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Abstract

Background: Modern computational infrastructures—
GPU-accelerated data
centers, and enterprise data lakes—face interlocking

spanning cloud platforms,
challenges: increasing failure rates under intensive

workloads, the necessity for secure continuous
integration/continuous deployment (CI/CD) practices,
and the demand to convert vast heterogeneous data
into actionable intelligence (Zhang, 2022; Liu et al.,
2023). A coherent, interdisciplinary framework that links
predictive analytics, DevSecOps practices, and high-
performance fault diagnosis is essential to raise
reliability while maintaining scalability and security

(Kumar, 2019; Konneru, 2021).

Methods: This theoretical

foundations and applied methodologies from the

article  synthesizes

provided literature to produce an integrative
conceptual and operational framework. We perform a
detailed cross-domain synthesis of techniques from
predictive analytics, data engineering and lakehouse
architectures, DevSecOps security integrations
(SAST/DAST/SCA), high-performance geospatial and
GPU computing approaches, and contemporary fault-
The

comparative evaluation of algorithmic families, pipeline

prediction studies. methodology includes

architectures, and failure-detection strategies, mapped
onto practical system boundaries and operational
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constraints for cloud and on-premise GPU deployments
(Kukreja & Zburivsky, 2021; Li, 2020; Liu et al., 2023).

Results: The synthesis highlights three convergent
design principles: (1) unified telemetry and data
curation through lakehouse principles to enable low-
latency, high-fidelity feature generation (Kukreja &
Zburivsky, 2021); (2) embedding predictive analytics
into DevOps cycles to create anticipatory operations—
thereby improving decision latency and reducing mean
time to repair (Kumar, 2019); and (3) a layered fault-
diagnosis approach combining supervised predictive
with
unsupervised anomaly detection to capture novel
failure modes (Peterson et al., 2022; Xie et al., 2021; Liu
et al, 2023). The integrated model demonstrates

models for imminent hardware faults

conceptual pathways to reduce unscheduled
downtime, decrease non-revenue-impacting water in
infrastructure analogues, and enhance security posture

inside CI/CD (Kwikima et al., 2024; Konneru, 2021).

Conclusion: A resilient data-driven infrastructure must

combine lakehouse data engineering, DevSecOps-
integrated CI/CD, and robust predictive diagnostics
tailored for high-performance workloads. The proposed
framework provides a

guide for engineering

organizations to structure telemetry, model
development, and deployment while accounting for
security, scale, and the unique failure characteristics of
GPUs and cloud components. Research and industrial
benefit

standardized telemetry schemas,

practice will from empirical validation

campaigns, and
community-driven benchmarks for fault prediction and
remediation orchestration (Liu et al., 2023; Lin & Gupta,

2021).

Keywords: Predictive analytics, DevSecOps, Lakehouse,
GPU fault prediction, CI/CD security, High-performance
computing, Fault diagnosis

INTRODUCTION

Modern digital infrastructure forms the backbone of a
broad spectrum of economic, scientific, and social
Cloud
computing provide the computational horsepower

activity. platforms and GPU-accelerated
necessary for machine learning, scientific simulation,
and large-scale data services (Zhang, 2022; Li, 2020). At
the same time, organizations are pressured to deploy
software faster and more frequently through DevOps
practices, while simultaneously ensuring that releases
are secure, compliant, and resilient to failures (Kumar,

2019; Konneru, 2021). This confluence of speed, scale,

The American Journal of Engineering and Technology

and complexity has produced a new set of failure
modes and operational demands that traditional
reactive maintenance models cannot meet (Banerjee et
al., 2021; Wang et al., 2022).

The literature supplied for this synthesis spans multiple,
complementary domains: predictive analytics and its
role in business intelligence and operations (Kumar,
2019); secure CI/CD pipeline integration (Konneru,
2021);
principles (Kukreja & Zburivsky, 2021); geospatial and

modern data engineering with lakehouse
high-performance data handling (Li, 2020); domain-
specific failure studies such as GPU failure prediction
under deep learning workloads (Liu et al., 2023);
applied interventions for infrastructure efficiency in
sectors like water management (Kwikima et al., 2024);
and broader studies on fault tolerance and redundancy
strategies in cloud systems (Lin & Gupta, 2021). This
heterogeneous mix affords an opportunity to craft a
unified theoretical and practical approach to
resilience—one that hinges on continuous telemetry,
predictive modeling, secure automated pipelines, and

rapid remediation orchestration.

