
The American Journal of Engineering and Technology 202 https://www.theamericanjournals.com/index.php/tajet

TYPE Original Research

PAGE NO. 202-210

OPEN ACCESS

SUBMITED 01 August 2025

ACCEPTED 15 August 2025

PUBLISHED 31 August 2025

VOLUME Vol.07 Issue 08 2025

CITATION

Sanjay R. Kapoor. (2025). Adaptive and Trustworthy Software Testing in
the Era of Large Language Models: Frameworks, Empirical Insights, and
Future Directions. The American Journal of Engineering and Technology,
7(8), 202–210. Retrieved from
https://theamericanjournals.com/index.php/tajet/article/view/7053

COPYRIGHT

© 2025 Original content from this work may be used under the terms

of the creative commons attributes 4.0 License.

Adaptive and Trustworthy

Software Testing in the Era

of Large Language Models:

Frameworks, Empirical

Insights, and Future

Directions

Sanjay R. Kapoor
University of Auckland

Abstract: This article presents an integrative,

comprehensive, and forward-looking examination of

software testing strategies in the context of rapid

methodological and technological shifts, particularly the

emergence of large language models (LLMs) and

serverless architectures. Grounded strictly in the

supplied literature, the paper synthesizes empirical

findings, theoretical frameworks, and practical

considerations to articulate a cohesive research

narrative that spans four decades of testing evolution,

contemporary automation frameworks, and emerging

evaluation challenges introduced by LLM-assisted

development and testing. The abstract summarizes the

study's motivation, approach, key findings, and

implications. Motivation: software testing remains a

decisive factor in software quality assurance amid

rapidly changing development paradigms and new

testing affordances driven by AI (Gurcan et al., 2022;

Wang et al., 2024). Approach: the paper undertakes a

methodical scholarly integration of domain surveys,

empirical studies on developer behavior and job

profiles, and recent investigations into LLMs and

serverless testing to build a conceptual and practical

framework for adaptive testing. Key findings: (1) testing

strategies have evolved from predominantly manual,

artefact-centric approaches to hybrid, automation-

enabled frameworks with strong semantic and

traceability emphases (Ricca & Tonella, 2001; Andrews

et al., 2005; Gurcan et al., 2022); (2) organizational and

industrial constraints shape which testing practices are

The American Journal of Engineering and Technology 203 https://www.theamericanjournals.com/index.php/tajet

adoptable and sustainable, and job profile analyses

reveal a strong gap between academic proposals and

industrial adoption (Kassab et al., 2021; Alshahwan et

al., 2023); (3) serverless architectures and LLMs

introduce new testing vectors and complexity, including

ephemeral execution contexts and probabilistic output

behaviors that require novel testing heuristics and

evaluation metrics (De Silva & Hewawasam, 2024; Wang

et al., 2024); and (4) empirical studies on how

developers craft tests provide actionable micro-level

insights into the cognitive and social processes

underpinning test design (Aniche et al., 2021; Pudlitz et

al., 2020). Implications: the article proposes a layered,

traceability-first testing framework that integrates

lightweight requirements annotation, LLM-assisted test

generation, and continuous empirical feedback loops

tailored to organizational capacity. The framework is

evaluated against documented industrial challenges and

research gaps, yielding a prioritized research agenda and

a set of operational recommendations for practitioners

and researchers. Concluding remarks: to achieve

resilient, efficient, and trustworthy testing in

contemporary environments, coordinated advances in

tooling, human-centered process redesign, and

empirical evaluation are necessary (Putra et al., 2023;

Zhao et al., 2024).

Keywords: Software testing strategies; large language

models; serverless testing; test automation;

requirements annotation; developer behavior; empirical

software engineering

INTRODUCTION

The practice of software testing has always been the

fulcrum around which software quality and reliability

pivot. From early approaches focused on manual

examination of program behaviors to the contemporary

landscape where automation pervades end-to-end

pipelines, testing remains both a technical and socio-

organizational challenge (Ricca & Tonella, 2001;

Andrews et al., 2005). Recent years have witnessed a

confluence of forces altering the terrain of testing: the

proliferation of web and cloud-native applications, the

maturity of continuous integration and delivery

pipelines, the rise of serverless computing, and,

importantly, the transformative emergence of large

language models (LLMs) that can generate code and

textual artifacts with unprecedented fluency (Gurcan et

al., 2022; De Silva & Hewawasam, 2024; Zhao et al.,

2024). These technologies present both opportunities

and risks: LLMs can dramatically accelerate test case

creation and scaffold automation frameworks, yet their

probabilistic outputs and sensitivity to prompt context

create new dimensions of unpredictability for

verification and validation (Wang et al., 2024; Chen et

al., 2024).

