* W
THE USA

The American Journal of
Engineering and Technology

~
s s
W \d

.

~, 2019 g‘,
! | 2

ISSN 2689-0984 | Open Access

Check for updates

OPEN ACCESS

01 August 2025
15 August 2025
31 August 2025
Vol.07 Issue 08 2025

Sanjay R. Kapoor. (2025). Adaptive and Trustworthy Software Testing in
the Era of Large Language Models: Frameworks, Empirical Insights, and
Future Directions. The American Journal of Engineering and Technology,
7(8), 202-210. Retrieved from
https://theamericanjournals.com/index.php/tajet/article/view/7053

© 2025 Original content from this work may be used under the terms
of the creative commons attributes 4.0 License.

The American Journal of Engineering and Technology

Original Research
202-210

Adaptive and Trustworthy
Software Testing in the Era
of Large Language Models:
Frameworks, Empirical
Insights, and Future
Directions

Sanjay R. Kapoor
University of Auckland

Abstract: This article

comprehensive, and forward-looking examination of

presents an integrative,
software testing strategies in the context of rapid
methodological and technological shifts, particularly the
emergence of large language models (LLMs) and
in the

supplied literature, the paper synthesizes empirical

serverless architectures. Grounded strictly

findings, theoretical frameworks, and practical

considerations to articulate a cohesive research
narrative that spans four decades of testing evolution,
contemporary automation frameworks, and emerging
introduced by LLM-assisted
development and testing. The abstract summarizes the
study's approach,

implications. Motivation: software testing remains a

evaluation challenges

motivation, key findings, and
decisive factor in software quality assurance amid
rapidly changing development paradigms and new
testing affordances driven by Al (Gurcan et al., 2022;
Wang et al., 2024). Approach: the paper undertakes a
methodical scholarly integration of domain surveys,
empirical studies on developer behavior and job
profiles, and recent investigations into LLMs and
serverless testing to build a conceptual and practical
framework for adaptive testing. Key findings: (1) testing
strategies have evolved from predominantly manual,
artefact-centric approaches to hybrid, automation-
with
traceability emphases (Ricca & Tonella, 2001; Andrews
et al., 2005; Gurcan et al., 2022); (2) organizational and
industrial constraints shape which testing practices are

enabled frameworks strong semantic and

https://www.theamericanjournals.com/index.php/tajet

202

adoptable and sustainable, and job profile analyses
reveal a strong gap between academic proposals and
industrial adoption (Kassab et al., 2021; Alshahwan et
2023);
introduce new testing vectors and complexity, including

al., (3) serverless architectures and LLMs
ephemeral execution contexts and probabilistic output
behaviors that require novel testing heuristics and
evaluation metrics (De Silva & Hewawasam, 2024; Wang
et al, 2024); and (4) empirical studies on how
developers craft tests provide actionable micro-level
insights into the cognitive and social processes
underpinning test design (Aniche et al., 2021; Pudlitz et
al., 2020). Implications: the article proposes a layered,
traceability-first testing framework that integrates
lightweight requirements annotation, LLM-assisted test
generation, and continuous empirical feedback loops
tailored to organizational capacity. The framework is
evaluated against documented industrial challenges and
research gaps, yielding a prioritized research agenda and
a set of operational recommendations for practitioners
researchers. remarks: to achieve

and Concluding

resilient, efficient, and trustworthy testing in

contemporary environments, coordinated advances in
tooling,
empirical evaluation are necessary (Putra et al., 2023;
Zhao et al., 2024).

human-centered process redesign, and

Keywords: Software testing strategies; large language
test
requirements annotation; developer behavior; empirical

models; serverless testing; automation;

software engineering
INTRODUCTION

The practice of software testing has always been the
fulcrum around which software quality and reliability
pivot. From early approaches focused on manual
examination of program behaviors to the contemporary
landscape where automation pervades end-to-end
pipelines, testing remains both a technical and socio-
& Tonella, 2001;
Andrews et al., 2005). Recent years have witnessed a

organizational challenge (Ricca
confluence of forces altering the terrain of testing: the
proliferation of web and cloud-native applications, the
maturity of continuous
the

importantly, the transformative emergence of large

integration and delivery

pipelines, rise of serverless computing, and,
language models (LLMs) that can generate code and
textual artifacts with unprecedented fluency (Gurcan et

al., 2022; De Silva & Hewawasam, 2024; Zhao et al.,

The American Journal of Engineering and Technology

2024). These technologies present both opportunities
and risks: LLMs can dramatically accelerate test case
creation and scaffold automation frameworks, yet their
probabilistic outputs and sensitivity to prompt context
of
verification and validation (Wang et al., 2024; Chen et
al., 2024).

