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Abstract: The accelerating complexity, scale, and 

adversarial nature of modern cyber environments have 

rendered traditional, human-centric cyber defense 

strategies increasingly insufficient. Autonomous cyber 

defense, particularly approaches grounded in 

reinforcement learning and simulation-based 

experimentation, has emerged as a promising paradigm 

capable of adapting to dynamic threats, reasoning under 

uncertainty, and responding at machine speed. This 

article presents a comprehensive, theory-driven 

research investigation into autonomous cyber defense 

systems, with a particular focus on reinforcement 

learning agents trained within cyber simulation 

environments. Drawing exclusively on the provided 

body of literature, the study synthesizes advances in 

cyber operations research gyms, autonomous agent 

design, reward shaping, adversarial robustness, and the 

emerging threat of poisoned or trojaned learning 

agents. The article methodologically integrates insights 

from foundational intrusion detection research, deep 

reinforcement learning, stochastic games, and graph-

based reasoning to articulate a unified conceptual 

framework for autonomous cyber defense. Results are 

presented as an extensive descriptive analysis of 

observed patterns, theoretical behaviors, and empirical 

findings reported across prior studies, emphasizing both 

capabilities and vulnerabilities. The discussion critically 
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interrogates the limitations of current approaches, 

including closed-world assumptions, dataset bias, 

reward misalignment, and susceptibility to adversarial 

manipulation, while also exploring counter-arguments 

and mitigation strategies. Finally, the article outlines 

future research directions, emphasizing trustworthy 

autonomy, causal reasoning, and zero-day threat 

mitigation in complex software ecosystems. By 

providing a deeply elaborated, publication-ready 

synthesis, this work aims to serve as a foundational 

reference for researchers and practitioners seeking to 

advance the state of autonomous cyber defense. 

Keywords: Autonomous cyber defense, reinforcement 

learning, cyber simulation, intrusion detection, 

adversarial machine learning, security agents 

Introduction 

Cybersecurity has undergone a profound 

transformation over the past two decades, driven by the 

exponential growth of networked systems, the 

proliferation of cloud and Internet of Things 

infrastructures, and the increasing sophistication of 

adversarial actors. Early cyber defense mechanisms 

were largely rule-based, reactive, and dependent on 

static signatures derived from known attack patterns. 

While effective against well-characterized threats, such 

approaches have struggled to cope with the volume, 

velocity, and variability of contemporary cyber attacks, 

particularly those involving zero-day exploits, 

polymorphic malware, and coordinated multi-stage 

intrusions (Sommer & Paxson, 2010; Buczak & Guven, 

2016). 

In response to these challenges, the cybersecurity 

research community has progressively embraced 

machine learning as a means of automating detection, 

classification, and response. Supervised and 

unsupervised learning methods have been extensively 

explored for intrusion detection, anomaly detection, 

and malware classification, yielding notable 

improvements in accuracy and scalability (Dalal & Rele, 

2018; Ullah & Mahmoud, 2019; Rele & Patil, 2023). 

However, these methods remain fundamentally limited 

by their reliance on historical data, their sensitivity to 

dataset bias, and their inability to reason strategically 

over time. As highlighted by Sommer and Paxson (2010), 

many machine learning approaches implicitly assume a 

closed-world model that fails to reflect the adaptive and 

adversarial nature of real-world cyber environments. 

Reinforcement learning has emerged as a compelling 

alternative paradigm, offering the capacity for agents to 

learn sequential decision-making policies through 

interaction with an environment. Unlike traditional 

machine learning models that passively analyze data, 

reinforcement learning agents actively explore their 

environment, receive feedback in the form of rewards, 

and iteratively refine their behavior. This makes 

reinforcement learning particularly well-suited to cyber 

defense tasks that involve continuous monitoring, 

adaptive response, and long-term optimization 

(Applebaum et al., 2022; Andrew et al., 2022). 

The feasibility of reinforcement learning for cyber 

defense has been significantly advanced by the 

development of realistic cyber simulation environments. 

