
The American Journal of Engineering and Technology
ISSN 2689-0984 Volume 07 - 2025

The Am. J. Eng. Technol. 2025 152

RAG for Smarter Resume Analysis: Beyond Basic LLMs

1 Igor Zuykov
1 Chief Software Engineer, G-71 Inc.Ashkelon, Israel

Received: 18th Nov 2025 | Received Revised Version: 28th Nov 2025 | Accepted: 19th Dec 2025 | Published: 31th Dec 2025

Volume 07 Issue 12 2025 | Crossref DOI: 10.37547/tajet/Volume07Issue12-16

Abstract

The article examines an architectural approach to resume analysis based on Retrieval-Augmented Generation (RAG),

designed to overcome the systemic limitations of traditional keyword-matching algorithms (like TF-IDF and BM25) and

the inherent constraints of large language models (LLMs) used in isolation under conditions of an overloaded and

semantically heterogeneous hiring market. The relevance of the work is driven by the growth in the volume and variability

of resumes, the need to capture latent semantic correspondences between experience phrasing and vacancy requirements,

and the risks of algorithmic biases, as well as the plausible yet unreliable generation of personnel decisions. The study

aims to formalize a dual-loop scheme for processing a resume corpus, in which dense semantic retrieval over vector

representations of document fragments is coupled with answer generation strictly constrained by the retrieved context and

complex refusal rules under insufficient grounds. The scientific novelty lies in interpreting the RAG approach as a

mechanism of search-based non-parametric memory for a corporate resume array, where the chunking strategy

(determined at the ingestion phase) and the retrieval parameters such as topK and similarity. Threshold, directly governing

the scope and quality of information passed to the retrieval act as controllable regulators of the recall–noise–cost trade-

off, and where requirements for explainability, traceability, and privacy are derived from HR-specific constraints rather

than declared post factum. It is demonstrated that separating retrieval and generation functions, offloading compute-

intensive corpus preparation into an asynchronous loop, and locally deploying models jointly reduce LLM load, decrease

the incidence of hallucinations, and enable verifiable candidate ranking based on the semantic proximity of the experience

to the recruiter’s query. It is concluded that the reliability of systems of this class is determined not by model strength, but

by the architecture of source control and the discipline of context management. The article will be helpful for researchers

and engineers developing intelligent talent selection systems, as well as for practicing recruiters and HR analysts

implementing RAG solutions in corporate processes.

Keywords: resume analysis, Retrieval-Augmented Generation, semantic search, dense retrieval, vector representations

© 2025 Igor Zuykov. This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).

The authors retain copyright and allow others to share, adapt, or redistribute the work with proper attribution.

Cite This Article: Zuykov, I. (2025). RAG for Smarter Resume Analysis: Beyond Basic LLMs. The American Journal of

Engineering and Technology, 7(12), 152–163. https://doi.org/10.37547/tajet/Volume07Issue12-16

1. Introduction

The contemporary hiring market is characterized by high

competition and accelerated recruitment cycles, which

increases the employer-side burden of initial screening:

recruiters must review hundreds of resumes to identify a

limited number of candidates who truly match a role

profile (Bouhsaien & Azmani, 2025). In this setting, the

critical factor is not only the volume of incoming

documents but also their heterogeneity in structure and

style of experience description, where identical

competencies are expressed via divergent terminology.

Meanwhile, salient details are often embedded within

descriptions of projects, responsibilities, and work

execution contexts. This practical problem is explicitly

The American Journal of Engineering and Technology
ISSN 2689-0984 Volume 07 - 2025

The Am. J. Eng. Technol. 2025 153

recognized: the scale of resume review is significant, and

standard screening procedures are insufficiently

sensitive to semantic nuances and latent correspondences

between the query and resume content (Ajjam & Al-

Raweshidy, 2025).

