and a rejection of a self-sufficient LLM
as the sole decision mechanism. In the context of
overloaded initial screening and high variability of
language descriptions of experience, this stance is
fundamentally justified: key relevance signals are
concentrated in project and responsibility context rather
than in superficially matching terms, rendering keyword
approaches structurally vulnerable and prone to missing
relevant candidates. Thus, RAG functions not as a
cosmetic interface enhancement but as a shift of the
system into a different regime of epistemic discipline: the
model ceases to answer from memory and instead
answers from an exposed corpus of evidence retrieved by
semantic similarity.

The scientific significance of the solution is articulated
through the formalization of a dual-loop computation
scheme: an asynchronous ingestion phase creates non-
parametric memory of the corpus via semantic
segmentation and vector indexing. In contrast, the
interactive query phase reduces to nearest-fragment
retrieval and strict top K context limitation. This
decomposition simultaneously addresses the economics
of repeated queries, reduces dependence on context
window size, and introduces a controlled compromise
between recall and noise, which in an HR setting
becomes a systemic risk rather than a minor engineering
detail. It is separately emphasized that the choice of
embedding model and segmentation parameters defines
the geometry of the semantic space and, therefore,
retrieval quality; for this reason, dense retrieval and
sentence-level models are treated as a methodological
foundation rather than interchangeable components.

The practical viability of the approach is determined by
describing accuracy, explainability, privacy, cost, and
latency as interdependent constraints rather than
independent desiderata. The most important conclusion
is the necessity of complex protocol rules for generation:
an answer is permissible only within the boundaries of
retrieved context, and under insufficient grounds, the
system must refuse; otherwise, the mechanism of
plausible fact completion is inevitably activated, which

The Am. J. Eng. Technol. 2025

Volume 07 - 2025

is incompatible with verifiable screening. In this sense,
the work establishes a mature engineering-scientific
position: reliability in an RAG scenario is achieved not
by the strength of the generative model, but by source-
control architecture, fragment traceability, and refusal
discipline, making the system applicable to real
recruiting processes while preserving controllability and
reproducibility within the corporate perimeter.

References

1. Ajjam, M.-H., & Al-Raweshidy, H. S. (2025). Al-
driven semantic similarity-based job matching
framework for recruitment systems. Information
Sciences, 724, 122728.
https://doi.org/10.1016/j.ins.2025.122728

2. Bouhsaien, L., & Azmani, A. (2025). Challenges
and Strategies in Recruitment: Insights from Digital
Transformation. Lecture Notes in Networks and
Systems, 1310, 328-340.
https://doi.org/10.1007/978-3-031-88653-9 33

3. Gupta, S., Ranjan, R., & Singh, S. N. (2024). A
Comprehensive Survey of Retrieval-Augmented
Generation (RAG): Evolution, Current Landscape,
and Future Directions. ArXiv.
https://doi.org/10.48550/arxiv.2410.12837

4. Karpukhin, V., Oguz, B., Min, S., Lewis, P., Wu,
L., Edunov, S., Chen, D., & Yih, W. (2020). Dense
Passage Retrieval for Open-Domain Question
Answering. Proceedings of the 2020 Conference on
Empirical Methods in Natural Language
Processing (EMNLP), 6769—-6781.
https://doi.org/10.18653/v1/2020.emnlp-main.550

5. Lin, S., Hilton, J., & Evans, O. (2022).
Truthful QA: Measuring How Models Mimic
Human Falsehoods. Proceedings of the 60th
Annual Meeting of the Association for
Computational Linguistics, 1, 3214-3252.
https://doi.org/10.18653/v1/2022.acl-long.229

6. Ponomarenko, A. (2025). Three Algorithms for
Merging Hierarchical Navigable Small World
Graphs. ArXiv.
https://doi.org/10.48550/arxiv.2505.16064

7. Raghavan, M., Barocas, S., Kleinberg, J., & Levy,
K. (2020). Mitigating Bias in Algorithmic Hiring.
Proceedings of the 2020 Conference on Fairness,
Accountability, and Transparency, 469-481.
https://doi.org/10.1145/3351095.3372828

8. Reimers, N., & Gurevych, L. (2019). Sentence-
BERT: Sentence Embeddings using Siamese

159

https://doi.org/10.1016/j.ins.2025.122728
https://doi.org/10.1016/j.ins.2025.122728
https://doi.org/10.1016/j.ins.2025.122728
https://doi.org/10.1007/978-3-031-88653-9_33
https://doi.org/10.1007/978-3-031-88653-9_33
https://doi.org/10.1007/978-3-031-88653-9_33
https://doi.org/10.48550/arxiv.2410.12837
https://doi.org/10.48550/arxiv.2410.12837
https://doi.org/10.48550/arxiv.2410.12837
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2022.acl-long.229
https://doi.org/10.18653/v1/2022.acl-long.229
https://doi.org/10.18653/v1/2022.acl-long.229
https://doi.org/10.48550/arxiv.2505.16064
https://doi.org/10.48550/arxiv.2505.16064
https://doi.org/10.48550/arxiv.2505.16064
https://doi.org/10.1145/3351095.3372828
https://doi.org/10.1145/3351095.3372828
https://doi.org/10.1145/3351095.3372828