The central problem this article addresses is how

software testing strategies must evolve—both

conceptually and operationally—to remain effective,

trustworthy, and scalable in a development ecosystem

reshaped by LLMs and serverless models. While prior

literature has mapped the evolution of testing research

and catalogued technical approaches (Gurcan et al.,

2022; Putra et al., 2023), a pressing gap remains: a

cohesive synthesis that connects historical knowledge,

human factors in test engineering, empirical job-profile

realities, and the novel technical characteristics and

evaluation demands introduced by LLMs and serverless

architectures (Kassab et al., 2021; Alshahwan et al.,

2023; De Silva & Hewawasam, 2024). This gap is

consequential because testing practices that ignore

organizational constraints and the unique properties of

modern toolchains risk being theoretically attractive but

practically unworkable (Alshahwan et al., 2023).

This article positions itself as a bridge—an integrative

scholarly work that leverages systematic reviews,

empirical developer studies, and recent surveys on LLMs

and testing to derive a layered, adaptable testing

framework. It grounds its analysis in rigorous

interrogation of how tests are engineered in practice

(Aniche et al., 2021), what testing jobs require in

industrial contexts (Kassab et al., 2021), and what new

evaluation criteria LLM-influenced pipelines necessitate

(Wang et al., 2024; Chen et al., 2024). By synthesizing

these perspectives with research on lightweight

requirements annotations (Pudlitz et al., 2020), early

web-app testing strategies (Ricca & Tonella, 2001;

Andrews et al., 2005), and the systematic analysis of

testing strategy strengths and weaknesses (Putra et al.,

2023), the article proposes a rigorous, actionable

research and practice agenda for trustworthy testing.

The structure that follows is purposely designed to

satisfy the dual need for scholarly depth and practical

relevance. The methodology section explicates the

integrative analytical approach and clarifies how

evidence from multiple studies is reconciled. Results

The American Journal of Engineering and Technology 204 https://www.theamericanjournals.com/index.php/tajet

present a descriptive synthesis of findings, identifying

recurring patterns, tensions, and the locus of emergent

challenges. The discussion engages in deep

interpretation, exploring theoretical implications,

counterarguments, limitations, and a future research

roadmap. The conclusion presents distilled

recommendations and final reflections aimed at both

researchers and practitioners. Throughout, every major

claim is anchored to the supplied literature, ensuring

fidelity to the reference set and creating a robust,

evidence-based narrative.

METHODOLOGY

This article adopts an integrative synthesis methodology

tailored for the production of a conceptual, empirical,

and methodological contribution to software testing

scholarship. The approach intentionally combines cross-

study synthesis, theoretical elaboration, and practical

translation. Rather than claiming original empirical data

collection, the methodology treats the supplied

literature as primary evidence. The goal is to generate a

carefully reasoned, academically rigorous exposition

that extracts, reconciles, and extends insights from

multiple sources. The key components of the

methodology are described below.

Literature consolidation and thematic mapping. The first

step involves a systematic consolidation of the supplied

references into thematic clusters. These clusters reflect

the primary topical threads evident in the corpus: (1)

historical and evolving testing strategies (Ricca &

Tonella, 2001; Andrews et al., 2005; Gurcan et al., 2022),

(2) automation frameworks and their contemporary

adaptations (Smith & Taylor, 2022; Chandra et al., 2025),

(3) developer behavior and test engineering practices

(Aniche et al., 2021; Pudlitz et al., 2020), (4) workforce

and job profile considerations (Kassab et al., 2021), (5)

industrial challenges in testing research adoption

(Alshahwan et al., 2023), and (6) testing implications of

LLMs and serverless architectures (Zhao et al., 2024;

Wang et al., 2024; De Silva & Hewawasam, 2024).

Mapping literature to these clusters created a scaffold

for subsequent analysis and ensured that the synthesis

remained traceable to source evidence.