Existing approaches based on keyword search provide a

formally interpretable yet methodologically brittle

output: they match strings rather than meaning, and thus

readily miss relevant candidates when resume

terminology differs from query terminology (Ajjam &

Al-Raweshidy, 2025). This is illustrated by the case

where a query for cloud experience fails to retrieve

resumes containing specific mentions of cloud

technologies, although the competence domain is

substantively the same. Attempting to replace such

search with a pure LLM also encounters systemic

limitations: the model may exhibit strong generalization

and reasoning capabilities, yet it lacks knowledge of a

specific corporate resume repository until those data are

explicitly provided; when the full text is directly injected

into the prompt, context-window constraints and the

economic inefficiency of repeatedly reprocessing the

same fragments for each new question quickly become

apparent.

The objective of this work is to formulate and

substantiate an architectural approach to resume analysis

in which an LLM responds not in general, but by relying

on strictly relevant fragments retrieved from a private

resume database via semantic similarity. This principle

is described as providing the model with an external

knowledge base, where a dedicated retrieval subsystem

selects relevant evidence from the resume base, and the

generation component uses only the obtained context to

construct an answer.

2. Materials and Methodology

The research materials comprised a corpus of scientific

and applied sources along three intersecting lines: (1)

digital transformation and operational constraints of

recruitment, manifested in the high load of initial

screening and structural heterogeneity of resumes

(Bouhsaien & Azmani, 2025); (2) semantic matching of

resumes and job postings as an alternative to literal

keyword search, where sensitivity to terminological

variability is treated as a central quality criterion (Ajjam

& Al-Raweshidy, 2025); (3) Retrieval-Augmented

Generation architectures as a means of grounding

generation in retrieved evidence, together with

engineering trade-offs of recall/noise and the economics

of repeated queries (Gupta et al., 2024). Additionally, the

theoretical framework incorporates work on Dense

Retrieval as a methodological foundation for semantic

search over document fragments (Karpukhin et al., 2020)

and on sentence embeddings for robust comparison of

short and medium text segments within a shared vector

space (Reimers & Gurevych, 2019). To substantiate

reliability requirements for personnel decisions, research

on algorithmic bias in hiring was considered (Raghavan

et al., 2020), along with empirical demonstrations of

LLM propensity toward plausible yet false claims under

insufficient context, rendering source control not an

option but a safety-by-design principle (Lin et al., 2022).

The methodology relies on conceptual modeling of an

RAG system for resume analysis as a dual-loop

computational process: an asynchronous corpus

preparation (ingestion) loop and an interactive query-

processing loop. In the first loop, resumes are

transformed into a text stream, segmented into semantic

chunks, and encoded into embeddings; the chunks are

then indexed in a vector store, where search is

implemented as a nearest-neighbor problem, typically

requiring approximate methods to maintain latency at a

practical level (Gupta et al., 2024). In the second loop,

the recruiter’s query is encoded into the same space, top-

K chunks are retrieved by semantic similarity

(Karpukhin et al., 2020), after which generation is

constrained strictly to the retrieved context and

augmented with a strict refusal rule when retrieval

provides insufficient or low-confidence evidence, to

minimize hallucination risk and improve verifiability

through references to specific resume fragments (Lin et

al., 2022). The parameters topK and chunk size are

treated as controllable regulators of the recall–noise–cost

trade-off. At the same time, explainability and robustness

to linguistic variability are considered fixed requirements

derived from the nature of recruiting and the risks

associated with automated decision-making (Ajjam &

Al-Raweshidy, 2025; Raghavan et al., 2020).

3. Results and Discussion

Within the considered approach, the resume analysis task

is formalized as transforming an unstructured set of

candidate documents into a system that, upon a recruiter

query, outputs either a substantiated natural-language

answer or an ordered list of candidates with stated

reasons for relevance. The input comprises resumes as

files, each document containing heterogeneous

information about experience, skills, achievements,

varying in format, detail, and overall completeness.