While each domain offers mature approaches
individually, the literature reveals several gaps when
attempting to operationalize resilience at scale.
Predictive models often remain siloed within research
prototypes or
disconnected from deployment pipelines and security
practices (Kumar, 2019; Kukreja & Zburivsky, 2021).
Similarly, security-focused CI/CD literature emphasizes
scanning and gating (SAST, DAST, SCA) but less

frequently addresses how security telemetry and

offline  analytics environments,

predictive failure signals can be coalesced to inform
safer rollouts and automated rollback strategies
(Konneru, 2021). The GPU failure literature offers
methods to predict hardware anomalies under deep
learning workloads (Liu et al., 2023), but translating
those insights into cross-layer operational strategies in
cloud-scale environments requires careful attention to
data flows, model lifecycles, and integration with
orchestration systems (Lin & Gupta, 2021; Luo &
Martinez, 2022).

The central problem this article addresses is the

absence of a comprehensive, implementable
framework that tightly integrates predictive analytics,
secure CI/CD, and high-performance fault diagnosis to
guide practitioners and researchers. Specifically, the

literature gap is threefold: (1) lack of unified telemetry
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and data-curation practice tailored for model-driven

operations; (2) insufficient integration between
DevSecOps controls and predictive reliability signals;
and (3) a need for fault-diagnosis strategies aligned with
the performance characteristics and failure modes of
modern GPUs and cloud storage/compute subsystems
(Liu et al., 2023; Konneru, 2021; Kukreja & Zburivsky,

2021).

This article proposes a conceptual and operational
framework to address these gaps.
data
DevSecOps practices for secure continuous delivery,

Drawing on

lakehouse architectures for engineering,
and a layered predictive-fault-diagnosis approach for
high-performance hardware, the framework delineates
how organizations can design systems for anticipatory
operations. The subsequent sections elaborate the
methodology of synthesis, present descriptive results
from the literature mapping, and offer a deep
discussion of implications, limitations, and future
research directions. Each claim is grounded in the
references

provided to ensure traceability and

adherence to the supplied corpus.
METHODOLOGY

The methods used in this work are integrative and
synthetic rather than experimental. The aim is to
construct a rigorous, theoretically informed framework
by systematically combining concepts, techniques, and
empirical findings reported in the provided literature.
The methodology comprises four interlinked steps:
corpus characterization, thematic extraction, model-to-

pipeline mapping, and synthesis of operational
patterns.
Corpus Characterization. The body of literature

supplied includes studies on predictive analytics for
business intelligence and DevOps efficiency (Kumar,
2019),
lakehouse architectures (Kukreja & Zburivsky, 2021),

practical guides to data engineering and
DevSecOps integration techniques for CI/CD (Konneru,
2021),
considerations (Li, 2020), domain-specific empirical
studies such as GPU failure prediction (Liu et al., 2023)
and factory-grade diagnostic automation (Lulla et al.,

geospatial  high-performance  computing

2025), and applied empirical work in infrastructure
optimization (Kwikima et al., 2024). Ancillary references
fault Al-based
management, and supervised/unsupervised learning

cover cloud tolerance, failure

techniques for anomaly detection (Zhang, 2022; Chen
et al., 2021; Peterson et al., 2022; Xie et al., 2021). This
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heterogeneous corpus allows for cross-domain insights.

Thematic Extraction. Each reference was reviewed to
extract core themes, methodologies, and key empirical
or theoretical findings. From this extraction, recurring
motifs emerged: the necessity of high-quality curated
telemetry for model performance (Kukreja & Zburivsky,
2021; Li, 2020); the role of predictive analytics in
2019); the
imperative to embed security controls within CI/CD

operational decision-making (Kumar,
without sacrificing deployment velocity (Konneru,
2021); and specific techniques for hardware failure
especially for GPUs

workloads (Liu et al., 2023). Thematic grouping enabled

prediction, under intensive
identification of interfaces where integration is both

necessary and technically feasible.

