The American Journal of Engineering and Technology
ISSN 2689-0984 Volume 07 - 2025

Principles of Designing Scalable Frontend Architectures for Integration
with Artificial Intelligence Systems

! Goel Taran
! Expert in Frontend Engineering, USA

Received: 18" Nov 2025 | Received Revised Version: 28" Nov 2025 | Accepted: 17" Dec 2025 | Published: 26! Dec 2025

Volume 07 Issue 12 2025 | Crossref DOI: 10.37547/tajet/\VolumeQ71ssuel2-14

Abstract

The article is devoted to the analysis and systematization of principles for designing scalable frontend architectures aimed
at effective integration with artificial intelligence (Al) systems. The relevance of the study is determined by the exponential
growth of the use of Al technologies, including generative models, in user interfaces, which generates new, increased
requirements for the flexibility, performance, and fault tolerance of front-end systems. The scientific novelty of the work
consists in the formulation of a comprehensive architectural model based on the author’s practical experience in the
domain of AdTech/MediaTech platforms. Within the framework of the study, the main challenges of integrating Al into the
frontend are identified and structured, including state management, rendering of dynamic content, and ensuring low
response latency. Contemporary design approaches are analyzed, including micro-frontends, server-side rendering, and
API-first design. Particular emphasis is placed on the principles of system decomposition, performance optimization, and
compliance with digital accessibility requirements. The purpose of the work is to develop and theoretically substantiate a
set of architectural principles intended for building scalable frontend systems capable of natively interacting with Al
services. To achieve this goal, methods of systems analysis of scientific literature, comparative analysis of architectural
patterns, as well as the case study method based on the author’s practical experience, are employed. In conclusion, the
proposed modular Al-integrated architecture (MAI-FA) is presented, and conclusions are formulated regarding its
applicability in the context of high-load and complex web systems. The findings presented in the article will be of interest
to frontend architects, lead developers, and technical managers involved in the design of complex web applications with
intensive use of Al.

Keywords: frontend architecture, artificial intelligence, scalability, systems design, Al integration, micro-frontends,
AdTech, generative Al, web application performance, architectural patterns, digital accessibility (ally).

© 2025 Goel Taran. This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).
The authors retain copyright and allow others to share, adapt, or redistribute the work with proper attribution.

Cite This Article: Goel Taran. (2025). Principles of Designing Scalable Frontend Architectures for Integration with
Artificial Intelligence Systems. The American Journal of Engineering and Technology, 7(12), 132-139.
https://doi.org/10.37547/tajet/ Volume071ssuel2-14.

1. Introduction moving into the user interface layer, where it provides
personalized experiences, generates real-time content
(GenAl), and orchestrates complex user interaction
scenarios [3]. At the same time, traditional monolithic
frontend architectures, designed for a relatively
predictable and static user interface, demonstrate limited
suitability to the new conditions. Embedding Al services

Over the past decade, the field of web development has
experienced a qualitative, essentially tectonic, shift
driven by the ubiquitous integration of artificial
intelligence systems. Al has ceased to function
exclusively as a backend component and is increasingly

The Am. J. Eng. Technol. 2025 132

The American Journal of Engineering and Technology

ISSN 2689-0984

requires the frontend not only to perform the basic
function of data visualization, but also to exhibit
properties of elasticity, fault tolerance, and high
performance, as well as the ability to handle
asynchronous data streams, dynamically generated
interface components, and low-latency modes of
operation [2, 4]. These limitations are most acute in high-
load domains such as advertising (AdTech) and media
platforms, where rendering speed and the ability of the
system to adapt to content variations directly correlate
with financial performance indicators.

The aim of this study is to propose and theoretically
substantiate an integrated set of principles for designing
scalable frontend architectures oriented toward
integration with artificial intelligence systems. To
achieve this aim, the following objectives must be
addressed: to analyze contemporary scientific literature
in order to identify the key problems and challenges
arising from embedding Al services into frontend
applications; to systematize existing architectural
approaches (micro-frontends, SSR, component-based
architectures) and performance optimization strategies
(code splitting, lazy loading) from the perspective of
their relevance to Al integration tasks; and, based on the
analysis of literary sources, to formulate an original
model (framework) and a set of key principles for
designing a scalable, Al-oriented frontend architecture.

The scientific novelty of the study consists in the
formulation of a holistic architectural model (MAI-FA)
which, in contrast to prevailing approaches focused on
individual aspects (for example, solely on performance
or only at the API level), defines a comprehensive
solution that combines the principles of modularity,
independent deployment, dynamic user interface
generation, and proactive performance management.