The American Journal of Engineering and Technology
ISSN 2689-0984 Volume 07 - 2025

The Am. J. Eng. Technol. 2025 154

Additionally, a recruiter query in natural language is

provided, which may be a question about a specific

candidate or a profile description (who fits a role

requiring a given stack and domain). The output must

include, first, a natural-language response grounded in

resume facts, and second, in a search scenario, a ranking

of candidates by degree of match to the query, preferably

with relevance scoring and references to the fragments

supporting the decision. This design follows the general

idea of generation augmented by retrieved context:

relevant fragments are first selected from an external

store, and the generator then constructs the answer by

treating these fragments as non-parametric memory that

can be updated independently of the model.

To implement this formulation, a dual-loop computation

scheme is introduced. In the first loop, executed

asynchronously relative to user requests, each document

is split into coherent semantic segments. For each

segment, a vector representation is constructed that

enables measuring similarity by meaning rather than

string overlap. The segments and their metadata are then

stored in a vector database. The second loop, invoked per

query, maps the query text into a vector representation

and performs nearest-segment search, subsequently

constraining the context to the first K retrieved

fragments. The conceptual justification for dense

retrieval over vector representations in context search is

supported by open-domain question answering research,

where dense retrieval methods substantially improve the

accuracy of retrieving relevant passages compared to

sparse search models (Karpukhin et al., 2020). The

choice of the embedding model is critical because it

determines the geometry of the semantic space. In this

regard, specialized sentence-level models are

particularly suitable, as they provide cosine-comparable

representations and are explicitly designed for the

semantic matching of short and medium-length text

fragments (Reimers & Gurevych, 2019).

System requirements are conveniently divided into

functional and non-functional. In terms of accuracy,

candidate ranking is expected to be robust to phrasing

variability in resumes and queries and not to degrade

under synonyms and indirect mentions; accuracy should

be treated in two senses: the quality of retrieving relevant

fragments and the correctness of the final answer, which

must not add information absent from the resumes. In

terms of explainability, the system must expose the

grounds for its responses in the form of concrete,

actionable fragments; otherwise, it becomes a black box,

particularly hazardous in HR processes where decisions

carry significant social consequences. In terms of

privacy, resumes and their derived representations must

remain within the organizational perimeter, and access to

the store and query logs must be controlled. This

requirement is a foundational requirement for

responsible deployment, as maintaining data sovereignty

within the organizational perimeter is essential for

conducting the internal audits, bias testing, and fairness

validations required to mitigate the documented risks of

automated hiring systems (Raghavan et al., 2020).

From a cost perspective, minimizing repeated

computations is essential: compute-intensive preparation

operations (document parsing and embedding

construction) should be shifted into the ingestion loop so

that interactive queries rely on a prebuilt index. For

latency, a near-dialogue mode is required: the user

perceives the system as an assistant, so response time

should be determined by retrieval plus generation time;

increasing K improves context recall but raises latency

and increases the risk of context noising by including

fragments that are thematically close but not factually

relevant to the query. This trade-off is typical for

retrieval-augmented generation systems and has been

discussed in the survey literature on the subject (Gupta et

al., 2024).

Typical user scenarios follow naturally from this

formalization. The first scenario is a per-candidate

question-answer mode: the query is framed as clarifying

a fact or competence, and the system returns a concise

answer grounded in specific lines of experience and

projects, avoiding conjecture. The second scenario is

candidate search by skills and domains: the query

specifies a profile, the system retrieves semantically

similar fragments, aggregates them at the candidate level,

and produces a ranking with explanations of why

candidates appear in top positions. The third scenario is

candidate comparison: the user provides comparison

criteria, and the system, preserving grounding in resume

text, synthesizes differences across relevant aspects,

indicating which fragments support the conclusions;

here, constraining generation to retrieved context and

explicitly refusing under insufficient data are significant,

because otherwise the model begins to fill gaps with

plausible but unverifiable assertions, contradicting the

aims of reliable screening.