Cross-study synthesis and evidence extraction. For each

thematic cluster, the relevant studies were examined for

claims, methods, empirical results, and proposed

frameworks. Evidence extraction prioritized identifying

(a) recurring findings, (b) points of divergence or

contradiction, and (c) methodological limitations

acknowledged by the authors. For example, empirical

findings about how developers engineer test cases were

cross-examined to determine whether observed

behaviors aligned with recommendations for

lightweight requirements annotation or automation

adoption (Aniche et al., 2021; Pudlitz et al., 2020). Claims

about LLMs' role in test generation and evaluation were

examined in relation to the surveys that characterize

LLM properties and code-generation performance (Zhao

et al., 2024; Chen et al., 2024; Wang et al., 2024).

Synthesis logic and justificatory mapping. The article

uses a synthesis logic that is both abductive and analytic.

Abduction allows for the development of plausible

frameworks that best explain the ensemble of findings;

analysis ensures the frameworks are internally coherent

and consistent with empirical details. Each theoretical

claim in the proposed framework is justified by at least

one source from the supplied list; major claims rely on

multiple corroborating sources whenever possible to

strengthen inferential robustness. For instance, the

need for traceability-first testing is justified by empirical

observations on testing artifacts and requirements

annotations (Pudlitz et al., 2020) and by analyses of

testing strategy limitations (Putra et al., 2023).

Constructing the layered testing framework. The

culmination of synthesis is a layered testing framework

that integrates requirements annotation, LLM-assisted

test generation, artifact traceability, and continuous

empirical feedback. This framework was iteratively

constructed by: (1) enumerating desiderata derived

from the literature (e.g., adaptability, explainability,

scalability), (2) mapping each desideratum to specific

mechanisms or tools discussed in the literature (e.g.,

lightweight requirements annotation techniques,

automation frameworks), and (3) validating whether the

proposed mechanisms address documented industrial

challenges (Alshahwan et al., 2023; Kassab et al., 2021).

Each component of the framework is explicitly linked to

the literature to ensure accountability.

Analytical narration and rigorous qualification. The

Results and Discussion sections present descriptive

synthesis and conceptual extensions with rigorous

qualification: claims are framed as empirically-grounded

interpretations, limitations are explicitly acknowledged,

and alternative interpretations are explored. This step

aligns with best practices in empirical software

The American Journal of Engineering and Technology 205 https://www.theamericanjournals.com/index.php/tajet

engineering scholarship that insist on transparency

about evidence strength and the bounds of inference

(Kassab et al., 2021; Aniche et al., 2021).

Limitations of the synthesis methodology. While

integrative synthesis enables broad perspective-

building, it is limited by reliance on the supplied

literature and hence inherits any blind spots in that

literature. This article mitigates that constraint by

careful cross-referencing across studies with different

methods (surveys, observational studies, industrial

reports) to highlight convergent validity. References to

LLMs and code generation are grounded in recent

surveys and evaluations present in the supplied list

(Zhao et al., 2024; Wang et al., 2024; Chen et al., 2024),

but the article refrains from extrapolating beyond what

the literature supports. Moreover, the synthesis

approach does not replace the need for primary

empirical validation of the proposed framework; it aims

to provide a conceptually solid, evidence-based

blueprint that future empirical work can test and refine.

Ethical and practical orientation. Throughout the

synthesis, the methodology prioritizes human-centered

considerations (developer workflows, job profiles) and

practical constraints (organizational adoption barriers),

reflecting the literature's consistent emphasis on

aligning technical proposals with industrial realities

(Kassab et al., 2021; Alshahwan et al., 2023).

By following this multi-step, evidence-grounded

methodology, the article produces a richly elaborated

analytical narrative and a pragmatic testing framework

that integrates historical wisdom, empirical developer

insights, workforce realities, and the specific testing

demands brought about by LLMs and serverless

paradigms.

RESULTS

The results section presents the core findings generated

through the integrative synthesis. Results are organized

into thematic findings that emerge from cross-

referencing the supplied literature: (1) historical

continuity and transformation in testing strategies; (2)

the centrality of lightweight requirements annotation

and traceability; (3) human factors and developer

practices in test engineering; (4) industrial profile and

adoption barriers for testing research; (5) implications of

serverless architectures for testing; (6) specific testing

opportunities and risks introduced by LLMs; (7) a

proposed layered testing framework; and (8)

operational recommendations and a prioritized

research agenda. Each finding is supported by citations

drawn from the supplied references.