The American Journal of Engineering and Technology

ISSN 2689-0984 Volume 07 - 2025

BERT-Networks. ArXiv.
https://doi.org/10.48550/arxiv.1908.10084

Data sources
structured data
| Applicaion store R
] embeddings |
Extract data from split data convert chunks o
unstructured data internal sources to chunks to embeddings Vector DB
"/
load data
through API
API
Fig. 1. Ingestion Phase
Application
user query convert user prompt+
> prompt to Semantic search user query +
L L embedding relevant context
User LLM
search relevant
data by user
prompt embedding

Vector DB

Fig. 2. Intelligent Retrieval

The Am. J. Eng. Technol. 2025 160

https://doi.org/10.48550/arxiv.1908.10084
https://doi.org/10.48550/arxiv.1908.10084
https://doi.org/10.48550/arxiv.1908.10084

The American Journal of Engineering and Technology
ISSN 2689-0984 Volume 07 - 2025

Services:
pgvector-db:

image: pgvector/pgvector:pglé

ports

environment
- POSTGRES_DB=app_db
- POSTGRES_USER=app_user
- POSTGRES_PASSWORD=app_pwd

volumes:
- ./volume-data/postgres:/var/lib/postgresql/data

pgadmin:

container_name: pgadmin_container

image: dpage/pgadming

environment:
PGADMIN_DEFAULT_EMAIL: ${PGADMIN_DEFAULT_EMAIL:-pgadmin4@pgadmin.org}
PGADMIN_DEFAULT_PASSWORD: ${PGADMIN_DEFAULT_PASSWORD:-admin}

volumes:
- ./_config/servers.json:/pgadmind/servers. json

ports:

Fig. 3. Launch pgvector in Docker

services:
pgvector-db:
image: pgvector/pgvector:pglé

environment:
- POSTGRES_DB=app_db
- POSTGRES_USER=app_user
- POSTGRES_PASSWORD=app_pwd
volumes:
- ./volume-data/postgres:/var/lib/postgresql/data

pgadmin:

container_name: pgadmin_container

image: dpage/pgadming

environment:
PGADMIN_DEFAULT_EMAIL: $%${PGADMIN_DEFAULT_EMAIL:-pgadmin4@pgadmin.org}
PGADMIN_DEFAULT_PASSWORD: ${PGADMIN_DEFAULT_PASSWORD:-admin}

volumes:
- ./_config/servers.json:/pgadmind/servers.json

image: ollama/ollama
container_name: ollama
ports:

- "11434:11434"
volumes:

- ./ollama:/root/.ollama

restart: unless-stopped

Fig. 4. Ollama and pgvector in Docker

The Am. J. Eng. Technol. 2025 161

The American Journal of Engineering and Technology
ISSN 2689-0984

them as

Fig. 5. Code example of Ingestion Phase

t org.springframework.ai. .client.ChatClient;
org.springframework.ai. .client.advisor.api.Advisor
org.springframework.ai .client.advisor.vectorstore.QuestionAnswerAdvisor;
org.springframework. .prompt.PromptTemplate;
org.springframework. vectorstore.SearchRequest;
org.springframework.ai.vectorstore.VectorStore;

t org.springframework.beans.factory.annotation.Autowired;
org.springframework.context.annotation.Bean;
org.springframework.context.annotation.Configuration;

int TOP_K = 4;
PromptTemplate PROMPT_TEMPLATE = new PromptTemplate(

following question based on the provided conte

inform;

);

@Autowired
VectorStore vectorStore;

@Bean
nt chatClient(ChatClient.Builder builder) {
return builder.defaultAdvisors(getRagAdviser()).build();

e Advisor getRagAdviser() {
return QuestionAnswerAdvisor.builder(vectorStore)
.promptTemplate(PROMPT_TEMPLATE)
.searchRequest (
SearchRequest.builder().topK(TOP_K).build()
).build();

Fig. 6. Core RAG configuration

The Am. J. Eng. Technol. 2025

Volume 07 - 2025

162

The American Journal of Engineering and Technology
ISSN 2689-0984 Volume 07 - 2025

Fig. 7. Example of a request

The Am. J. Eng. Technol. 2025 163