Model-to-Pipeline Mapping. For operationalization,
predictive models must be integrated into pipelines
that support data ingestion, feature computation,
validation, deployment, and

model training,

monitoring. The lakehouse paradigm provides a
coherent structure to host raw telemetry and curated
feature tables, addressing latency and governance
concerns (Kukreja & Zburivsky, 2021). DevSecOps
practices provide the controls (SAST, DAST, SCA) to
ensure secure artifacts and runtime defenses (Konneru,
2021). The model-to-pipeline mapping step translates
model lifecycle stages into CI/CD-friendly milestones
and security gates. Particular attention was paid to the
needs of GPU failure prediction: high-frequency
telemetry capture, synchronization across control
planes, and storage-efficient representations of time-

series metrics (Liu et al., 2023; Li, 2020).

Synthesis of Operational Patterns. The final step
into an
layered
diagnostics (combining supervised fail-predictions with

synthesizes patterns across the corpus

integrative framework. Patterns include

unsupervised anomaly detection), early-warning
scorecards for operations, security-aware deployment
strategies that incorporate predictive confidence
measures, and governance structures for telemetry and
model validation. For each pattern, we identify
prerequisites, technical trade-offs, and recommended
technologies or algorithms grounded in the cited
literature (Kukreja & Zburivsky, 2021; Konneru, 2021;

Peterson et al., 2022).

Throughout the methodology, we adhere to two
constraints: (1) the framework must be implementable
using the architectures and tools discussed in the
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literature (e.g., lakehouse patterns, SAST/DAST/SCA

tooling, supervised and unsupervised learning

and (2)
recommendation must be traceable to one or more

methods), every major inference or
references in the corpus (Kumar, 2019; Konneru, 2021;
Liu et al., 2023). The result of this methodological
approach is a comprehensive, literature-grounded
that

deployment, security, and remediation orchestration.

framework addresses telemetry, modeling,

RESULTS

The literature synthesis yields a set of descriptive
findings organized under five major themes: telemetry
and data engineering, predictive analytics integration
with
deployment, GPU and cloud fault diagnosis strategies,

operations, DevSecOps-enabled secure
and cross-domain benefits and analogues. Each theme
is presented with detailed analysis grounded in the

cited works.

Telemetry and Data Engineering. A recurring and
foundational finding is that predictive accuracy and
operational usefulness of models are tightly coupled to
the quality, fidelity, and accessibility of telemetry
(Kukreja & Zburivsky, 2021). Lakehouse architectures—
combining aspects of data lakes and data warehouses—
offer a pragmatic path to store raw telemetry while
enabling low-latency, ACID-compliant feature tables for
model consumption (Kukreja & Zburivsky, 2021). For
(e.g., GPU
capture fine-grained

high-performance contexts clusters),

telemetry must time-series
metrics at frequencies aligned with the dynamics of
hardware degradation and workload bursts (Liu et al.,
2023). Geospatial and other domain-specific high-
volume data handling techniques inform scalable
ingestion patterns: partitioning strategies,
distributed

processing tuned for locality reduce ingestion latency

compression-aware formats, and
and storage overhead (Li, 2020). A direct implication is
that organizations must invest in data engineering
practices that prioritize schema-on-read for raw traces
and curated, query-optimized feature tables for

analytics (Kukreja & Zburivsky, 2021; Li, 2020).

Predictive Analytics Integration with Operations. The
into the

operational lifecycle is strongly emphasized in the

idea of integrating predictive analytics
literature (Kumar, 2019). Predictive models, when
embedded into decision loops, can shorten mean time
to detection and mean time to repair by providing early
warnings and suggested remediation actions (Peterson
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et al., 2022). Two complementary modeling paradigms
emerge: supervised learning for known, labeled failure
patterns; and unsupervised or self-supervised methods
for anomaly detection that can identify previously
unseen failure modes (Peterson et al., 2022; Xie et al.,
2021). The pipeline must enforce continuous model
validation and drift detection, because telemetry
shift  with
upgrades, making static models brittle (Kumar, 2019).

distributions software and hardware

Operational integration also requires a runbook
mapping: when a model emits a high-confidence failure
prediction, predefined automated or semi-automated
actions are invoked, balancing the cost of false positives

against the risk of costly failures (Lin & Gupta, 2021).