1. Historical continuity and transformation in testing

strategies. The literature reveals a clear trajectory: early

testing work concentrated on structural and functional

analysis of conventional applications, with specific

attention paid to web applications and their unique

testing affordances (Ricca & Tonella, 2001; Andrews et

al., 2005). Over subsequent decades, research

broadened to include automation frameworks for

dynamic testing (Smith & Taylor, 2022) and to map the

semantic evolution of testing research (Gurcan et al.,

2022). Gurcan et al. (2022) provide a comprehensive

content analysis showing a shift from code-centric and

manual testing concerns to research on automation,

semantic-level specifications, and pipeline integration.

Putra et al. (2023) further synthesize contemporary

testing strategies via a systematic review, highlighting

strengths and weaknesses of various approaches in

terms of coverage, cost, and maintainability. Together,

these works document both continuity—testing remains

fundamentally concerned with detecting faults and

verifying behavior—and transformation—testing

strategies have become more automation-oriented,

context-aware, and integrated with development

pipelines.

2. The centrality of lightweight requirements annotation

and traceability. Multiple studies emphasize that

effective testing depends on clear connections between

requirements and test artifacts (Pudlitz et al., 2020).

Lightweight requirements annotation, which enables

rapid, low-overhead linking between requirements and

tests, emerges as a pragmatic technique for improving

test relevance without imposing heavy documentation

burdens (Pudlitz et al., 2020). This emphasis on

traceability is echoed by surveys and reviews that

identify traceability and semantic requirements as core

enablers of efficient automated test generation and

prioritization (Gurcan et al., 2022; Putra et al., 2023).

The implication is that test automation and LLM-assisted

generation benefit significantly from structured but

lightweight semantic inputs that carry intent and

acceptance criteria, enabling more targeted and

meaningful test cases.

3. Human factors and developer practices in test

The American Journal of Engineering and Technology 206 https://www.theamericanjournals.com/index.php/tajet

engineering. Aniche et al. (2021) provide an

observational account of how developers actually

engineer test cases, revealing cognitive patterns,

heuristics, and collaborative practices that shape test

quality. Developers often rely on implicit knowledge,

code familiarity, and iterative exploratory testing rather

than strictly following prescriptive testing templates

(Aniche et al., 2021). This micro-level insight indicates

that any automation or LLM-assisted approach must

accommodate and augment, rather than supplant,

developer workflows. Pudlitz et al. (2020) complements

this by showing that lightweight annotations reduce

friction in the developer workflow and improve the

alignment between what is tested and why it is tested.

4. Industrial profile and adoption barriers for testing

research. Kassab et al. (2021) analyze software testing

job profiles in the United States, illuminating demand-

side realities for skills, responsibilities, and tools. Their

analysis reveals heterogeneity in role definitions, with

many practitioners expected to perform a mix of

manual, automated, and domain-specific testing tasks.

Alshahwan et al. (2023) present an industrial

perspective on research challenges, noting that many

academic proposals fail to address issues like tool

integration, scalability, and maintainability in industrial

settings. These studies together articulate a gap

between academically proposed methods and practical

needs: testing research must be attuned to

organizational workflows, tooling ecosystems, and the

skills composition of testing teams.

5. Serverless architectures and testing implications. De

Silva and Hewawasam (2024) study the impact of

software testing on serverless applications,

documenting the unique testing vectors that serverless

architectures introduce—stateless function invocation,

externalized services, ephemeral execution contexts,

and complex event-driven topologies. These

characteristics complicate traditional approaches to unit

and integration testing because end-to-end behavior

emerges from distributed orchestration rather than

monolithic program state. The review implies that

testing strategies for serverless must prioritize

environment emulation, observability, and contract-

based testing mechanisms that can capture function-

level correctness while acknowledging the dynamism of

cloud-hosted resources.

