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Abstract: and

adversarial nature of modern cyber environments have

The accelerating complexity, scale,

rendered traditional, human-centric cyber defense
strategies increasingly insufficient. Autonomous cyber
particularly  approaches in

defense, grounded

reinforcement learning  and simulation-based
experimentation, has emerged as a promising paradigm
capable of adapting to dynamic threats, reasoning under
uncertainty, and responding at machine speed. This
article presents a comprehensive, theory-driven
research investigation into autonomous cyber defense
systems, with a particular focus on reinforcement
learning agents trained within cyber simulation
environments. Drawing exclusively on the provided
body of literature, the study synthesizes advances in
cyber operations research gyms, autonomous agent
design, reward shaping, adversarial robustness, and the
emerging threat of poisoned or trojaned learning
agents. The article methodologically integrates insights
from foundational intrusion detection research, deep
reinforcement learning, stochastic games, and graph-
based reasoning to articulate a unified conceptual
framework for autonomous cyber defense. Results are
presented as an extensive descriptive analysis of
observed patterns, theoretical behaviors, and empirical
findings reported across prior studies, emphasizing both

capabilities and vulnerabilities. The discussion critically
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interrogates the limitations of current approaches,
including closed-world assumptions, dataset bias,
reward misalignment, and susceptibility to adversarial
manipulation, while also exploring counter-arguments
and mitigation strategies. Finally, the article outlines
future research directions, emphasizing trustworthy
causal and zero-day threat
mitigation software ecosystems. By
providing a deeply elaborated, publication-ready

synthesis, this work aims to serve as a foundational

autonomy, reasoning,

in  complex

reference for researchers and practitioners seeking to
advance the state of autonomous cyber defense.

Keywords: Autonomous cyber defense, reinforcement

learning, cyber simulation, intrusion detection,
adversarial machine learning, security agents
Introduction

Cybersecurity has undergone a profound
transformation over the past two decades, driven by the
exponential growth of networked systems, the
proliferation of cloud and Internet of Things

infrastructures, and the increasing sophistication of
adversarial actors. Early cyber defense mechanisms
were largely rule-based, reactive, and dependent on
static signatures derived from known attack patterns.
While effective against well-characterized threats, such
approaches have struggled to cope with the volume,
velocity, and variability of contemporary cyber attacks,
particularly those involving zero-day exploits,
polymorphic malware, and coordinated multi-stage
intrusions (Sommer & Paxson, 2010; Buczak & Guven,

2016).

In response to these challenges, the cybersecurity

research community has progressively embraced
machine learning as a means of automating detection,
classification, and response. Supervised and
unsupervised learning methods have been extensively
explored for intrusion detection, anomaly detection,
and malware classification, vyielding notable
improvements in accuracy and scalability (Dalal & Rele,
2018; Ullah & Mahmoud, 2019; Rele & Patil, 2023).
However, these methods remain fundamentally limited
by their reliance on historical data, their sensitivity to
dataset bias, and their inability to reason strategically
over time. As highlighted by Sommer and Paxson (2010),
many machine learning approaches implicitly assume a
closed-world model that fails to reflect the adaptive and

adversarial nature of real-world cyber environments.

Reinforcement learning has emerged as a compelling
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alternative paradigm, offering the capacity for agents to

learn sequential decision-making policies through
interaction with an environment. Unlike traditional
machine learning models that passively analyze data,
reinforcement learning agents actively explore their
environment, receive feedback in the form of rewards,
and iteratively refine their behavior. This makes
reinforcement learning particularly well-suited to cyber
defense tasks that involve continuous monitoring,
adaptive response, and long-term optimization

(Applebaum et al., 2022; Andrew et al., 2022).

The feasibility of reinforcement learning for cyber
defense has been significantly advanced by the
development of realistic cyber simulation environments.
Cyber operations research gyms, such as CybORG,
provide controlled yet expressive environments in which
autonomous agents can be trained, evaluated, and
compared under reproducible conditions (Baillie et al.,
2020; Standen et al., 2022). These environments
abstract complex cyber infrastructures into structured
state spaces, action sets, and stochastic dynamics,
enabling systematic experimentation while avoiding the
ethical and operational risks of live-network testing.

Despite these advances, the deployment of autonomous
cyber defense agents raises profound theoretical,
technical, and ethical questions. Reinforcement learning
agents are known to be sensitive to reward design,
exploration strategies, and environmental assumptions,
which can lead to unintended behaviors or brittle
policies (Bates et al., 2023). Moreover, recent research
has demonstrated that learning agents themselves can
become targets of attack, through techniques such as
reward poisoning, in-distribution triggers, and trojaned
policies that activate malicious behaviors under specific
conditions (Ashcraft & Karra, 2021; Acharya et al., 2023).