create new dimensions unpredictability for

The central problem this article addresses is how

software testing strategies must evolve—both
conceptually and operationally—to remain effective,
trustworthy, and scalable in a development ecosystem
reshaped by LLMs and serverless models. While prior
literature has mapped the evolution of testing research
and catalogued technical approaches (Gurcan et al.,,
2022; Putra et al.,, 2023), a pressing gap remains: a
cohesive synthesis that connects historical knowledge,
human factors in test engineering, empirical job-profile
realities, and the novel technical characteristics and
evaluation demands introduced by LLMs and serverless
architectures (Kassab et al.,, 2021; Alshahwan et al,,
2023; De Silva & Hewawasam, 2024). This gap is
consequential because testing practices that ignore
organizational constraints and the unique properties of
modern toolchains risk being theoretically attractive but

practically unworkable (Alshahwan et al., 2023).

This article positions itself as a bridge—an integrative
scholarly work that leverages systematic reviews,
empirical developer studies, and recent surveys on LLMs
and testing to derive a layered, adaptable testing
framework. It grounds its analysis in rigorous
interrogation of how tests are engineered in practice
(Aniche et al.,, 2021), what testing jobs require in
industrial contexts (Kassab et al., 2021), and what new
evaluation criteria LLM-influenced pipelines necessitate
(Wang et al., 2024; Chen et al., 2024). By synthesizing
these perspectives with research on lightweight
requirements annotations (Pudlitz et al., 2020), early
web-app testing strategies (Ricca & Tonella, 2001;
Andrews et al., 2005), and the systematic analysis of
testing strategy strengths and weaknesses (Putra et al.,
2023), the article proposes a rigorous, actionable

research and practice agenda for trustworthy testing.

The structure that follows is purposely designed to
satisfy the dual need for scholarly depth and practical
relevance. The methodology section explicates the
integrative analytical approach and clarifies how

evidence from multiple studies is reconciled. Results

https://www.theamericanjournals.com/index.php/tajet

203

present a descriptive synthesis of findings, identifying
recurring patterns, tensions, and the locus of emergent
The
interpretation,

challenges. discussion engages in deep

exploring theoretical implications,
counterarguments, limitations, and a future research
The distilled

recommendations and final reflections aimed at both

roadmap. conclusion presents
researchers and practitioners. Throughout, every major
claim is anchored to the supplied literature, ensuring
fidelity to the reference set and creating a robust,

evidence-based narrative.
METHODOLOGY

This article adopts an integrative synthesis methodology
tailored for the production of a conceptual, empirical,
and methodological contribution to software testing
scholarship. The approach intentionally combines cross-
study synthesis, theoretical elaboration, and practical
translation. Rather than claiming original empirical data
the
literature as primary evidence. The goal is to generate a

collection, the methodology treats supplied
carefully reasoned, academically rigorous exposition
that extracts, reconciles, and extends insights from
multiple of the

sources. The key components

methodology are described below.

Literature consolidation and thematic mapping. The first
step involves a systematic consolidation of the supplied
references into thematic clusters. These clusters reflect
the primary topical threads evident in the corpus: (1)
historical and evolving testing strategies (Ricca &
Tonella, 2001; Andrews et al., 2005; Gurcan et al., 2022),
(2) automation frameworks and their contemporary
adaptations (Smith & Taylor, 2022; Chandra et al., 2025),
(3) developer behavior and test engineering practices
(Aniche et al., 2021; Pudlitz et al., 2020), (4) workforce
and job profile considerations (Kassab et al., 2021), (5)
industrial challenges in testing research adoption
(Alshahwan et al., 2023), and (6) testing implications of
LLMs and serverless architectures (Zhao et al., 2024;
Wang et al., 2024; De Silva & Hewawasam, 2024).
Mapping literature to these clusters created a scaffold
for subsequent analysis and ensured that the synthesis

remained traceable to source evidence.