The working hypothesis of the author is that the use of a
decomposed, service-oriented architecture (primarily
micro-frontends), based on clearly specified API
contracts and supplemented by modern techniques for
build and rendering optimization (Tree Shaking, SSR),
represents the most effective strategy for constructing
scalable frontend systems capable of natively and with
high performance integrating with Al services that
generate the user interface.

2. Materials and Methods

The Am. J. Eng. Technol. 2025

Volume 07 - 2025

The theoretical and methodological basis of the study is
the systems approach, which considers frontend
architecture as a complex sociotechnical system in which
technological, organizational, and product-related
aspects are interrelated. The core body of sources was
formed from scholarly literature published mainly in
recent years, when a qualitative growth has been
observed in studies devoted to the integration of Al,
generative models, and high-load web interfaces. The
materials analyzed included publications on scalable
frontend architectures, architectural patterns (micro-
frontends, SSR, hybrid rendering), systems design of Al
applications, as well as industry practices of
AdTech/MediaTech platforms. A substantial part of the
empirical base is the author’s practical experience in
designing high-load frontend systems in the AdTech
industry, interpreted within a formalized case
methodology.

The selection of literature was carried out according to
the principles of relevance, novelty, and methodological
soundness. The review included works that
simultaneously satisfied at least two conditions: they
analyze architectural solutions for the frontend or web
applications; they address issues of integrating AI/ML
services, generating or personalizing the user interface,
or optimizing performance under conditions of high
content dynamics. Additionally, publications were taken
into account that describe practices of implementing
micro-frontends, design systems, an API-first approach,
and build optimization strategies, since these approaches
directly correlate with the task of creating Al-oriented
architectures. Sources that focus exclusively on backend
or infrastructure aspects (orchestration, storage, purely
model-centric ML tasks) without an explicit connection
to the frontend, as well as works that do not contain
reproducible methodological foundations, were
consistently excluded from consideration.

3. Results

This section presents the results of an analysis of the
practical application of architectural principles based on
the development of high-load frontend systems in the
AdTech and MediaTech domains. Professional work in
the companies Nagarro and Amazon served as the
empirical basis for identifying the most vulnerable points
and empirically validating the solutions that formed the
substantive core of the principles proposed in this article.

133

The American Journal of Engineering and Technology

ISSN 2689-0984

Case analysis: designing an Ad Framework in the
Amazon ecosystem. The main task was to design a new
frontend architecture for an advertising framework that
would support the generation of new advertising layouts
using Al and ML methods. This task embodies the
essence of the problem under study. The existing system
exhibited a number of significant limitations:

— Scalability of layouts. Support for only about
~15 standardized ad sizes, which directly limited
monetization potential.

— Performance. = A monolithic build
configuration (webpack) led to increased First
Contentful Paint (FCP) time and significant client-side
latency.

— Al integration. The architecture was initially
not intended for dynamic Ul generation; ad layouts were
hard-coded in the codebase.

To overcome these limitations, a comprehensive
reconfiguration of the architecture was carried out, based
on the principles identified in the course of the theoretical
and methodological analysis of the literature.

Before integrating resource-intensive Al processes, it
was necessary to eliminate the basic performance issues.
Modern build optimization techniques were
implemented [7, 8]:

1. Tree Shaking. Aggressive elimination of unused
code from the final bundles.

2. Lazy Loading. Asynchronous loading of modules
that are not critical for the initial rendering (for
example, complex widgets and external scripts).

3. Server-Side Rendering (SSR). Rendering of critical
modules and the base layout on the server side to
accelerate FCP [9, 10].

The set of measures listed above made it possible to
reduce client-side latency by approximately 30 %. This
created the required performance margin for the
subsequent integration of Al modules without
degradation of the user experience.

Architectural support for dynamic wuser interface
generation. The most nontrivial task was to support
layout generation by means of Al. A naive strategy
would assume direct HTML/CSS generation by the Al
model, which is an architecturally fragile and unsafe
solution. Instead, a component-oriented architecture was
implemented. The operation of the updated architecture
is organized as follows:

The Am. J. Eng. Technol. 2025

Volume 07 - 2025

— The AI service does not construct the UI
directly; instead, it produces a declarative JSON
structure describing the composition and configuration
of the components used.

— The frontend application based on React
receives this JSON through an API gateway [10].

— A dedicated rendering engine on the frontend
side recursively traverses the JSON tree and dynamically
mounts the corresponding React components from the
design system library.

Such an architectural scheme, based on the ideas of
generative design [3], provided a qualitatively different
solution to the scaling problem: the system began to
support more than 12 000 variants of ad formats instead
of the previous 15, since the Al obtained the ability to
arbitrarily combine components in any permissible
container.