Semantic search in recruitment relies on vector

representations of text in which proximity reflects

semantic similarity rather than string overlap. This shift

The American Journal of Engineering and Technology
ISSN 2689-0984 Volume 07 - 2025

The Am. J. Eng. Technol. 2025 155

is significant for resumes, where competencies are often

expressed indirectly through descriptions of projects and

responsibilities, and therefore are poorly captured by

literal matching. The practical foundation of such

systems consists of models that encode sentences and

paragraphs into compact vectors suitable for cosine

similarity comparison; notably, sentence-level model

families are optimized explicitly for semantic similarity

and text clustering tasks (Reimers & Gurevych, 2019). In

a related line of work on dense retrieval for question

answering, it is shown that a dual-encoder architecture

(encoding questions and passages separately) enables the

effective retrieval of relevant excerpts without relying on

sparse features, which is methodologically similar to

searching over a resume corpus (Karpukhin et al., 2020).

When the number of resume segments becomes large, a

central engineering issue arises: performing fast nearest-

neighbor searches in high-dimensional spaces. Vector

stores typically implement approximate search using

indexes that strike a balance between accuracy and

latency. To address this, we employ a graph-based

approximate nearest neighbor (ANN) index, specifically

the Hierarchical Navigable Small World (HNSW) graph.

In HNSW, the search begins at coarse levels of the graph

and refines at lower ones, providing a practical

operational compromise between query latency and

retrieval recall (Ponomarenko, 2025).

At the intersection of retrieval and generation, an

approach has formed in which answers are constructed

not only from the parameters of a language model but

also from retrieved fragments of external memory: first,

relevant segments are retrieved; then these segments are

added to the query context; only afterward is generation

invoked, already grounded in the retrieved evidence.

However, the key risk remains: language models tend to

produce plausible yet incorrect claims, especially when

context is incomplete or contradictory. Research on

truthfulness in generation introduces target question sets

that reveal systematic false answers, underscoring the

need for explicit self-control mechanisms in applied

systems (Lin et al., 2022). Therefore, practical

implementations of retrieval-augmented generation

typically enforce strict contextual constraints, requiring

reliance only on provided fragments, and introduce

refusal behavior when retrieval does not return sufficient

grounds; this reduces the likelihood of inventing details

and makes the system more controllable in an HR setting

where the cost of error is particularly high.

The proposed approach relies on the idea of generation

augmented by retrieval: the system does not attempt to

remember all resumes within the parameters of a

language model. It does not require the user to search for

keyword overlaps manually, but instead constructs an

intermediate layer of semantic memory. This memory is

formed from resume fragments represented as vectors,

enabling the retrieval of only those parts of texts that

truly contain relevant signals of experience and skills. As

a result, the answer becomes simultaneously more

accurate and more verifiable because it is tied to concrete

evidence in documents rather than probabilistic

guesswork.

In applied terms, each user query is treated as an

operation over a resume corpus with two possible

outputs: either a concise answer to a question about a

candidate or a ranked list of candidates by degree of fit

to criteria. The core principle is functional separation:

search is responsible for retrieving context, while the

language model is responsible for coherent exposition

and response normalization. This separation reduces

generative load, lowers the cost of repeated queries over

the same corpus, and makes system behavior more stable

as the number of documents grows.

The first phase, corpus preparation, begins with

extracting text from resumes, including file formats

where structure is visually rather than logically defined.

At this step, obtaining a maximally clean text stream is

crucial: remove formatting artifacts, preserve the order of

semantic blocks, and, where possible, retain section

markers such as work experience, education, and skills

lists so that they can be used later as metadata. Even with

strong extraction, unavoidable heterogeneity remains:

one candidate lists responsibilities as bullet points,

another uses continuous prose, and a third emphasizes

project titles; therefore, subsequent stages must be

invariant to such stylistic fluctuations.