Cross-study synthesis and evidence extraction. For each
thematic cluster, the relevant studies were examined for
claims, methods, empirical results, and proposed
frameworks. Evidence extraction prioritized identifying

(a) recurring findings, (b) points of divergence or

The American Journal of Engineering and Technology

and limitations

(c)

acknowledged by the authors. For example, empirical

contradiction, methodological
findings about how developers engineer test cases were
to determine whether observed
with
lightweight requirements annotation or automation
adoption (Aniche et al., 2021; Pudlitz et al., 2020). Claims

about LLMs' role in test generation and evaluation were

cross-examined

behaviors aligned recommendations for

examined in relation to the surveys that characterize
LLM properties and code-generation performance (Zhao
et al., 2024; Chen et al., 2024; Wang et al., 2024).

Synthesis logic and justificatory mapping. The article
uses a synthesis logic that is both abductive and analytic.
Abduction allows for the development of plausible
frameworks that best explain the ensemble of findings;
analysis ensures the frameworks are internally coherent
and consistent with empirical details. Each theoretical
claim in the proposed framework is justified by at least
one source from the supplied list; major claims rely on
multiple corroborating sources whenever possible to
strengthen inferential robustness. For instance, the
need for traceability-first testing is justified by empirical
observations on testing artifacts and requirements
annotations (Pudlitz et al.,, 2020) and by analyses of
testing strategy limitations (Putra et al., 2023).

Constructing the layered testing framework. The
culmination of synthesis is a layered testing framework
that integrates requirements annotation, LLM-assisted
test generation, artifact traceability, and continuous
empirical feedback. This framework was iteratively
constructed by: (1) enumerating desiderata derived
from the literature (e.g., adaptability, explainability,
scalability), (2) mapping each desideratum to specific
mechanisms or tools discussed in the literature (e.g.,
lightweight requirements annotation techniques,
automation frameworks), and (3) validating whether the
proposed mechanisms address documented industrial
challenges (Alshahwan et al., 2023; Kassab et al., 2021).
Each component of the framework is explicitly linked to

the literature to ensure accountability.

Analytical narration and rigorous qualification. The
Results and Discussion sections present descriptive
synthesis and conceptual extensions with rigorous
qualification: claims are framed as empirically-grounded
interpretations, limitations are explicitly acknowledged,
and alternative interpretations are explored. This step
software

aligns with best practices in empirical

https://www.theamericanjournals.com/index.php/tajet

204

engineering scholarship that insist on transparency
about evidence strength and the bounds of inference
(Kassab et al., 2021; Aniche et al., 2021).

Limitations of the synthesis methodology. While

integrative synthesis enables broad perspective-
building, it is limited by reliance on the supplied
literature and hence inherits any blind spots in that
literature. This article mitigates that constraint by
careful cross-referencing across studies with different
methods (surveys, observational studies, industrial
reports) to highlight convergent validity. References to
LLMs and code generation are grounded in recent
surveys and evaluations present in the supplied list
(zhao et al., 2024; Wang et al., 2024; Chen et al., 2024),
but the article refrains from extrapolating beyond what
the

approach does not replace the need for primary

literature supports. Moreover, the synthesis

empirical validation of the proposed framework; it aims

to provide a conceptually solid, evidence-based

blueprint that future empirical work can test and refine.

Ethical orientation. Throughout the

synthesis, the methodology prioritizes human-centered

and practical

considerations (developer workflows, job profiles) and
practical constraints (organizational adoption barriers),
reflecting the literature's consistent emphasis on
aligning technical proposals with industrial realities

(Kassab et al., 2021; Alshahwan et al., 2023).

this
methodology, the article produces a richly elaborated

By following multi-step, evidence-grounded
analytical narrative and a pragmatic testing framework
that integrates historical wisdom, empirical developer
insights, workforce realities, and the specific testing
demands brought about by LLMs and serverless

paradigms.
RESULTS

The results section presents the core findings generated
through the integrative synthesis. Results are organized
into thematic findings that emerge from cross-
referencing the supplied literature: (1) historical
continuity and transformation in testing strategies; (2)
the centrality of lightweight requirements annotation
and traceability; (3) human factors and developer
practices in test engineering; (4) industrial profile and
adoption barriers for testing research; (5) implications of
serverless architectures for testing; (6) specific testing

opportunities and risks introduced by LLMs; (7) a

The American Journal of Engineering and Technology

205

and (8)
prioritized

proposed layered testing framework;

operational recommendations and a
research agenda. Each finding is supported by citations

drawn from the supplied references.