Decomposition and scalability of the system. To manage
the increased architectural and organizational
complexity, a new design system was developed,
engineered to be reusable, adaptive, and scalable. In
essence, such a design system represents a variety of
micro frontend [9], within which each component
(button, banner, form, etc.) is designed, developed, and
versioned autonomously. The high adoption rate —
about 40 % of teams in the organization within the first
six months — serves as empirical confirmation of the
effectiveness of the decomposed approach. This made it
possible for different teams, including teams working on
Al components, to evolve the functionality of their
subsystems independently while relying on a shared yet
flexibly configurable UI component library.

Integration challenges and ensuring accessibility. In the
course of implementation, practical challenges were also
identified, in particular the difficulties of integration with
legacy systems and the requirements for data quality for
Al models. Additionally, when generating thousands of
layout variations, the issue of digital accessibility (ally)
became particularly acute. Generative Ul is capable of
producing layouts that turn out to be visually unreadable,
insufficiently contrasted, or hard to operate using the
keyboard.

These risks required:

—inclusion of automated al 1y tests in the CI/CD
pipeline (drawing on practices established at Nagarro);

134

The American Journal of Engineering and Technology

ISSN 2689-0984

— designing the components of the design
system in strict accordance with WAI-ARIA principles.

4. Discussion

Analysis of the scientific literature, as well as the
practical implementation data presented in the Results
section, makes it possible to move from a descriptive
fixation of existing solutions to the construction of a
synthetic architectural model. Modern approaches such
as micro-frontends [6, 9] and server-side rendering
(SSR) patterns largely address the challenges of
development scalability and performance optimization;

Volume 07 - 2025

however, they remain fragmentary with respect to a
unified architectural foundation for integration with Al
services that perform dynamic control of the user
interface.

As a result of the conducted analysis, an original
conceptual model is formulated: The Modular Al-
Integrated Frontend Architecture (MAI-FA). This
architecture assumes the decomposition of the frontend
application into three loosely coupled layers that interact
with each other through strictly defined APIs and
formalized data flows, which are presented for greater
clarity in Figure 1.

Top Layer (Client): Dynamic Interface Layer
—Design system (React components)
— Rendering engine (JSON -> Ul)

Middle Layer (Server/Edge): AI-Orchestration
—Layer — API Gateway
—Personalization Service (AI)
—Layout Generation Service (Al)

Conceptual Scheme of Modular Al-
Integrated Frontend Architecture (MAI-
FA)

Bottom Layer (Client): Core Layer
—Application Shell
—Routing
—Global Status

Fig.1. Conceptual scheme of Modular Al-Integrated Frontend Architecture (MAI-FA) [6, 9]

The Core Layer represents a basic shell application that
encapsulates functions:
authentication, routing, global state management, and
module initialization/loading.

fundamental system

The Dynamic Interface Layer includes a design system
in the form of a library of atomic components and a
specialized Rendering Engine. The functional purpose of
this layer is reduced to the interpretation and
visualization of the declarative interface descriptions

The Am. J. Eng. Technol. 2025

provided to it; it does not perform content selection and
is responsible exclusively for how this content is
rendered.

The AI Orchestration Layer is implemented as an
intermediate layer (as a rule, on the server or at the level
of Edge infrastructure), acting as a facade between the
frontend and the set of ML models. Its task is to
transform business requests into declarative JSON
structures suitable for direct consumption by the

135

The American Journal of Engineering and Technology

ISSN 2689-0984

interface layer and subsequent materialization in the
form of the user UL

The proposed approach addresses the key problems
identified in the course of the conducted analysis. The
practical experience of developing a framework for more

Volume 07 - 2025

than 12,000 advertising creatives can be interpreted as a
concrete materialization of the Dynamic Interface Layer
operating under the control of the AI Orchestration
Layer. Subsequently, Table 1 provides a comparison of
MAI-FA with the traditional monolithic approach in the
context of Al component integration.

Table 1. Comparative analysis of the Traditional monolithic architecture and MAI-FA

Parameter

Traditional Monolith (CSR/SPA)

MAI-FA (Proposed model)

UI management

Hard-coded in components. Logic and
presentation are mixed.

Declarative. The Ul is controlled by a JSON
structure from the Al service.

Scalability Low. Adding a new layout requires High. New layouts are created by the Al
rebuilding and releasing the frontend. service without modifying the frontend code.
Performance Risk of bundle bloat. Requests to the Optimized. The core loads quickly

Al may block rendering.

(SSR/Islands), the Ul is generated

asynchronously.