Next, the text is split into fragments, where splitting must

be semantic rather than purely mechanical: overly large

chunks dilute the signal and increase the risk that

irrelevant details enter the context, while overly small

chunks destroy causal relationships and reduce

informativeness. Each chunk is transformed into a vector

representation that encodes meaning and enables

proximity measurement between the query and the chunk

via vector-space geometry. The resulting vectors are

indexed in a vector store, along with metadata that links

each chunk to a specific candidate, resume section, and

position in the document. This is critical for subsequent

The American Journal of Engineering and Technology
ISSN 2689-0984 Volume 07 - 2025

The Am. J. Eng. Technol. 2025 156

aggregation of results at the candidate level and for

explainability. The algorithm of the first phase is shown

in Fig. 1.

Fig. 1. Ingestion Phase

The second phase, query processing, begins by mapping

the recruiter’s query text into a vector representation in

the same feature space as the resume chunks. A nearest-

neighbor search by semantic similarity is then

performed, selecting a limited set of the first K results to

maintain a balance between recall and noise. The K

constraint functions as a throttle: increasing K raises the

probability of capturing all relevant evidence but

simultaneously expands the context and can degrade

generation accuracy if the context includes fragments

that are thematically close yet factually unrelated to the

query.

At the final step, retrieved fragments are aggregated into

a single context and provided to the language model

together with complex response rules. The rules specify

that formulations must rely only on the provided context

and must not add new facts; if retrieved fragments do not

contain sufficient grounds, the system must explicitly

report the absence of data rather than fill gaps with

assumptions. Depending on the query type, generation

returns either a coherent answer indicating which

experience elements substantiate the conclusion or a

candidate ranking, where each candidate’s position is

explained by the sum of discovered evidence and its

relevance, thereby closing the loop from semantic

retrieval to controlled, verifiable interpretation. The

algorithm of the second phase is shown in Fig. 2.

Fig. 2. Intelligent Retrieval

An essential element of the approach is the design of the

model prompt template, which codifies strict

interpretation rules: the model must answer exclusively

within the provided context and, in the absence of

context, must directly report inability to respond. This

rule makes system behavior predictable and reduces the

probability of fabricated assertions when the resume

lacks supporting evidence or retrieval fails to find

relevant fragments. Practically, this is implemented by

placing retrieved pieces into a separate context block

within the prompt, after which generation becomes

context-conditioned and oriented toward resume facts

rather than conjecture.

The solution architecture comprises a backend service, a

vector store, an LLM runtime, and a client interface, all

of which utilize a clear data exchange protocol. The

backend ingests resumes and user queries, performs

document preparation, and orchestrates the retrieval of

relevant fragments. The vector store provides fast

semantic similarity search, while the LLM runtime

produces the final answer. The client interface supports

resume upload and a dialogue-style query mode. As a

concrete implementation, a server on the Spring Boot

platform with Spring AI dependency to interact with the

LLM is proposed, utilizing a PostgreSQL database with

pgvector extension as the vector store, a local Ollama

runtime for model execution, a React web interface, and

container orchestration via Docker Compose, resulting in

a reproducible deployment suitable for a local

operational perimeter.

Two practical considerations drive technology selection:

minimizing external dependencies and simplifying

operations. A local model runtime stores resumes and

derived representations within the infrastructure. In

contrast, a vector store, implemented as an extension to

a relational database, simplifies administration and

ensures compatibility with standard corporate data

storage practices. Container orchestration through

Compose provides a unified launch scenario: separate

services bring up the database with vector extension, an

administrative interface, and the local model server,

including preloading of the selected model, standardizing

environments for development and testing. The server-

side application interface design assumes at least two

operation classes: resume upload and query execution,

returning either an answer or a ranking. Typical flow:

Resume file received from client, server extracts and

splits the text into fixed chunks, saves chunk embeddings

in a vector DB. The typical chunk size ranges from 350

The American Journal of Engineering and Technology
ISSN 2689-0984 Volume 07 - 2025

The Am. J. Eng. Technol. 2025 157

bytes to 10,000 bytes, but can be split on a separator

designed for splitting, typically around 800 bytes.