6. LLMs: testing opportunities and risks. Recent surveys

and evaluations indicate that LLMs can assist with code

generation, test-case synthesis, and documentation, but

they also introduce new verification challenges. Zhao et

al. (2024) and Wang et al. (2024) outline both the

promise and caveats of LLMs in code and testing tasks:

LLMs can produce structurally plausible code and test

scaffolds (Wang et al., 2024), but their outputs are

probabilistic, context-sensitive, and may incorporate

subtle defects or misinterpretations of intent (Zhao et

al., 2024; Chen et al., 2024). Wang et al. (2024)

additionally highlight evaluation and landscape issues,

noting the need for systematic benchmarks that capture

semantic correctness, robustness, and maintainability of

LLM-generated tests.

7. A proposed layered testing framework. Synthesizing

the prior findings yields a layered, traceability-first

testing framework designed to be adaptive and

trustworthy in modern ecosystems. The framework

contains four primary layers: (a) semantic requirements

and lightweight annotation; (b) LLM-assisted test

generation constrained by explicit traceability links; (c)

environment-aware execution harness (with serverless

emulation and contract-based validation); and (d)

empirical feedback and human-in-the-loop validation.

Each layer maps directly to documented needs:

lightweight annotations facilitate targetted LLM

prompting and test relevance (Pudlitz et al., 2020);

constrained LLM generation attenuates probabilistic

risks (Wang et al., 2024; Zhao et al., 2024); environment-

aware execution responds to serverless dynamism (De

Silva & Hewawasam, 2024); and human oversight

addresses developer workflow realities and job profile

constraints (Aniche et al., 2021; Kassab et al., 2021).

8. Operational recommendations and research

priorities. Based on synthesis, a set of operational

recommendations emerges: (1) invest in lightweight

requirements annotation processes to improve

alignment between tests and intent (Pudlitz et al., 2020;

Putra et al., 2023); (2) adopt constrained LLM prompting

patterns and validation checks to leverage LLM

productivity while reducing error risk (Wang et al., 2024;

Zhao et al., 2024); (3) design serverless test harnesses

that emulate key cloud contracts and provide robust

observability (De Silva & Hewawasam, 2024); (4) foster

role clarity and upskilling to bridge the academic-

industrial adoption gap (Kassab et al., 2021; Alshahwan

The American Journal of Engineering and Technology 207 https://www.theamericanjournals.com/index.php/tajet

et al., 2023); and (5) prioritize empirical evaluations that

measure not only defect detection but also

maintainability, developer effort, and integration costs

(Putra et al., 2023; Aniche et al., 2021).

Collectively, these results synthesize a literature-

informed vision for testing practices that are technically

robust, human-centered, and practically adoptable in

contemporary development contexts.

DISCUSSION

 The discussion engages in in-depth interpretation of the

results, explores theoretical implications and counter-

arguments, articulates limitations, and provides a

detailed roadmap for future research and practice. Each

sub-section unpacks major themes and anchors them in

supplied literature.

1. Theoretical implications: from code-centric to

semantics-aware testing. One major theoretical

implication is the maturation of testing from primarily

code-centric, fault-detection perspectives to semantics-

aware, traceability-centric paradigms. Early work

emphasized structural and dynamic analyses for web

and enterprise applications (Ricca & Tonella, 2001;

Andrews et al., 2005), but the literature now

consistently gravitates toward integrating requirements

semantics into testing pipelines (Pudlitz et al., 2020;

Gurcan et al., 2022). This shift matters theoretically

because it reframes testing as an activity of intent-

preservation—ensuring that the software's behavior

satisfies user-level specifications and business intent,

not just that it adheres to lower-level code properties.

Lightweight requirements annotations operationalize

this theoretical move by providing a pragmatically low-

cost way to encode semantics, which then becomes

actionable for both automated test generation and

manual validation. The theoretical challenge, however,

lies in formalizing the mapping between informal but

pragmatic annotations and the formal test artifacts that

can be executed and validated—an open research area

highlighted by Gurcan et al. (2022).

2. Human-centeredness and socio-technical tensions.

The micro-level studies of developers engineering test

cases reveal a critical caution: automated solutions that

ignore human workflows risk low adoption and limited

effectiveness (Aniche et al., 2021). Developers often

create tests using local knowledge about edge cases,

historical bug patterns, and code idiosyncrasies—

knowledge that is rarely captured in formal

specifications. Consequently, LLM-assisted test-

generation approaches must be framed as

augmentative tools that surface candidate tests and

explanations, leaving ultimate validation and

contextualization to developers. This human-in-the-loop

posture not only respects developer expertise but may

also help detect hallucinations or misaligned outputs

from LLMs. Alshahwan et al. (2023) further emphasize

that research must grapple with organizational

constraints—tools must be integrable into existing

toolchains and demand manageable maintenance

efforts to achieve industrial uptake.