Al integration

Direct API calls from components. The
frontend is aware of the models.

Abstracted. The frontend interacts only with
the Orchestration Layer.

Team

independence coupled.

Low. Frontend and Al teams are tightly

High. Teams are separated by an API contract
(JSON).

The proposed architecture is based on the following key
principles.

Principle 1: Ul decomposition. The frontend layer must
not encapsulate the business logic of forming the
interface layout; its role is reduced to functioning as a
dumb renderer. Such isolation is achieved through the
use of the micro-frontend pattern [9] at the design system

JSON: {
The Level of AT "component":
Orchestration "Hero", "slotl": ...,
"slot2": ... }

level, which creates a technical foundation for an Al
service that assembles the interface from pre-prepared
and independently deployable component bricks. The
author's practical experience in building a design system
adopted by 40% of product teams empirically confirms
the effectiveness of this principle. Below, Figure 2
presents a description of the UI decomposition scheme
based on micro-frontends.

-
Micro-frontend:

Team A)

Hero (Independent

Micro-frontend:
Container ProductGrid
Application (Core)

B)

(Independent Team

v

Micro-frontend:

Team C)

-

Footer (Independent

~

>

Fig.2. UI decomposition scheme based on micro frontends [9]

The Am. J. Eng. Technol. 2025

136

The American Journal of Engineering and Technology

ISSN 2689-0984

The next principle is aggressive performance
optimization at the build level. The integration of Al
functionality inevitably leads to an increase in the
volume of client-side JavaScript code (additional
libraries for data processing, telemetry, analytics) as well
as to a higher number of network requests. In the absence
of targeted optimization, this results in the deterioration
of key performance indicators and the degradation of
Core Web Vitals. A 30% latency reduction effect is
achieved through the combined application of Tree
Shaking, lazy loading, and server-side rendering (SSR).
Modern build tools (webpack, Rspack) and frameworks
(Next.js, Astro) provide advanced mechanisms for
implementing these approaches, including architectural
patterns at the level of the Islands Architecture, which
make it possible to minimize redundant client-side
initialization.

Principle 3: API-first and contract-based design. The
primary mediator between the frontend layer and the Al
system is the API. Within the MAI-FA model, this role
of a contract interface is performed by a JSON schema
for the declarative description of the user interface. Such
a contract is required to have a strict versioning system
and formalized documentation (in particular, based on
JSON Schema), which ensures the robustness of
integrations and the controlled evolution of interaction

Volume 07 - 2025

protocols. Such a contract specification creates the
conditions for parallel and loosely coupled work of Al
teams and frontend teams without violating the integrity
of the architecture.

Principle 4: Built-in accessibility. In a configuration
where the generation of user interfaces is delegated to an
Al model, there arises a significant risk of forming
interfaces that do not meet accessibility requirements [1,
5]. The Accessibility-by-Design principle assumes that
responsibility for compliance with accessibility
standards is shifted from the stochastic Al model to the
deterministic level of the design system (Principle 1).
The basic components must be initially constructed as
accessible, with correct support for WAI-ARIA, focus
management, adherence to contrast ratios, and other
regulatory criteria. In such an architecture, the task of the
Al is reduced to composing pre-accessible component
elements, which minimizes the likelihood of systematic
violations of inclusive design requirements and makes
the behavior of the system predictable from the
perspective of accessibility.

For the subsequent assessment of the effectiveness of
implementing the described architectural model, it is
advisable to use the system of key performance
indicators (KPI) described in Table 2.

Table 2. KPIs for assessing the effectiveness of MAI-FA [1, 5]

Category KPI Metric
Technical Performance FCP (First Contentful Paint) / LCP (Largest Contentful Paint)
Technical Performance Al Orchestrator response latency
Technical Scalability Core bundle size (Core Layer)
Product Flexibility (Velocity) Time-to-Market (for a new Ul layout)
Product Scalability Number of supported Ul variants (layouts)
Product Quality Level of Design System adoption
Quality Accessibility (ally) % of errors in automated al ly tests

It is advisable to demonstrate the operation of the model
using the example of the end-to-end data flow shown in
Figure 3, which ensures the generation of an advertising

The Am. J. Eng. Technol. 2025

layout, analogous to the architecture implemented in the
author's case study.