Cyber operations research gyms, such as CybORG, 

provide controlled yet expressive environments in which 

autonomous agents can be trained, evaluated, and 

compared under reproducible conditions (Baillie et al., 

2020; Standen et al., 2022). These environments 

abstract complex cyber infrastructures into structured 

state spaces, action sets, and stochastic dynamics, 

enabling systematic experimentation while avoiding the 

ethical and operational risks of live-network testing. 

Despite these advances, the deployment of autonomous 

cyber defense agents raises profound theoretical, 

technical, and ethical questions. Reinforcement learning 

agents are known to be sensitive to reward design, 

exploration strategies, and environmental assumptions, 

which can lead to unintended behaviors or brittle 

policies (Bates et al., 2023). Moreover, recent research 

has demonstrated that learning agents themselves can 

become targets of attack, through techniques such as 

reward poisoning, in-distribution triggers, and trojaned 

policies that activate malicious behaviors under specific 

conditions (Ashcraft & Karra, 2021; Acharya et al., 2023). 

This article addresses these challenges by providing an 

exhaustive, theory-rich examination of autonomous 

cyber defense systems grounded in reinforcement 

learning and simulation. The primary contribution is not 

the introduction of new empirical experiments, but 

rather the integration and deep elaboration of existing 

findings into a coherent research narrative that 

identifies conceptual gaps, reconciles competing 

perspectives, and articulates future research 

trajectories. By synthesizing insights from cyber 

simulation, reinforcement learning theory, adversarial 

machine learning, and intrusion detection research, this 

work aims to advance the intellectual foundations of 
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autonomous cyber defense. 

Methodology 

The methodological approach of this research is 

grounded in qualitative synthesis, conceptual 

integration, and theoretical elaboration, drawing 

exclusively from the provided corpus of references. 

Rather than conducting new experimental evaluations, 

the study systematically analyzes the methodologies, 

assumptions, and findings reported across prior works 

to construct a unified understanding of autonomous 

cyber defense through reinforcement learning. 

The first methodological pillar involves the examination 

of cyber simulation environments as experimental 

substrates for learning agents. CybORG and related 

cyber gyms are treated as methodological artifacts that 

shape the kinds of behaviors, policies, and 

vulnerabilities that agents can exhibit (Baillie et al., 

2020; Standen et al., 2022). Particular attention is paid 

to how these environments model network topology, 

host configurations, attacker actions, defender 

observability, and stochastic outcomes. By analyzing 

these design choices, the study elucidates how 

simulation fidelity and abstraction influence the 

generalizability of learned policies. 

The second pillar focuses on reinforcement learning 

paradigms employed in cyber defense research. This 

includes tabular methods, deep reinforcement learning, 

graph-based representations, and stochastic game 

formulations (Applebaum et al., 2022; Ammanabrolu & 

Riedl, 2018; Benaddi et al., 2022). The methodology 

involves a detailed comparison of how different learning 

paradigms encode state information, balance 

exploration and exploitation, and handle partial 

observability. Special emphasis is placed on causal 

reasoning and graph-based learning, which have been 

proposed as mechanisms for improving interpretability 

and robustness in complex cyber environments (Andrew 

et al., 2022; Shukla, 2025). 

The third methodological component addresses 

adversarial considerations. The study systematically 

reviews research on adversarial attacks against learning 

agents, including reward manipulation, trigger-based 

poisoning, and universal trojan signatures (Ashcraft & 

Karra, 2021; Acharya et al., 2023). These works are 

analyzed not merely as isolated vulnerabilities, but as 

manifestations of deeper theoretical tensions between 

optimization objectives and security guarantees. 

Finally, the methodology incorporates a critical 

engagement with intrusion detection literature to 

contextualize reinforcement learning within the broader 

history of machine learning for cybersecurity. Surveys 

and taxonomies of threats, datasets, and detection 

techniques are used to identify recurring challenges 

such as dataset bias, concept drift, and evaluation 

realism (Buczak & Guven, 2016; Hindy et al., 2020; Gao 

et al., 2020). 