3. Serverless architectures: empirical complexity and

contractual guarantees. Serverless platforms

reconfigure failure modes and testing emphases: the

locus of correctness often shifts from function internals

to inter-service contracts and orchestration. De Silva and

Hewawasam (2024) underscore the complexity of

testing serverless systems, where environmental

dependencies and short-lived invocations complicate

reproducible test executions. From a theoretical

perspective, this invites a reframing: the unit of testing

moves toward measurable contracts (e.g., event

semantics, latency and reliability guarantees,

idempotency properties) rather than classical function-

level assertions alone. This reframing has

methodological consequences: test harnesses should

emphasize emulation of event streams, contracts for

third-party services, and observability to attribute

failures accurately. There is a counter-argument, which

cautions against over-engineering environment

emulation that can be costly. The literature suggests a

pragmatic balance—define minimal but expressive

contract tests that capture critical system invariants

while relying on targeted integration tests for full

orchestration verification (De Silva & Hewawasam,

2024).

4. LLMs in testing: promise, risk, and evaluation

complexity. LLMs offer a compelling productivity boost:

they can synthesize test scaffolds, propose test inputs,

and transform documentation into executable scenarios

(Wang et al., 2024; Zhao et al., 2024). However, their

probabilistic nature introduces both operational and

epistemic risks: outputs may be syntactically correct but

semantically misaligned; prompt sensitivity leads to

brittle generation; and models may hallucinate plausible

yet incorrect behaviors. The literature calls for

The American Journal of Engineering and Technology 208 https://www.theamericanjournals.com/index.php/tajet

constrained prompting strategies and robust validation

pipelines (Wang et al., 2024; Chen et al., 2024).

Furthermore, evaluating LLM-generated tests

challenges traditional metrics: beyond pass/fail rates,

we must measure semantic coverage (the extent to

which generated tests exercise intended behaviors),

robustness (resilience of tests across input

distributions), and maintainability (effort required to

keep generated tests aligned as the system evolves). The

need for new benchmarks and evaluation frameworks is

emphasized in the literature (Chen et al., 2024; Zhao et

al., 2024).

5. Integrative framework: benefits and trade-offs. The

proposed layered testing framework offers several

theoretical advantages: it grounds test generation in

explicit intent (via lightweight annotations), uses LLMs

as productivity amplifiers while constraining their

outputs, and situates test execution in environment-

aware harnesses suitable for serverless contexts. This

combination targets key desiderata—relevance,

explainability, and operational feasibility. However,

trade-offs exist. For example, maintaining traceability

links requires organizational discipline and incurs

coordination costs; LLM integration raises governance

questions about model updates and reproducibility; and

serverless emulation can be resource-intensive. These

trade-offs echo concerns raised in the industrial

perspectives literature, which cautions about the cost-

benefit calculus that organizations must undertake for

research-derived tools (Alshahwan et al., 2023; Kassab

et al., 2021).

6. Counter-arguments and alternative perspectives. One

counter-argument is that the proposed framework may

unduly prioritize semantics and human oversight at the

expense of fully automated, scalable testing.

Proponents of end-to-end automation may point to

advances in model scaling and canonical test suites as

sufficient to automate many testing tasks. The literature

tempers this optimism by emphasizing that

automation's value diminishes when context-specific

correctness is critical, and when maintenance overheads

outweigh the gains (Putra et al., 2023; Aniche et al.,

2021). Another perspective argues for minimal

annotation overhead—favoring purely code-driven test

generation—yet the evidence shows that code-only

approaches often miss semantic intent and thus

produce less useful tests (Pudlitz et al., 2020; Gurcan et

al., 2022). The synthesis thus supports a hybrid posture:

leverage automation where clear formal signals exist,

and adopt semantics-aware approaches where human

intent is critical.