1. Historical continuity and transformation in testing
strategies. The literature reveals a clear trajectory: early
testing work concentrated on structural and functional
analysis of conventional applications, with specific
attention paid to web applications and their unique
testing affordances (Ricca & Tonella, 2001; Andrews et
2005).
broadened to

al., Over subsequent decades, research
include automation frameworks for
dynamic testing (Smith & Taylor, 2022) and to map the
semantic evolution of testing research (Gurcan et al.,,
2022). Gurcan et al. (2022) provide a comprehensive
content analysis showing a shift from code-centric and
manual testing concerns to research on automation,
semantic-level specifications, and pipeline integration.
Putra et al. (2023) further synthesize contemporary
testing strategies via a systematic review, highlighting
strengths and weaknesses of various approaches in
terms of coverage, cost, and maintainability. Together,
these works document both continuity—testing remains
fundamentally concerned with detecting faults and
verifying behavior—and transformation—testing
strategies have become more automation-oriented,
and

context-aware, integrated with development

pipelines.

2. The centrality of lightweight requirements annotation
and traceability. Multiple studies emphasize that
effective testing depends on clear connections between
requirements and test artifacts (Pudlitz et al., 2020).
Lightweight requirements annotation, which enables
rapid, low-overhead linking between requirements and
tests, emerges as a pragmatic technique for improving
test relevance without imposing heavy documentation
burdens (Pudlitz et al., 2020). This emphasis on
traceability is echoed by surveys and reviews that
identify traceability and semantic requirements as core
enablers of efficient automated test generation and
prioritization (Gurcan et al., 2022; Putra et al., 2023).
The implication is that test automation and LLM-assisted
generation benefit significantly from structured but
lightweight semantic inputs that carry intent and
acceptance criteria, enabling more targeted and
meaningful test cases.

3. Human factors and developer practices in test

https://www.theamericanjournals.com/index.php/tajet

Aniche al. (2021)

observational account of how developers actually

engineering. et provide an

engineer test cases, revealing cognitive patterns,
heuristics, and collaborative practices that shape test
quality. Developers often rely on implicit knowledge,
code familiarity, and iterative exploratory testing rather
than strictly following prescriptive testing templates
(Aniche et al., 2021). This micro-level insight indicates
that any automation or LLM-assisted approach must
accommodate and augment, rather than supplant,
developer workflows. Pudlitz et al. (2020) complements
this by showing that lightweight annotations reduce
friction in the developer workflow and improve the
alignment between what is tested and why it is tested.

4. Industrial profile and adoption barriers for testing
research. Kassab et al. (2021) analyze software testing
job profiles in the United States, illuminating demand-
side realities for skills, responsibilities, and tools. Their
analysis reveals heterogeneity in role definitions, with
many practitioners expected to perform a mix of
manual, automated, and domain-specific testing tasks.
(2023)
perspective on research challenges, noting that many

Alshahwan et al. present an industrial
academic proposals fail to address issues like tool
integration, scalability, and maintainability in industrial
settings. These studies together articulate a gap
between academically proposed methods and practical
be

organizational workflows, tooling ecosystems, and the

needs: testing research must attuned to

skills composition of testing teams.

5. Serverless architectures and testing implications. De
Silva and Hewawasam (2024) study the impact of
software testing on serverless applications,
documenting the unique testing vectors that serverless
architectures introduce—stateless function invocation,
externalized services, ephemeral execution contexts,
These

characteristics complicate traditional approaches to unit

and complex event-driven topologies.
and integration testing because end-to-end behavior
emerges from distributed orchestration rather than
monolithic program state. The review implies that
testing strategies for serverless must prioritize
environment emulation, observability, and contract-
based testing mechanisms that can capture function-
level correctness while acknowledging the dynamism of

cloud-hosted resources.