This article addresses these challenges by providing an
exhaustive, theory-rich examination of autonomous
cyber defense systems grounded in reinforcement
learning and simulation. The primary contribution is not
the introduction of new empirical experiments, but
rather the integration and deep elaboration of existing

into a coherent research narrative that

gaps,
articulates

findings

identifies conceptual reconciles competing

perspectives, and future  research

trajectories. By synthesizing insights from cyber
simulation, reinforcement learning theory, adversarial
machine learning, and intrusion detection research, this

work aims to advance the intellectual foundations of
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autonomous cyber defense.
Methodology

The methodological approach of this research is

grounded in qualitative synthesis, conceptual

integration, and theoretical elaboration, drawing
exclusively from the provided corpus of references.
Rather than conducting new experimental evaluations,
the study systematically analyzes the methodologies,
assumptions, and findings reported across prior works
to construct a unified understanding of autonomous

cyber defense through reinforcement learning.

The first methodological pillar involves the examination
of cyber simulation environments as experimental
substrates for learning agents. CybORG and related
cyber gyms are treated as methodological artifacts that
the kinds of
vulnerabilities that agents can exhibit (Baillie et al.,
2020; Standen et al., 2022). Particular attention is paid
to how these environments model network topology,
host
observability, and stochastic outcomes. By analyzing

shape behaviors, policies, and

configurations, attacker actions, defender

these design choices, the study elucidates how

simulation fidelity and abstraction influence the

generalizability of learned policies.

The second pillar focuses on reinforcement learning
paradigms employed in cyber defense research. This
includes tabular methods, deep reinforcement learning,
graph-based representations, and stochastic game
formulations (Applebaum et al., 2022; Ammanabrolu &
Riedl, 2018; Benaddi et al., 2022). The methodology
involves a detailed comparison of how different learning
state information, balance

paradigms  encode

exploration and exploitation, and handle partial
observability. Special emphasis is placed on causal
reasoning and graph-based learning, which have been
proposed as mechanisms for improving interpretability
and robustness in complex cyber environments (Andrew

et al., 2022; Shukla, 2025).

The
adversarial considerations. The study systematically

third methodological component addresses
reviews research on adversarial attacks against learning
agents, including reward manipulation, trigger-based
poisoning, and universal trojan signatures (Ashcraft &
Karra, 2021; Acharya et al., 2023). These works are
analyzed not merely as isolated vulnerabilities, but as
manifestations of deeper theoretical tensions between

optimization objectives and security guarantees.
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Finally, the methodology incorporates a critical
engagement with intrusion detection literature to
contextualize reinforcement learning within the broader
history of machine learning for cybersecurity. Surveys
and taxonomies of threats, datasets, and detection
techniques are used to identify recurring challenges
such as dataset bias, concept drift, and evaluation
realism (Buczak & Guven, 2016; Hindy et al., 2020; Gao

et al., 2020).

Through this multi-layered methodological synthesis,
the article constructs a descriptive yet analytical account
of autonomous cyber defense, emphasizing theoretical
coherence, depth of explanation, and critical reflection.

Results

The synthesis of prior research reveals several recurring
patterns and findings that collectively characterize the
current state of autonomous cyber defense systems
based on reinforcement learning. These results are
conceptual

presented descriptively, emphasizing

insights rather than numerical metrics.

One prominent result is the demonstrated feasibility of
training autonomous cyber defense agents within
simulated environments. Studies utilizing CybORG and
similar platforms consistently show that reinforcement
learning agents can learn non-trivial defensive
behaviors, such as identifying compromised hosts,
prioritizing remediation actions, and managing limited
defensive resources (Baillie et al., 2020; Standen et al.,
2022). Even relatively simple tabular Q-learning agents
have been shown to outperform static or heuristic-
based baselines under certain conditions, particularly
when the environment dynamics are sufficiently

constrained (Applebaum et al., 2022).

Another significant finding concerns the role of
representation in learning effectiveness. Graph-based
state representations, inspired by work in text-
adventure games and causal inference, enable agents to
capture relational information about networks,
processes, and privileges that would be difficult to
encode in flat feature vectors (Ammanabrolu & Ried|,
2018; Andrew et al.,, 2022). These representations
support more structured reasoning and appear to
facilitate transfer across scenarios, suggesting a
pathway toward more generalizable cyber defense

policies.

Reward shaping emerges as a critical determinant of
agent behavior. Bates et al. (2023) demonstrate that
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poorly designed reward functions can lead to agents
that optimize for superficial metrics while neglecting
deeper security objectives, such as long-term system
resilience or stealthy adversary detection. Conversely,
carefully shaped rewards can produce agents that
exhibit more human-aligned behaviors, such as
proactive threat hunting and risk-aware decision-

making.

The results also highlight the fragility of learning agents
in adversarial settings. Multiple studies show that
reinforcement learning agents can be manipulated
their
environment or reward signals. Ashcraft and Karra

through subtle perturbations to training
(2021) demonstrate that in-distribution triggers can be
embedded in training data, causing agents to behave
maliciously when specific conditions are met. Acharya et
al. (2023) further reveal the existence of universal trojan
signatures that can compromise a wide range of
reinforcement learning policies, raising concerns about
the trustworthiness of autonomous agents deployed in

security-critical contexts.