DevSecOps-Enabled Secure Deployment. Security
within CI/CD is not merely a bolt-on scanning step;
rather, it must be embedded in the lifecycle to ensure
that predictive models and their deployment artifacts
do not introduce vulnerabilities (Konneru, 2021). SAST
(static analysis), DAST (dynamic analysis), and SCA
layered

controls for code quality, runtime behavior, and third-

(software composition analysis) provide
party dependency risks (Konneru, 2021). Additionally,
security telemetry—Ilogs, scan results, and vulnerability
severity metrics—should be merged with operational
and failure telemetry in the lakehouse to enable holistic
risk assessments. This combined view permits policies
such as gating deployments when critical vulnerabilities
co-occur with elevated failure risk, thus preventing

exacerbation of systemic fragility (Konneru, 2021).

GPU and Cloud Fault Diagnosis Strategies. GPUs, due to
their specialized memory hierarchies, thermals, and
workload-dependent stress patterns, exhibit unique
failure signatures (Liu et al., 2023). The literature
demonstrates that deep learning workloads can
precipitate hardware failures via long execution traces,
memory fragmentation, and overheating, which can be
detected through high-precision predictive models
trained on workload-specific telemetry (Liu et al., 2023).
Factory-grade diagnostic automation and domain-
specific heuristics further enhance detection fidelity by
test

longitudinal device histories (Lulla et al., 2025). Cloud-

incorporating manufacturing baselines and

wide redundancy strategies and Al-optimized
replication reduce data loss probability and improve
tolerance to node and device failures when combined
with predictive signals that prioritize preemptive
migration or scaled replication (Yamamoto & Kim, 2021;

Lin & Gupta, 2021). The key operational finding is that
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layered diagnostics—where rapid, low-cost anomaly
detectors triage signals for higher-fidelity predictive
models—offer a cost-effective path to operationalize
GPU fault prediction (Peterson et al., 2022; Liu et al,,
2023).

Cross-Domain Benefits and Analogues. Application of
these techniques beyond pure compute infrastructure
yields measurable benefits. For instance, integrated
data-driven approaches reduced non-revenue water in
water distribution networks by enabling targeted
interventions derived from predictive models and
curated telemetry (Kwikima et al., 2024). This cross-
domain success reinforces the generality of the
proposed framework: wherever reliable telemetry and
secure, automated pipelines exist, predictive
approaches can enable anticipatory and optimized
operations (Kumar, 2019; Kwikima et al., 2024).
geospatial data

handling techniques inform the handling of large

Furthermore, high-performance
telemetry volumes, particularly in distributed systems
where locality-sensitive processing reduces network
bottlenecks (Li, 2020).

Synthesis: An Integrated Operational Framework.
Combining the themes above suggests a coherent
architecture: a telemetry-first lakehouse foundation; a
continuous modeling lifecycle that includes supervised
and unsupervised approaches and model governance;
DevSecOps gates that ensure security and compliance
of models and pipelines; and a layered diagnostic and
that

confidence to automated actions and human-in-the-

remediation orchestration maps predictive
loop escalations. This architecture reduces operational

fragility by enabling early detection, secure
deployments, and preemptive mitigation strategies,
particularly in  GPU-intensive and cloud-scale
environments (Kukreja & Zburivsky, 2021; Konneru,

2021; Liu et al., 2023).
DISCUSSION

The
implications, counterarguments, technical trade-offs,

preceding synthesis vyields several deep
and areas where further theoretical and empirical work
is essential. This discussion examines these aspects in
depth, offering guidance for both researchers and

practitioners.

The Promise of Telemetry-First Lakehouses. Lakehouse
architectures reconcile the traditionally opposing goals
of raw telemetry retention and performant analytics
(Kukreja & Zburivsky, 2021). By preserving lineage and
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enabling ACID operations on curated tables, lakehouses
support reproducible model training and governance—
prerequisites for deploying predictive models in

production. However, certain trade-offs arise:
maintaining detailed telemetry at high frequencies for
GPU clusters can impose storage and ingestion costs
and complicate retrieval latency under peak loads (Li,
2020; Liu et al., 2023). Effective mitigation requires
careful retention policies, tiered storage strategies, and
compression-friendly telemetry formats. The literature
suggests adjustable sampling strategies—adaptive to
workload phases—to balance fidelity with cost (Li,
2020). Researchers can explore principled sampling
schemes that preserve predictive features while

reducing overhead.