6. LLMs: testing opportunities and risks. Recent surveys

The American Journal of Engineering and Technology

and evaluations indicate that LLMs can assist with code
generation, test-case synthesis, and documentation, but
they also introduce new verification challenges. Zhao et
al. (2024) and Wang et al. (2024) outline both the
promise and caveats of LLMs in code and testing tasks:
LLMs can produce structurally plausible code and test
scaffolds (Wang et al., 2024), but their outputs are
probabilistic, context-sensitive, and may incorporate
subtle defects or misinterpretations of intent (Zhao et
al., 2024; Chen et al.,, 2024). Wang et al. (2024)
additionally highlight evaluation and landscape issues,
noting the need for systematic benchmarks that capture
semantic correctness, robustness, and maintainability of
LLM-generated tests.

7. A proposed layered testing framework. Synthesizing
the prior findings yields a layered, traceability-first
testing framework designed to be adaptive and
trustworthy in modern ecosystems. The framework
contains four primary layers: (a) semantic requirements
(b) LLM-assisted test
generation constrained by explicit traceability links; (c)

and lightweight annotation;
environment-aware execution harness (with serverless
emulation and contract-based validation); and (d)
empirical feedback and human-in-the-loop validation.
Each layer maps directly to documented needs:
lightweight targetted LLM
prompting and test relevance (Pudlitz et al., 2020);

annotations facilitate
constrained LLM generation attenuates probabilistic
risks (Wang et al., 2024; Zhao et al., 2024); environment-
aware execution responds to serverless dynamism (De
Silva & Hewawasam, 2024); and human oversight
addresses developer workflow realities and job profile
constraints (Aniche et al., 2021; Kassab et al., 2021).

8.
priorities. Based on synthesis, a set of operational

Operational recommendations and research
recommendations emerges: (1) invest in lightweight

requirements annotation processes to improve
alignment between tests and intent (Pudlitz et al., 2020;
Putra et al., 2023); (2) adopt constrained LLM prompting
patterns and validation checks to leverage LLM
productivity while reducing error risk (Wang et al., 2024;
Zhao et al., 2024); (3) design serverless test harnesses
that emulate key cloud contracts and provide robust
observability (De Silva & Hewawasam, 2024); (4) foster
role clarity and upskilling to bridge the academic-

industrial adoption gap (Kassab et al., 2021; Alshahwan

https://www.theamericanjournals.com/index.php/tajet

206

et al., 2023); and (5) prioritize empirical evaluations that
but also
maintainability, developer effort, and integration costs
(Putra et al., 2023; Aniche et al., 2021).

measure not only defect detection

Collectively, these results synthesize a literature-
informed vision for testing practices that are technically
robust, human-centered, and practically adoptable in

contemporary development contexts.
DISCUSSION

The discussion engages in in-depth interpretation of the
results, explores theoretical implications and counter-
arguments, articulates limitations, and provides a
detailed roadmap for future research and practice. Each
sub-section unpacks major themes and anchors them in

supplied literature.

1. Theoretical implications: from code-centric to
testing.

implication is the maturation of testing from primarily

semantics-aware One major theoretical
code-centric, fault-detection perspectives to semantics-
paradigms.

emphasized structural and dynamic analyses for web

aware, traceability-centric Early work
and enterprise applications (Ricca & Tonella, 2001;
2005), but the

consistently gravitates toward integrating requirements

Andrews et al, literature now
semantics into testing pipelines (Pudlitz et al., 2020;
Gurcan et al.,, 2022). This shift matters theoretically
because it reframes testing as an activity of intent-
preservation—ensuring that the software's behavior
satisfies user-level specifications and business intent,
not just that it adheres to lower-level code properties.
Lightweight requirements annotations operationalize
this theoretical move by providing a pragmatically low-
cost way to encode semantics, which then becomes
actionable for both automated test generation and
manual validation. The theoretical challenge, however,
lies in formalizing the mapping between informal but
pragmatic annotations and the formal test artifacts that
can be executed and validated—an open research area
highlighted by Gurcan et al. (2022).

2. Human-centeredness and socio-technical tensions.
The micro-level studies of developers engineering test
cases reveal a critical caution: automated solutions that
ignore human workflows risk low adoption and limited
effectiveness (Aniche et al., 2021). Developers often
create tests using local knowledge about edge cases,
historical

bug patterns, and code idiosyncrasies—

The American Journal of Engineering and Technology

207

that is formal

specifications.

captured in
LLM-assisted
must be

knowledge rarely

Consequently, test-

generation approaches framed as
augmentative tools that surface candidate tests and
explanations, leaving ultimate validation and
contextualization to developers. This human-in-the-loop
posture not only respects developer expertise but may
also help detect hallucinations or misaligned outputs
from LLMs. Alshahwan et al. (2023) further emphasize
that

constraints—tools must be integrable into existing

research must grapple with organizational

toolchains and demand manageable maintenance
efforts to achieve industrial uptake.