Through this multi-layered methodological synthesis, 

the article constructs a descriptive yet analytical account 

of autonomous cyber defense, emphasizing theoretical 

coherence, depth of explanation, and critical reflection. 

Results 

The synthesis of prior research reveals several recurring 

patterns and findings that collectively characterize the 

current state of autonomous cyber defense systems 

based on reinforcement learning. These results are 

presented descriptively, emphasizing conceptual 

insights rather than numerical metrics. 

One prominent result is the demonstrated feasibility of 

training autonomous cyber defense agents within 

simulated environments. Studies utilizing CybORG and 

similar platforms consistently show that reinforcement 

learning agents can learn non-trivial defensive 

behaviors, such as identifying compromised hosts, 

prioritizing remediation actions, and managing limited 

defensive resources (Baillie et al., 2020; Standen et al., 

2022). Even relatively simple tabular Q-learning agents 

have been shown to outperform static or heuristic-

based baselines under certain conditions, particularly 

when the environment dynamics are sufficiently 

constrained (Applebaum et al., 2022). 

Another significant finding concerns the role of 

representation in learning effectiveness. Graph-based 

state representations, inspired by work in text-

adventure games and causal inference, enable agents to 

capture relational information about networks, 

processes, and privileges that would be difficult to 

encode in flat feature vectors (Ammanabrolu & Riedl, 

2018; Andrew et al., 2022). These representations 

support more structured reasoning and appear to 

facilitate transfer across scenarios, suggesting a 

pathway toward more generalizable cyber defense 

policies. 

Reward shaping emerges as a critical determinant of 

agent behavior. Bates et al. (2023) demonstrate that 
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poorly designed reward functions can lead to agents 

that optimize for superficial metrics while neglecting 

deeper security objectives, such as long-term system 

resilience or stealthy adversary detection. Conversely, 

carefully shaped rewards can produce agents that 

exhibit more human-aligned behaviors, such as 

proactive threat hunting and risk-aware decision-

making. 

The results also highlight the fragility of learning agents 

in adversarial settings. Multiple studies show that 

reinforcement learning agents can be manipulated 

through subtle perturbations to their training 

environment or reward signals. Ashcraft and Karra 

(2021) demonstrate that in-distribution triggers can be 

embedded in training data, causing agents to behave 

maliciously when specific conditions are met. Acharya et 

al. (2023) further reveal the existence of universal trojan 

signatures that can compromise a wide range of 

reinforcement learning policies, raising concerns about 

the trustworthiness of autonomous agents deployed in 

security-critical contexts. 

From the intrusion detection perspective, the results 

reaffirm longstanding concerns about dataset 

representativeness and closed-world assumptions. 

Despite advances in deep learning and reinforcement 

learning, many systems continue to rely on benchmark 

datasets that fail to capture the diversity and evolution 

of real-world threats (Hindy et al., 2020; Sommer & 

Paxson, 2010). This limitation extends to simulation 

environments, which, while more flexible, still encode 

implicit assumptions that may not hold outside the 

laboratory. 

Collectively, these results suggest that autonomous 

cyber defense is both promising and perilous. 

Reinforcement learning agents can achieve levels of 

adaptability and responsiveness unattainable by 

traditional systems, but they also introduce new attack 

surfaces and epistemic uncertainties. 

Discussion 

The findings synthesized in this article invite a nuanced 

discussion that balances optimism about autonomous 

cyber defense with a sober assessment of its limitations 

and risks. At a theoretical level, reinforcement learning 

offers a powerful framework for modeling cyber defense 

as a sequential decision-making problem under 

uncertainty. This framing aligns well with the realities of 

cyber operations, where defenders must continuously 

allocate attention and resources in the face of 

incomplete information and adaptive adversaries 

(Andrew et al., 2022). 

However, the reliance on simulation environments 

raises fundamental questions about validity and 

transferability. While cyber gyms like CybORG represent 

a significant methodological advance, they inevitably 

simplify reality. Network configurations, attacker 

behaviors, and defensive actions are discretized and 

bounded, potentially biasing learned policies toward 

artifacts of the simulation rather than robust strategies. 