To keep the entire pipeline inside the organizational

perimeter, the implementation can be grounded on a local

LLM runtime and a relational vector store. In this

configuration, Ollama is used as the local inference

service, the Mistral model acts as the generative engine,

and PostgreSQL with the pgvector extension functions as

the vector database for semantic retrieval. This choice is

operationally conservative: it reduces reliance on

external APIs, makes data flows auditable, and allows

model and infrastructure versions to be pinned for

reproducibility across experiments and pilots.

From a deployment standpoint, there are two equivalent

topologies. In the first, Ollama runs directly on the host

machine, exposing a local HTTP endpoint (commonly

http://localhost:11434) while PostgreSQL with pgvector

is started in the container. In the second, both the

database and Ollama are started via Docker Compose,

which simplifies “one-command” startup and enforces

consistent environments across machines. The practical

difference is not conceptual but operational: the local

Ollama option may be more convenient during iterative

development, whereas the fully containerized option

provides a uniform runtime boundary that is easier to

replicate in staging.

A minimal prerequisite for local inference is ensuring

that the Mistral model is available to Ollama.

When PostgreSQL with pgvector is launched in Docker,

along with an administrative UI, a Compose

configuration can define a database service and a

pgAdmin service, specifying explicit ports, credentials,

and a persistent volume for data durability. This provides

a stable vector store endpoint while keeping operational

state in a mounted directory rather than inside ephemeral

containers. Insert the following Docker Compose

fragment as the database-only option, as shown in Figure

3.

Fig. 3. Launch pgvector in Docker

In a fully containerized topology, the Compose file can

be extended with an Ollama service that starts the server

process and preloads the Mistral model inside the

container, persisting model artifacts via a mounted

volume. This yields a self-contained runtime where the

LLM endpoint and the vector database are co-started and

can be managed uniformly. Insert the following

Compose fragment as the “database + Ollama” option, as

shown in Figure 4.

Fig. 4. Ollama and pgvector in Docker

Once the Compose configuration is prepared, the

infrastructure is started by bringing the stack up in

detached mode, which creates the networked services

required for ingestion and retrieval. The exact command

to start is “docker-compose up -d”.

Once the infrastructure is initialized, the ingestion

pipeline instantiates the conceptual model described

earlier: upon resume upload, the backend extracts textual

http://localhost:11434/

The American Journal of Engineering and Technology
ISSN 2689-0984 Volume 07 - 2025

The Am. J. Eng. Technol. 2025 158

content, splits the document into chunks, converts each

chunk into an embedding, and writes both vectors and

metadata into pgvector.

A subtle but consequential engineering decision is to

separate the embedding model from the generative

model. While Spring AI can reuse the same model for

Q&A and embeddings, retrieval quality typically

improves when embeddings are produced by a model

explicitly intended for vector representations. In this

case, the embedding model is selected via configuration

(for example, through the parameter

spring.ai.ollama.embedding.model), allowing the

retrieval subsystem to be optimized independently of the

generator’s stylistic and reasoning behavior.

The following (Fig. 5) illustrates a representative

ingestion routine, concretely implementing the steps

outlined above: reading a PDF resource, splitting into

chunks, generating embeddings, and persisting them to

the vector store.

Fig. 5. Code example of Ingestion Phase

On the retrieval-and-generation side, the key mechanism

that enforces grounding is an advisor that automatically

performs vector search and injects retrieved fragments

into a prompt template. The template explicitly binds the

model’s output to the provided context. It requires a

refusal behavior when the context is empty, thereby

turning “lack of evidence” into a controlled, observable

outcome rather than an invitation to fabricate plausible

details. A concrete Spring AI configuration that

implements this pattern is shown in Fig. 6. It defines the

prompt template, fixes the TOP_K retrieval parameter,

and wires the QuestionAnswerAdvisor to the vector

store.