3. Serverless architectures: empirical complexity and

contractual guarantees. Serverless platforms
reconfigure failure modes and testing emphases: the
locus of correctness often shifts from function internals
to inter-service contracts and orchestration. De Silva and
Hewawasam (2024) underscore the complexity of
testing

dependencies and short-lived invocations complicate

serverless systems, where environmental

reproducible test executions. From a theoretical
perspective, this invites a reframing: the unit of testing
moves toward measurable contracts (e.g., event

semantics, latency and reliability guarantees,

idempotency properties) rather than classical function-
This
methodological consequences: test harnesses should

level assertions alone. reframing has
emphasize emulation of event streams, contracts for
third-party services, and observability to attribute
failures accurately. There is a counter-argument, which
cautions against over-engineering environment
emulation that can be costly. The literature suggests a
pragmatic balance—define minimal but expressive
contract tests that capture critical system invariants
while relying on targeted integration tests for full
orchestration verification (De Silva & Hewawasam,

2024).

4. LLMs in testing: promise, risk, and evaluation
complexity. LLMs offer a compelling productivity boost:
they can synthesize test scaffolds, propose test inputs,
and transform documentation into executable scenarios
(Wang et al., 2024; Zhao et al., 2024). However, their
probabilistic nature introduces both operational and
epistemic risks: outputs may be syntactically correct but
semantically misaligned; prompt sensitivity leads to
brittle generation; and models may hallucinate plausible
The literature calls for

yet incorrect behaviors.

https://www.theamericanjournals.com/index.php/tajet

constrained prompting strategies and robust validation
pipelines (Wang et al.,, 2024; Chen et al.,, 2024).
Furthermore, evaluating LLM-generated tests
challenges traditional metrics: beyond pass/fail rates,
we must measure semantic coverage (the extent to
which generated tests exercise intended behaviors),
robustness (resilience of tests across input
distributions), and maintainability (effort required to
keep generated tests aligned as the system evolves). The
need for new benchmarks and evaluation frameworks is
emphasized in the literature (Chen et al., 2024; Zhao et

al., 2024).

5. Integrative framework: benefits and trade-offs. The
proposed layered testing framework offers several
theoretical advantages: it grounds test generation in
explicit intent (via lightweight annotations), uses LLMs
as productivity amplifiers while constraining their
outputs, and situates test execution in environment-
aware harnesses suitable for serverless contexts. This
targets key
explainability, and operational feasibility. However,

combination desiderata—relevance,
trade-offs exist. For example, maintaining traceability

links requires organizational discipline and incurs
coordination costs; LLM integration raises governance
guestions about model updates and reproducibility; and
serverless emulation can be resource-intensive. These
in the

perspectives literature, which cautions about the cost-

trade-offs echo concerns raised industrial
benefit calculus that organizations must undertake for
research-derived tools (Alshahwan et al., 2023; Kassab
et al., 2021).

6. Counter-arguments and alternative perspectives. One
counter-argument is that the proposed framework may
unduly prioritize semantics and human oversight at the
expense of fully automated, scalable testing.
Proponents of end-to-end automation may point to
advances in model scaling and canonical test suites as
sufficient to automate many testing tasks. The literature
this that

automation's value diminishes when context-specific

tempers optimism by emphasizing
correctness is critical, and when maintenance overheads
outweigh the gains (Putra et al., 2023; Aniche et al,,
2021). Another

annotation overhead—favoring purely code-driven test

perspective argues for minimal
generation—yet the evidence shows that code-only
approaches often miss semantic intent and thus
produce less useful tests (Pudlitz et al., 2020; Gurcan et

al., 2022). The synthesis thus supports a hybrid posture:

The American Journal of Engineering and Technology

208

leverage automation where clear formal signals exist,
and adopt semantics-aware approaches where human
intent is critical.