Embedding Predictive Analytics into Operations:
Opportunities and Risks. Predictive analytics deliver
operational value when models are accurate, timely,
and properly trusted by operational teams (Kumar,
2019). One practical challenge is model explainability:
operations teams must understand why a model issued
a prediction to decide whether to trust automated
remediation or to intervene manually. Techniques for
explainability—feature attribution, counterfactuals,

and model-agnostic interpretation—should be
integrated into alert payloads and runbooks to support
trust (Peterson et al., 2022). Nonetheless, explainability
techniques can be misleading when models face
distributional shifts; claims of causality derived from
handled

conservatively (Kumar, 2019). Future work should

observational  telemetry must  be
investigate human-centered interfaces that combine
predictive scores with confidence intervals and context-
aware explanations to facilitate appropriate human-—

machine collaboration.

Security-Performance Trade-Offs in  DevSecOps.
Integrating SAST/DAST/SCA into pipelines is central to
preventing vulnerabilities from reaching production
(Konneru, 2021). However, security scans can create
latency in rapid deployment cycles if not optimized. The
recommended approach is risk-based gating: prioritize
critical vulnerabilities and use staged scanning for
lower-risk artifacts (Konneru, 2021). Furthermore, the
literature reveals an opportunity to use predictive
reliability signals to inform security decisions—for
example, delaying deployment if a release coincides
with elevated hardware failure probability in target
clusters.

Conversely, the presence of a security

vulnerability in an artifact may change the operations
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team’s willingness to perform preemptive migration,
creating complex decision boundaries that require well-
defined policies and decision-support tools (Konneru,
2021; Lin & Gupta, 2021).

GPU-Specific Failure Modes and Operational Strategies.
GPUs differ from general-purpose servers in several
respects: memory error profiles, thermal stress
behavior, and sensitivity to long epochs of computation
(Liu et al., 2023). Predictive models tailored to GPUs
must therefore incorporate workload characteristics
(e.g., batch sizes, kernel types), hardware telemetry
(e.g.,

throttling), and historical manufacturing/test data (Liu

memory ECC events, temperature, clock
et al.,, 2023; Lulla et al., 2025). However, a potential
is the

preemptively evacuating workloads from GPUs based

counterargument risk of false positives—
on imperfect models can reduce utilization and revenue
(Lin & Gupta, 2021). The layered diagnostics approach
mitigates this by using conservative thresholds for
automated preemption while escalating ambiguous
signals for human review. Future empirical work should
quantify the cost trade-offs between false positives
migrations) and false

(unnecessary negatives

(unscheduled failures) across different workload

classes.

Model Governance, Drift Detection, and Lifecycles.
Models in operational contexts degrade as system
characteristics evolve (Kumar, 2019). The literature
underscores the need for continuous evaluation,
retraining triggers based on drift detection, and rollback
mechanisms in deployment orchestration (Kukreja &
Zburivsky, 2021). Drift detection methods vary—from
distributional divergence metrics to monitoring
actionable performance metrics like recall at specific
operating points (Peterson et al., 2022). A significant
limitation is the lack of standardized benchmarks and
telemetry schemas across organizations, complicating
model portability. Researchers and standards bodies
should collaborate to define open telemetry formats
and benchmark datasets for fault prediction that allow
reproducible evaluation and cross-validated model

comparisons.

Analogues from Non-Compute Domains. The successful
application of integrated data-driven approaches to
reduce non-revenue water in peri-urban Tanzania
demonstrates the cross-domain applicability of the
framework (Kwikima et al.,, 2024). The analogue

suggests that the primary ingredients—accurate
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and
Yet,
infrastructure is distinct in its temporal dynamics and

telemetry, curated features, operational

integration—are  generalizable. compute
scale: failures can cascade rapidly and affect global
services. Therefore, while analogues are informative,

domain-specific adaptation remains essential.