Fig. 6. Core RAG configuration

Finally, an end-to-end system validation can be

performed by sending a query request to the backend

API, confirming that the system executes retrieval

against pgvector and that the model produces an answer

constrained to the retrieved resume fragments. The

following request exemplifies this verification

procedure.

Fig. 7. Example of a request

Model choice determines the style and robustness of the

entire system and is therefore appropriately treated as a

managed configuration rather than a one-time decision.

The embedding model defines the quality of matching

queries to resume fragments, while the generative model

determines clarity, coherence, and formulation

discipline. With local deployment, the organization gains

additional control over privacy and reproducibility:

model versions can be pinned, quality changes can be

tracked across updates, and compute resources can be

allocated to the required load profile. This makes the

system suitable for prototyping and pilot deployments, as

well as for careful scaling while maintaining

The American Journal of Engineering and Technology
ISSN 2689-0984 Volume 07 - 2025

The Am. J. Eng. Technol. 2025 159

controllability and compliance with corporate data-

perimeter requirements.

4. Conclusion

The architecture proposed in the article conceptualizes

resume analysis as a task of semantically governed

retrieval followed by generation, where the central

methodological commitment is a departure from literal

string matching and a rejection of a self-sufficient LLM

as the sole decision mechanism. In the context of

overloaded initial screening and high variability of

language descriptions of experience, this stance is

fundamentally justified: key relevance signals are

concentrated in project and responsibility context rather

than in superficially matching terms, rendering keyword

approaches structurally vulnerable and prone to missing

relevant candidates. Thus, RAG functions not as a

cosmetic interface enhancement but as a shift of the

system into a different regime of epistemic discipline: the

model ceases to answer from memory and instead

answers from an exposed corpus of evidence retrieved by

semantic similarity.

The scientific significance of the solution is articulated

through the formalization of a dual-loop computation

scheme: an asynchronous ingestion phase creates non-

parametric memory of the corpus via semantic

segmentation and vector indexing. In contrast, the

interactive query phase reduces to nearest-fragment

retrieval and strict top K context limitation. This

decomposition simultaneously addresses the economics

of repeated queries, reduces dependence on context

window size, and introduces a controlled compromise

between recall and noise, which in an HR setting

becomes a systemic risk rather than a minor engineering

detail. It is separately emphasized that the choice of

embedding model and segmentation parameters defines

the geometry of the semantic space and, therefore,

retrieval quality; for this reason, dense retrieval and

sentence-level models are treated as a methodological

foundation rather than interchangeable components.

The practical viability of the approach is determined by

describing accuracy, explainability, privacy, cost, and

latency as interdependent constraints rather than

independent desiderata. The most important conclusion

is the necessity of complex protocol rules for generation:

an answer is permissible only within the boundaries of

retrieved context, and under insufficient grounds, the

system must refuse; otherwise, the mechanism of

plausible fact completion is inevitably activated, which

is incompatible with verifiable screening. In this sense,

the work establishes a mature engineering-scientific

position: reliability in an RAG scenario is achieved not

by the strength of the generative model, but by source-

control architecture, fragment traceability, and refusal

discipline, making the system applicable to real

recruiting processes while preserving controllability and

reproducibility within the corporate perimeter.