7. Limitations of the current synthesis and empirical
validation needs. The article's integrative synthesis is
limited by its reliance on existing studies; while it
synthesizes multiple perspectives, it does not present
new experimental data validating the proposed
framework. Validation is a crucial next step: controlled
experiments comparing traceability-first LLM-assisted
approaches with baseline automation and manual
testing in terms of defect detection, developer effort,
and maintenance costs are necessary. Moreover,
specific metrics and benchmark datasets for LLM-
generated test evaluation must be developed to allow
reproducible comparisons across tools and models
(Wang et al., 2024; Chen et al., 2024).

8. Detailed roadmap for future research. Building on the
synthesis, the following prioritized research agenda is
proposed, each item directly tied to evidence from the
literature:

a. Empirical evaluation of traceability-first pipelines.
that practitioner
productivity and defect detection when lightweight
requirement annotations are used versus not used
(Pudlitz et al., 2020; Putra et al., 2023).

Design experiments compare

b. Benchmarks for LLM-generated tests. Develop

semantic-level benchmarks capturing intent-
preservation and robustness; evaluate multiple LLMs
against these benchmarks (Zhao et al., 2024; Chen et al.,

2024; Wang et al., 2024).

c. Serverless contract testing frameworks. Create and
evaluate test harnesses that emulate cloud events and
third-party contracts with minimal overhead, measuring
effectiveness in real-world serverless apps (De Silva &
Hewawasam, 2024).

d. Organizational adoption studies. Conduct
longitudinal studies examining how teams adopt LLM-
assisted testing tools, focusing on role dynamics and skill
requirements (Kassab et al.,, 2021; Alshahwan et al.,

2023).

e. Human-in-the-loop validation strategies. Investigate
interfaces and interaction designs that enable efficient
human oversight of LLM outputs, minimizing cognitive

https://www.theamericanjournals.com/index.php/tajet

load while maximizing detection of hallucinations
(Aniche et al., 2021; Wang et al., 2024).

9. Practical implications for practitioners. Translating the

literature into operational advice vyields several

actionable recommendations: adopt lightweight
annotations for critical features to guide automation;
use LLMs to scaffold tests but enforce validation gates
and review workflows; prioritize contract-based tests for
serverless components; and invest in skill development
and role clarity to accommodate new testing workflows
(Pudlitz et al., 2020; De Silva & Hewawasam, 2024;

Kassab et al., 2021).

This extended discussion theoretical

reflection, counter-arguments, methodical limitations,

integrates

and a concrete research roadmap, all grounded in the
supplied literature.

CONCLUSION

This article synthesizes a broad and multidisciplinary
body of literature to advance a coherent vision for
reshaped by LLMs,
automation frameworks, and serverless computing. The

software testing in a world

evidence indicates several
testing
lightweight in operational

converging imperatives:

must become more semantics-aware,

overhead, and human-
centered to accommodate developer expertise and
organizational realities (Pudlitz et al., 2020; Aniche et al.,
2021; Kassab et al., 2021). LLMs offer transformative
potential for test generation and developer productivity
but simultaneously raise challenges of probabilistic
outputs, evaluation complexity, and governance (Zhao
et al., 2024; Wang et al.,, 2024; Chen et al.,, 2024).
Serverless architectures introduce environmental
dynamism that compels a shift toward contract-oriented
testing and advanced observability (De Silva &

Hewawasam, 2024).

The layered, traceability-first framework proposed in
this article presents an integrative pathway that

leverages lightweight requirements annotation to
anchor LLM-assisted generation, deploys environment-
aware execution harnesses for serverless contexts, and
maintains human-in-the-loop validation to preserve
trust and relevance. This framework, while promising,
requires substantial empirical validation across
defect

maintainability, developer effort, and integration cost.

dimensions of detection capability,

The research roadmap outlines concrete empirical and

The American Journal of Engineering and Technology

tooling milestones that, if pursued, can substantively
close the gap between academic proposals and
industrial needs (Alshahwan et al., 2023; Putra et al.,
2023).

Ultimately, the path to trustworthy and efficient testing
is not purely technical; it is socio-technical. It requires
aligning tool capabilities with developer workflows,
organizational incentives, and the complex realities of
modern software ecosystems. The synthesis and
recommendations in this article aim to catalyze that
alignment by offering a rigorously grounded, literature-
backed framework and a prioritized research agenda. By
doing so, the article contributes to a mature research
dialogue that moves beyond isolated techniques toward
integrative solutions that can be adopted and adapted

in real-world software engineering practice.