From the intrusion detection perspective, the results

reaffirm longstanding concerns about dataset

representativeness and closed-world assumptions.
Despite advances in deep learning and reinforcement
learning, many systems continue to rely on benchmark
datasets that fail to capture the diversity and evolution
of real-world threats (Hindy et al., 2020; Sommer &
Paxson, 2010). This limitation extends to simulation
environments, which, while more flexible, still encode
implicit assumptions that may not hold outside the

laboratory.

Collectively, these results suggest that autonomous

cyber defense is both promising and perilous.
Reinforcement learning agents can achieve levels of
adaptability and responsiveness unattainable by
traditional systems, but they also introduce new attack

surfaces and epistemic uncertainties.
Discussion

The findings synthesized in this article invite a nuanced
discussion that balances optimism about autonomous
cyber defense with a sober assessment of its limitations
and risks. At a theoretical level, reinforcement learning
offers a powerful framework for modeling cyber defense
as a sequential decision-making problem under
uncertainty. This framing aligns well with the realities of
cyber operations, where defenders must continuously
in the face of

allocate attention and resources
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incomplete information and adaptive adversaries
(Andrew et al., 2022).

However, the reliance on simulation environments
raises fundamental questions about validity and
transferability. While cyber gyms like CybORG represent
a significant methodological advance, they inevitably
simplify reality. Network configurations, attacker
behaviors, and defensive actions are discretized and
bounded, potentially biasing learned policies toward
artifacts of the simulation rather than robust strategies.
Critics may argue that such environments risk creating a
false sense of progress, analogous to early successes in
game-playing Al that failed to translate to real-world

complexity.

Counter-arguments emphasize that all empirical science
relies on models and abstractions, and that simulation-
based research provides a necessary stepping stone
toward real-world deployment. The key challenge,
therefore, is not to eliminate abstraction, but to make it
explicit, diverse, and continually evolving (Baillie et al.,
2020). Incorporating stochasticity, partial observability,
and heterogeneous attacker models can mitigate some
of the risks of overfitting to simplified environments.

The vulnerability of reinforcement learning agents to
adversarial manipulation represents another critical
concern. The discovery of trojaned policies and
poisoned reward signals undermines the assumption
that learning agents inherently enhance security. From
a defensive standpoint, this creates a paradox: systems
designed to protect against attackers may themselves
Addressing this

paradox requires rethinking trust models, verification

become vectors of compromise.

techniques, and the role of human oversight in
autonomous systems (Acharya et al., 2023; Ashcraft &
Karra, 2021).

Reward shaping, while essential for guiding learning,
also introduces normative assumptions about what
constitutes desirable behavior. Security objectives are
inherently multi-dimensional and context-dependent,
encompassing confidentiality, integrity, availability, and
resilience. Encoding these objectives into scalar reward
functions risks oversimplification and unintended
consequences (Bates et al., 2023). Future research may
benefit from multi-objective reinforcement learning or
hierarchical approaches that better reflect the layered

nature of security goals.

From the broader intrusion detection literature, the
persistence of closed-world assumptions serves as a
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cautionary tale. Even the most sophisticated learning
algorithms cannot compensate for blind spots in data
and modeling. Autonomous cyber defense systems must
therefore be designed with humility, recognizing the
limits of their knowledge and the inevitability of surprise
(Sommer & Paxson, 2010).

Looking forward, several promising directions emerge.
Causal reasoning and graph-based representations offer
pathways toward more interpretable and robust agents,
capable of reasoning about cause and effect rather than
merely correlational patterns (Shukla, 2025). Integrating
reinforcement learning with stochastic game theory
may enable more realistic modeling of attacker-
defender dynamics, capturing strategic interactions
over time (Benaddi et al., 2022). Finally, advances in
verification and adversarial robustness could help
ensure that autonomous agents behave safely even

under malicious influence (Gao et al., 2020).
Conclusion

Autonomous cyber defense, enabled by reinforcement
learning and cyber simulation environments, represents
a transformative yet challenging frontier in
cybersecurity research. The body of literature examined
in this article demonstrates both the potential and the
perils of delegating defensive decision-making to
learning agents. On the one hand, such agents can adapt
to dynamic threats, operate at machine speed, and
uncover strategies beyond human intuition. On the
other hand, they introduce new vulnerabilities, ethical
dilemmas, and epistemic uncertainties that demand

careful consideration.

By synthesizing insights from cyber operations research

gyms,
detection, and adversarial machine learning, this article

reinforcement learning theory, intrusion
has articulated a comprehensive conceptual framework
for understanding autonomous cyber defense. The
analysis underscores the importance of simulation
fidelity, representation learning, reward design, and
adversarial robustness, while also highlighting enduring

challenges related to generalization and trust.

Ultimately, the path forward lies not in uncritical
enthusiasm nor in outright skepticism, but in rigorous,
that
complexity and embraces interdisciplinary perspectives.

theory-informed research acknowledges

Autonomous cyber defense should be viewed as a
complement to, rather than a replacement for, human
expertise, embedded within socio-technical systems
that resilience, and

prioritize transparency,
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accountability. As cyber threats continue to evolve, so
too must our approaches to defense, guided by both
technological innovation and critical reflection.
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