137

The American Journal of Engineering and Technology

ISSN 2689-0984

Volume 07 - 2025

The frontend (Core Layer)
sends a context request
(user ID, URL) to the
Orchestration Layer

The user visits the page

The Orchestration Layer
(AI Orchestrator) requests
data from ML models
(Personalization, Ad
Selection)

The frontend (Dynamic Ul
Layer) receives JSON

Al Orchestrator generates
declarative JSON

ML models return data
(Product X, TextY)

The Rendering engine
parses JSON and
dynamically mounts the
'AdBanner’ component
from the Design System

The user sees personalized

Fig.3. Data flow during Al-driven Ul generation (using AdTech as an example)

The proposed Modular Al-Integrated Frontend
Architecture (MAI-FA) is positioned as a response to the
complex challenges arising in the context of
contemporary Al-centric web development. The
architectural approach systematizes and generalizes
practical experience, in particular in solving the problem
of large-scale expansion of the number of advertising
creatives. MAI-FA reorients the traditional paradigm of
the frontend as an API consumer towards a model of the
frontend as a high-performance rendering engine for a
declarative UI generated by an Al system. This
decomposition of responsibility boundaries ensures a
synergistic combination of scalability, performance, and
flexibility of the development process, enabling the
system to evolve without an exponential increase in the
complexity of the client side.

5. Conclusion

As a result of the conducted study, the stated objective
has been achieved: the principles for designing scalable

The Am. J. Eng. Technol. 2025

frontend architectures focused on integration with
artificial intelligence systems and optimized for such use
cases have been formulated and theoretically
substantiated.

The analysis of scientific and applied literature made it
possible to identify the main classes of problems:
increased latency and complexity of state management
under conditions of asynchronous Al responses,
significant integration barriers with legacy infrastructure,
vulnerability to performance degradation under
increasing load, as well as the need to introduce new
architectural paradigms, including micro frontends and
hybrid rendering models.

The systematization of existing approaches, carried out
on the basis of a combined analysis of theoretical sources
and a practical case study, made it possible to
demonstrate that none of the approaches considered,
when applied in isolation, provides a solution to the
complex task of constructing a robust, high-load frontend
with tight Al integration.

138

The American Journal of Engineering and Technology

ISSN 2689-0984

The development of the author’s model resulted in the
construction of the Modular Al-Integrated Frontend
Architecture (MAI-FA). The model presented in the
Discussion section assumes the decomposition of the
system into three interconnected layers and relies on four
fundamental principles: decomposition of the UI into
isolated components, optimization strictly oriented
towards performance metrics, API-first design, and
accessibility (ally) embedded from the outset as a
mandatory non-functional requirement.

References

1. Tkachenko, O., Chechet, A., Chernykh, M., Bunas,
S., & Jatkiewicz, P. (2025). Scalable Front-End
Architecture: Building for Growth and
Sustainability. Informatica, 49(1), 137-150.

2. Shukla, A. (2025). System design for Al
engineering: Adaptive architectures for real-world
scalable Al applications. International Journal of
Computer Applications, 187 (25), 34-39.

3. Yiannoudes, S. (2025). Shaping Architecture with
Generative Artificial Intelligence: Deep Learning
Models in Architectural Design Workflow.
Architecture, 5(4), 94.

4. Moussaoui, J.-E., Kmiti, M., El Gholami, K., &
Maleh, Y. (2025). A Systematic Review on Hybrid
Al Models Integrating Machine Learning and
Federated Learning. Journal of Cybersecurity and
Privacy, 5(3), 41.

5. Palli, S. H. (2023). Design Patterns and
Performance Strategies for Scalable Frontend
Applications, 9 (4), 676-684.

6. Jain, S. (2020). Synergizing Advanced Cloud
Architectures with Artificial Intelligence: A
Paradigm for Scalable Intelligence and Next-
Generation Applications. Technix International
Journal for Engineering Research, 7 (3), 1-12.

7. Vepsildinen, J., Hellas, A., & Vuorimaa, P. (2024).
Overview of web application performance
optimization techniques. International Conference
on Web Information Systems and Technologies.
Cham: Springer Nature Switzerland, 1-19.

8. Prakash Mathew. (2025). Front-End Performance
Optimization for Next-Generation Digital Services.
Journal of Computer Science and Technology
Studies, 7(4), 993-1000.

9. Prajwal, Y., Parekh, J. V., & Shettar, R. (2021). A
brief review of micro-frontends. United

The Am. J. Eng. Technol. 2025

10.

Volume 07 - 2025

International Journal for Research and Technology,
2(8), 123-126.

Morozova, O.1. (2025). The future of Al-powered
digital accessibility. Aubergine Solutions.
Retrieved from:
https://www.aubergine.co/insights/the-future-of-ai-
powered-digital-accessibility (date of access:
13.10.2025).

139

https://www.aubergine.co/insights/the-future-of-ai-powered-digital-accessibility
https://www.aubergine.co/insights/the-future-of-ai-powered-digital-accessibility