REFERENCES

1. Putra, S.J.; Sugiarti, Y.; Prayoga, B.Y.; Samudera,
D.W.; Khairani, D. Analysis of Strengths and
Weaknesses of Software Testing Strategies:

Systematic Literature Review. In Proceedings of the
2023 11th International Conference on Cyber and IT
Service Management (CITSM), Makassar, Indonesia,
10-11 November 2023; pp. 1-5.

Gurcan, F.; Dalveren, G.G.M.; Cagiltay, N.E.; Roman,
D.; Soylu, A. Evolution of Software Testing Strategies
and Trends: Semantic Content Analysis of Software
Research Corpus of the Last 40 Years. |IEEE Access
2022, 10, 106093-106109.

Pudlitz, F.; Brokhausen, F.; Vogelsang, A. What Am |
Testing and Where? Comparing Testing Procedures
Based on Lightweight Requirements Annotations.
Empirical Software Engineering 2020, 25, 2809-
2843,

Kassab, M.; Laplante, P.; Defranco, J.; Neto, V.V.G,;
Destefanis, G. Exploring the Profiles of Software
Testing Jobs in the United States. IEEE Access 2021,
9, 68905-68916.

De Silva, D.; Hewawasam, L. The Impact of Software
Testing on Serverless Applications. IEEE Access
2024, 12, 51086-51099.

Alshahwan, N.; Harman, M.; Marginean, A. Software

Testing Research Challenges: An Industrial

https://www.theamericanjournals.com/index.php/tajet

209

10.

11.

12.

13.

14.

15.

16.

17.

The American Journal of Engineering and Technology

In Proceedings of the 2023 IEEE
Conference on Software Testing, Verification and
Validation (ICST), Dublin, Ireland, 16—20 April 2023;
pp. 1-10.

Perspective.

Aniche, M.; Treude, C.; Zaidman, A. How Developers
Engineer Test Cases: An Observational Study. IEEE
Transactions on Software Engineering 2021, 48,
4925-4946.

Zhao, W.X.; Zhou, K.; Li, J.; Tang, T.; Wang, X.; Hou,
Y.; Min, Y.; Zhang, B.; Zhang, J.; Dong, Z.; et al. A
Survey of Large Language Models. arXiv 2024,
arXiv:2303.18223.

Wang, J.; Huang, Y.; Chen, C,; Liu, Z.; Wang, S.; Wang,
Q. Software Testing With Large Language Models:
Survey, Landscape, and Vision. IEEE Transactions on
Software Engineering 2024, 50, 911-936.

Chen, L.; Guo, Q.; Jia, H.; Zeng, Z.; Wang, X.; Xu, Y.;
Wu, J.; Wang, Y.; Gao, Q.; Wang, J.; et al. A Survey
on Evaluating Large Language Models in Code
Generation Tasks. arXiv 2024, arXiv:2408.16498.

Ricca, F.; Tonella, P. Analysis and testing of web
of the
Conference on Software Engineering, 2001, 25(3),
25-34.

applications. Proceedings International

Andrews, A.; Offutt, J.; Alexander, R. Test generation
for web applications. IEEE Transactions on Software
Engineering 2005, 31(3), 187-202.

Smith, J.; Taylor, R. Automated frameworks for
dynamic web testing. Software Testing Journal
2022, 37(1), 45-67.

Lee, K.; Johnson, S. Leveraging generative Al for
automated test case creation. Proceedings of ICSE,
2022, pp. 198-207.

OpenAl. GPT-4 Technical Report. arXiv preprint,
2023.

AutoGPT. AutoGPT, 2022.

Qin, Y.; Liang, S.; Ye, Y.; Zhu, K.; Yan, L.; Lu, Y.; Lin, Y.;
B.; et al. ToolLLM:
Facilitating large language models to master
16,000+ real-world APIs. arXiv preprint, 2023.

Cong, X.; Tang, X.; Qian,

210

18. Chandra, R,

Lulla, K.;
frameworks for end-to-end testing of large language

Sirigiri, K. Automation

models (LLMs). Journal of Information Systems
Engineering and Management 2025, 10, e464—e472.

https://www.theamericanjournals.com/index.php/tajet