Governance and Organizational Readiness.

Implementing the proposed framework requires
organizational shifts: creation of cross-functional teams
that combine data engineering, security, SRE, and
hardware diagnostics expertise (Kukreja & Zburivsky,
2021; Konneru, 2021). Institutional inertia and siloed
responsibilities present barriers. Incentive structures
should be realigned to reward investments in reliability
and security, not just feature velocity. Moreover,
knowledge transfer from hardware vendors—
particularly around manufacturing test baselines and
warranty data—can materially improve predictive
accuracy (Lulla et al., 2025). Policy frameworks that
govern telemetry privacy and retention must also be
considered, especially where operational telemetry

overlaps with user data.

Limitations of the Current Synthesis. This article
synthesizes the supplied literature but does not present
new empirical experiments. While the findings are
grounded in peer-reviewed and applied studies, the
operational effectiveness of the integrated framework
must be validated in controlled deployments. The
literature selection, while diverse, may omit recent
developments beyond the supplied references; for
example, advances in federated model governance or
latest cloud-provider-specific orchestration features
may refine operational tactics (Zhang, 2022; Luo &
Martinez, 2022). The synthesis also assumes access to
comprehensive telemetry streams—an assumption
that may not hold in legacy systems or highly regulated
environments where telemetry is restricted.

Future Research Directions. Several promising
directions arise from the synthesis:

1. Benchmarking and Open Datasets:
Development of public, anonymized telemetry

benchmarks for GPU failure prediction and cloud fault
scenarios to enable standardized model evaluation (Liu
et al.,, 2023).

2. Adaptive Sampling and Compression: Research into
adaptive telemetry sampling algorithms that preserve
predictive fidelity while minimizing storage and
bandwidth costs (Li, 2020).
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3. Explainability for Operations: Human-centered
studies to determine the most useful forms of model
explanations for operations teams, balancing depth

with cognitive load (Peterson et al., 2022).

4. Policy-aware Deployment Orchestration: Automation
that
predictive confidence, and cost/risk models to make

frameworks integrate security assessment,
deployment decisions under uncertainty (Konneru,

2021; Lin & Gupta, 2021).

5. Cross-Organization Sharing Protocols: Secure,

privacy-preserving protocols for sharing failure
signatures or model artifacts between vendors and
operators to accelerate detection of rare failure modes

(Lulla et al., 2025).

Researchers should prioritize empirical validations that
couple model performance metrics with operational
KPls, such as downtime reduction, mean time to repair,
and cost impacts of preemptive interventions.

CONCLUSION

This article synthesizes a multidisciplinary literature

corpus to propose an integrated, implementable
framework that combines lakehouse data engineering,
predictive analytics, and DevSecOps-enabled CI/CD to
resilience in  modern

enhance computational

infrastructures—particularly in environments
dominated by GPU workloads and cloud-scale services
(Kukreja & Zburivsky, 2021; Konneru, 2021; Liu et al.,
2023). The central tenets of the framework are: (1)
telemetry-first data architectures that reconcile raw
trace retention with curated feature tables; (2)
continuous modeling lifecycles that marry supervised
and unsupervised approaches for fault prediction and
novelty detection; (3) security-embedded deployment
pipelines that consider predictive reliability signals
alongside vulnerability assessments; and (4) layered
diagnostic and remediation orchestration that balances

automation with human oversight.

These components collectively address the literature
gap in operationalizing predictive reliability while
preserving security and deployment velocity (Kumar,
2019; Konneru, 2021). Although the framework is
rooted in the extant literature rather than novel
empirical trials, it provides a clear roadmap for
practitioners to design systems capable of anticipatory
operations and for researchers to formulate targeted
validation studies. The effectiveness of this approach
will depend on investments in scalable telemetry,
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standardized schemas, cross-disciplinary governance,
and robust model governance practices. Ongoing
research, benchmarking, and cross-industry
collaboration will be critical to refine the proposed
architecture and to ensure it remains adaptive to
evolving workload characteristics and emerging failure

modes (Liu et al., 2023; Lin & Gupta, 2021).
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