7. Limitations of the current synthesis and empirical

validation needs. The article's integrative synthesis is

limited by its reliance on existing studies; while it

synthesizes multiple perspectives, it does not present

new experimental data validating the proposed

framework. Validation is a crucial next step: controlled

experiments comparing traceability-first LLM-assisted

approaches with baseline automation and manual

testing in terms of defect detection, developer effort,

and maintenance costs are necessary. Moreover,

specific metrics and benchmark datasets for LLM-

generated test evaluation must be developed to allow

reproducible comparisons across tools and models

(Wang et al., 2024; Chen et al., 2024).

8. Detailed roadmap for future research. Building on the

synthesis, the following prioritized research agenda is

proposed, each item directly tied to evidence from the

literature:

 a. Empirical evaluation of traceability-first pipelines.

Design experiments that compare practitioner

productivity and defect detection when lightweight

requirement annotations are used versus not used

(Pudlitz et al., 2020; Putra et al., 2023).

 b. Benchmarks for LLM-generated tests. Develop

semantic-level benchmarks capturing intent-

preservation and robustness; evaluate multiple LLMs

against these benchmarks (Zhao et al., 2024; Chen et al.,

2024; Wang et al., 2024).

 c. Serverless contract testing frameworks. Create and

evaluate test harnesses that emulate cloud events and

third-party contracts with minimal overhead, measuring

effectiveness in real-world serverless apps (De Silva &

Hewawasam, 2024).

 d. Organizational adoption studies. Conduct

longitudinal studies examining how teams adopt LLM-

assisted testing tools, focusing on role dynamics and skill

requirements (Kassab et al., 2021; Alshahwan et al.,

2023).

 e. Human-in-the-loop validation strategies. Investigate

interfaces and interaction designs that enable efficient

human oversight of LLM outputs, minimizing cognitive

The American Journal of Engineering and Technology 209 https://www.theamericanjournals.com/index.php/tajet

load while maximizing detection of hallucinations

(Aniche et al., 2021; Wang et al., 2024).

9. Practical implications for practitioners. Translating the

literature into operational advice yields several

actionable recommendations: adopt lightweight

annotations for critical features to guide automation;

use LLMs to scaffold tests but enforce validation gates

and review workflows; prioritize contract-based tests for

serverless components; and invest in skill development

and role clarity to accommodate new testing workflows

(Pudlitz et al., 2020; De Silva & Hewawasam, 2024;

Kassab et al., 2021).

This extended discussion integrates theoretical

reflection, counter-arguments, methodical limitations,

and a concrete research roadmap, all grounded in the

supplied literature.

CONCLUSION

This article synthesizes a broad and multidisciplinary

body of literature to advance a coherent vision for

software testing in a world reshaped by LLMs,

automation frameworks, and serverless computing. The

evidence indicates several converging imperatives:

testing must become more semantics-aware,

lightweight in operational overhead, and human-

centered to accommodate developer expertise and

organizational realities (Pudlitz et al., 2020; Aniche et al.,

2021; Kassab et al., 2021). LLMs offer transformative

potential for test generation and developer productivity

but simultaneously raise challenges of probabilistic

outputs, evaluation complexity, and governance (Zhao

et al., 2024; Wang et al., 2024; Chen et al., 2024).

Serverless architectures introduce environmental

dynamism that compels a shift toward contract-oriented

testing and advanced observability (De Silva &

Hewawasam, 2024).

The layered, traceability-first framework proposed in

this article presents an integrative pathway that

leverages lightweight requirements annotation to

anchor LLM-assisted generation, deploys environment-

aware execution harnesses for serverless contexts, and

maintains human-in-the-loop validation to preserve

trust and relevance. This framework, while promising,

requires substantial empirical validation across

dimensions of defect detection capability,

maintainability, developer effort, and integration cost.

The research roadmap outlines concrete empirical and

tooling milestones that, if pursued, can substantively

close the gap between academic proposals and

industrial needs (Alshahwan et al., 2023; Putra et al.,

2023).

Ultimately, the path to trustworthy and efficient testing

is not purely technical; it is socio-technical. It requires

aligning tool capabilities with developer workflows,

organizational incentives, and the complex realities of

modern software ecosystems. The synthesis and

recommendations in this article aim to catalyze that

alignment by offering a rigorously grounded, literature-

backed framework and a prioritized research agenda. By

doing so, the article contributes to a mature research

dialogue that moves beyond isolated techniques toward

integrative solutions that can be adopted and adapted

in real-world software engineering practice.