Critics may argue that such environments risk creating a 

false sense of progress, analogous to early successes in 

game-playing AI that failed to translate to real-world 

complexity. 

Counter-arguments emphasize that all empirical science 

relies on models and abstractions, and that simulation-

based research provides a necessary stepping stone 

toward real-world deployment. The key challenge, 

therefore, is not to eliminate abstraction, but to make it 

explicit, diverse, and continually evolving (Baillie et al., 

2020). Incorporating stochasticity, partial observability, 

and heterogeneous attacker models can mitigate some 

of the risks of overfitting to simplified environments. 

The vulnerability of reinforcement learning agents to 

adversarial manipulation represents another critical 

concern. The discovery of trojaned policies and 

poisoned reward signals undermines the assumption 

that learning agents inherently enhance security. From 

a defensive standpoint, this creates a paradox: systems 

designed to protect against attackers may themselves 

become vectors of compromise. Addressing this 

paradox requires rethinking trust models, verification 

techniques, and the role of human oversight in 

autonomous systems (Acharya et al., 2023; Ashcraft & 

Karra, 2021). 

Reward shaping, while essential for guiding learning, 

also introduces normative assumptions about what 

constitutes desirable behavior. Security objectives are 

inherently multi-dimensional and context-dependent, 

encompassing confidentiality, integrity, availability, and 

resilience. Encoding these objectives into scalar reward 

functions risks oversimplification and unintended 

consequences (Bates et al., 2023). Future research may 

benefit from multi-objective reinforcement learning or 

hierarchical approaches that better reflect the layered 

nature of security goals. 

From the broader intrusion detection literature, the 

persistence of closed-world assumptions serves as a 



The American Journal of Engineering and Technology 198 https://www.theamericanjournals.com/index.php/tajet 

 

cautionary tale. Even the most sophisticated learning 

algorithms cannot compensate for blind spots in data 

and modeling. Autonomous cyber defense systems must 

therefore be designed with humility, recognizing the 

limits of their knowledge and the inevitability of surprise 

(Sommer & Paxson, 2010). 

Looking forward, several promising directions emerge. 

Causal reasoning and graph-based representations offer 

pathways toward more interpretable and robust agents, 

capable of reasoning about cause and effect rather than 

merely correlational patterns (Shukla, 2025). Integrating 

reinforcement learning with stochastic game theory 

may enable more realistic modeling of attacker-

defender dynamics, capturing strategic interactions 

over time (Benaddi et al., 2022). Finally, advances in 

verification and adversarial robustness could help 

ensure that autonomous agents behave safely even 

under malicious influence (Gao et al., 2020). 

Conclusion 

Autonomous cyber defense, enabled by reinforcement 

learning and cyber simulation environments, represents 

a transformative yet challenging frontier in 

cybersecurity research. The body of literature examined 

in this article demonstrates both the potential and the 

perils of delegating defensive decision-making to 

learning agents. On the one hand, such agents can adapt 

to dynamic threats, operate at machine speed, and 

uncover strategies beyond human intuition. On the 

other hand, they introduce new vulnerabilities, ethical 

dilemmas, and epistemic uncertainties that demand 

careful consideration. 

By synthesizing insights from cyber operations research 

gyms, reinforcement learning theory, intrusion 

detection, and adversarial machine learning, this article 

has articulated a comprehensive conceptual framework 

for understanding autonomous cyber defense. The 

analysis underscores the importance of simulation 

fidelity, representation learning, reward design, and 

adversarial robustness, while also highlighting enduring 

challenges related to generalization and trust. 

Ultimately, the path forward lies not in uncritical 

enthusiasm nor in outright skepticism, but in rigorous, 

theory-informed research that acknowledges 

complexity and embraces interdisciplinary perspectives. 

Autonomous cyber defense should be viewed as a 

complement to, rather than a replacement for, human 

expertise, embedded within socio-technical systems 

that prioritize resilience, transparency, and 

accountability. As cyber threats continue to evolve, so 

too must our approaches to defense, guided by both 

technological innovation and critical reflection. 
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