References

1. Ajjam, M.-H., & Al-Raweshidy, H. S. (2025). AI-

driven semantic similarity-based job matching

framework for recruitment systems. Information

Sciences, 724, 122728.

https://doi.org/10.1016/j.ins.2025.122728

2. Bouhsaien, L., & Azmani, A. (2025). Challenges

and Strategies in Recruitment: Insights from Digital

Transformation. Lecture Notes in Networks and

Systems, 1310, 328–340.

https://doi.org/10.1007/978-3-031-88653-9_33

3. Gupta, S., Ranjan, R., & Singh, S. N. (2024). A

Comprehensive Survey of Retrieval-Augmented

Generation (RAG): Evolution, Current Landscape,

and Future Directions. ArXiv.

https://doi.org/10.48550/arxiv.2410.12837

4. Karpukhin, V., Oguz, B., Min, S., Lewis, P., Wu,

L., Edunov, S., Chen, D., & Yih, W. (2020). Dense

Passage Retrieval for Open-Domain Question

Answering. Proceedings of the 2020 Conference on

Empirical Methods in Natural Language

Processing (EMNLP), 6769–6781.

https://doi.org/10.18653/v1/2020.emnlp-main.550

5. Lin, S., Hilton, J., & Evans, O. (2022).

TruthfulQA: Measuring How Models Mimic

Human Falsehoods. Proceedings of the 60th

Annual Meeting of the Association for

Computational Linguistics, 1, 3214–3252.

https://doi.org/10.18653/v1/2022.acl-long.229

6. Ponomarenko, A. (2025). Three Algorithms for

Merging Hierarchical Navigable Small World

Graphs. ArXiv.

https://doi.org/10.48550/arxiv.2505.16064

7. Raghavan, M., Barocas, S., Kleinberg, J., & Levy,

K. (2020). Mitigating Bias in Algorithmic Hiring.

Proceedings of the 2020 Conference on Fairness,

Accountability, and Transparency, 469–481.

https://doi.org/10.1145/3351095.3372828

8. Reimers, N., & Gurevych, I. (2019). Sentence-

BERT: Sentence Embeddings using Siamese

https://doi.org/10.1016/j.ins.2025.122728
https://doi.org/10.1016/j.ins.2025.122728
https://doi.org/10.1016/j.ins.2025.122728
https://doi.org/10.1007/978-3-031-88653-9_33
https://doi.org/10.1007/978-3-031-88653-9_33
https://doi.org/10.1007/978-3-031-88653-9_33
https://doi.org/10.48550/arxiv.2410.12837
https://doi.org/10.48550/arxiv.2410.12837
https://doi.org/10.48550/arxiv.2410.12837
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2022.acl-long.229
https://doi.org/10.18653/v1/2022.acl-long.229
https://doi.org/10.18653/v1/2022.acl-long.229
https://doi.org/10.48550/arxiv.2505.16064
https://doi.org/10.48550/arxiv.2505.16064
https://doi.org/10.48550/arxiv.2505.16064
https://doi.org/10.1145/3351095.3372828
https://doi.org/10.1145/3351095.3372828
https://doi.org/10.1145/3351095.3372828

The American Journal of Engineering and Technology
ISSN 2689-0984 Volume 07 - 2025

The Am. J. Eng. Technol. 2025 160

BERT-Networks. ArXiv.

https://doi.org/10.48550/arxiv.1908.10084

Fig. 1. Ingestion Phase

Fig. 2. Intelligent Retrieval

https://doi.org/10.48550/arxiv.1908.10084
https://doi.org/10.48550/arxiv.1908.10084
https://doi.org/10.48550/arxiv.1908.10084

The American Journal of Engineering and Technology
ISSN 2689-0984 Volume 07 - 2025

The Am. J. Eng. Technol. 2025 161

Fig. 3. Launch pgvector in Docker

Fig. 4. Ollama and pgvector in Docker

The American Journal of Engineering and Technology
ISSN 2689-0984 Volume 07 - 2025

The Am. J. Eng. Technol. 2025 162

Fig. 5. Code example of Ingestion Phase

Fig. 6. Core RAG configuration

The American Journal of Engineering and Technology
ISSN 2689-0984 Volume 07 - 2025

The Am. J. Eng. Technol. 2025 163

Fig. 7. Example of a request