REFERENCES

1. Putra, S.J.; Sugiarti, Y.; Prayoga, B.Y.; Samudera,

D.W.; Khairani, D. Analysis of Strengths and

Weaknesses of Software Testing Strategies:

Systematic Literature Review. In Proceedings of the

2023 11th International Conference on Cyber and IT

Service Management (CITSM), Makassar, Indonesia,

10–11 November 2023; pp. 1–5.

2. Gurcan, F.; Dalveren, G.G.M.; Cagiltay, N.E.; Roman,

D.; Soylu, A. Evolution of Software Testing Strategies

and Trends: Semantic Content Analysis of Software

Research Corpus of the Last 40 Years. IEEE Access

2022, 10, 106093–106109.

3. Pudlitz, F.; Brokhausen, F.; Vogelsang, A. What Am I

Testing and Where? Comparing Testing Procedures

Based on Lightweight Requirements Annotations.

Empirical Software Engineering 2020, 25, 2809–

2843.

4. Kassab, M.; Laplante, P.; Defranco, J.; Neto, V.V.G.;

Destefanis, G. Exploring the Profiles of Software

Testing Jobs in the United States. IEEE Access 2021,

9, 68905–68916.

5. De Silva, D.; Hewawasam, L. The Impact of Software

Testing on Serverless Applications. IEEE Access

2024, 12, 51086–51099.

6. Alshahwan, N.; Harman, M.; Marginean, A. Software

Testing Research Challenges: An Industrial

The American Journal of Engineering and Technology 210 https://www.theamericanjournals.com/index.php/tajet

Perspective. In Proceedings of the 2023 IEEE

Conference on Software Testing, Verification and

Validation (ICST), Dublin, Ireland, 16–20 April 2023;

pp. 1–10.

7. Aniche, M.; Treude, C.; Zaidman, A. How Developers

Engineer Test Cases: An Observational Study. IEEE

Transactions on Software Engineering 2021, 48,

4925–4946.

8. Zhao, W.X.; Zhou, K.; Li, J.; Tang, T.; Wang, X.; Hou,

Y.; Min, Y.; Zhang, B.; Zhang, J.; Dong, Z.; et al. A

Survey of Large Language Models. arXiv 2024,

arXiv:2303.18223.

9. Wang, J.; Huang, Y.; Chen, C.; Liu, Z.; Wang, S.; Wang,

Q. Software Testing With Large Language Models:

Survey, Landscape, and Vision. IEEE Transactions on

Software Engineering 2024, 50, 911–936.

10. Chen, L.; Guo, Q.; Jia, H.; Zeng, Z.; Wang, X.; Xu, Y.;

Wu, J.; Wang, Y.; Gao, Q.; Wang, J.; et al. A Survey

on Evaluating Large Language Models in Code

Generation Tasks. arXiv 2024, arXiv:2408.16498.

11. Ricca, F.; Tonella, P. Analysis and testing of web

applications. Proceedings of the International

Conference on Software Engineering, 2001, 25(3),

25–34.

12. Andrews, A.; Offutt, J.; Alexander, R. Test generation

for web applications. IEEE Transactions on Software

Engineering 2005, 31(3), 187–202.

13. Smith, J.; Taylor, R. Automated frameworks for

dynamic web testing. Software Testing Journal

2022, 37(1), 45–67.

14. Lee, K.; Johnson, S. Leveraging generative AI for

automated test case creation. Proceedings of ICSE,

2022, pp. 198–207.

15. OpenAI. GPT-4 Technical Report. arXiv preprint,

2023.

16. AutoGPT. AutoGPT, 2022.

17. Qin, Y.; Liang, S.; Ye, Y.; Zhu, K.; Yan, L.; Lu, Y.; Lin, Y.;

Cong, X.; Tang, X.; Qian, B.; et al. ToolLLM:

Facilitating large language models to master

16,000+ real-world APIs. arXiv preprint, 2023.

18. Chandra, R.; Lulla, K.; Sirigiri, K. Automation

frameworks for end-to-end testing of large language

models (LLMs). Journal of Information Systems

Engineering and Management 2025, 10, e464–e472.

