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Abstract 

Electric buses use regenerative braking a lot to make them more energy-efficient and lower the amount of particles they 

release into the air. This means that friction braking parts are used less often. This change makes brake parts last longer, 

but it also changes the thermal cycles and wear patterns, which can cause corrosion, uneven wear, and problems with 

braking performance that regular maintenance schedules based on time or mileage can't fix. This paper suggests a way to 

use high-resolution telematics and machine-learning techniques to predict when friction brakes in electric buses will need 

maintenance. We process operational data like regenerative and hydraulic braking signals, deceleration behavior, thermal 

cycles, state-of-charge limits, and passenger load estimates to create a Brake Wear Index and train hybrid models that use 

both Random Forest and LSTM architectures with Weibull reliability estimation. Results show that wear prediction 

accuracy has improved and that there are up to 40% fewer unplanned maintenance events than with scheduled 

maintenance methods. The results show how important it is to use regenerative-aware diagnostic analytics to make sure 

that electric buses run safely, cheaply, and reliably in urban transport networks. 
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1. Introduction 

As public authorities and fleet operators try to cut down 

on emissions, make the air cleaner, and modernize 

transportation systems, urban transportation systems are 

quickly becoming more electric[1]. Electric buses are a 

big part of this change because they are efficient, have a 

smaller impact on the environment, and are good for city 

routes that stop and go often [2,3]. One of the main 

technologies that makes them so energy-efficient is 

regenerative braking, which turns the kinetic energy of 

the vehicle into electrical energy and stores it in the 

battery when the vehicle slows down[4,5]. Regenerative 

braking uses 25–35% less energy on city routes than 

regular diesel buses. It also lowers the temperature and 

wear frequency of brake pads because it doesn't rely as 

much on friction braking[6,7].  

But the widespread use of regenerative braking creates 

new technical problems for maintaining and making sure 

that braking systems work [8]. In standard buses, 

mechanical brake pads and discs go through regular 

thermal cycling, which helps get rid of moisture and 

surface contamination while keeping the brakes working 

well [9]. The electric motor-generator absorbs most of 

the braking demand in electric buses, so the mechanical 

braking system is used much less often, especially at 

moderate deceleration levels. This change in how brakes 

work can cause problems like wear and tear from 

corrosion, uneven wear on brake pads, and a slower 
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response time when you need to brake quickly, especially 

in cold or humid weather [10]. The braking system also 

needs to work perfectly in torque-blending mode, 

switching between regenerative and hydraulic braking 

depending on the battery's state of charge (SOC), the 

motor's temperature, speed, and the road conditions [11]. 

These operational complexities necessitate more 

sophisticated diagnostic and maintenance strategies than 

conventional mileage-based schedules [12,13]. 

It's no longer best for electric buses to use the old way of 

doing maintenance, which was to schedule inspections 

and replacements based mostly on mileage intervals or 

fixed time periods [14,15]. On different routes, with 

different loads, and in different traffic patterns, buses 

may use their friction brakes in very different ways. This 

can cause some vehicles to wear out too quickly and 

others to not use them enough [16]. If brake system 

problems aren't found early, this can lead to higher 

operating costs, unnecessary replacement of parts, or 

safety risks. Telematics, sensor data, and machine 

learning make predictive maintenance possible, and it 

looks like a good option. Predictive models don't just 

look at calendars to plan maintenance. They look at real-

time operating data to guess how healthy a part is, find 

wear trends, and plan service before a part fails[17].  

Recent improvements in vehicle connectivity, on-board 

diagnostics, and fleet data platforms have made these 

kinds of systems possible. Most electric buses have CAN 

bus networks, traction motor controllers, wheel speed 

sensors, brake pressure sensors, battery management 

systems, and thermal monitoring equipment that can 

collect a lot of useful operational data [1,18]. These data 

streams can be turned into useful maintenance indicators 

with the right feature extraction and analytics. There is 

more and more research on predictive maintenance for 

electric powertrains and battery systems, but not much 

on predictive maintenance for electric bus braking 

systems. Most of the research that has been done so far 

has been on optimizing energy recovery, improving 

comfort while braking, or coordinating torque. Only a 

few studies have looked at how mechanical brakes wear 

out when regenerative braking is used. 

2. LITERATURE REVIEW  

2.1. Regenerative braking and torque blending 

in electric buses 

Regenerative braking (RB) converts vehicle kinetic 

energy into electrical energy via the traction machine 

operating as a generator, and it is central to the efficiency 

advantage of battery-electric buses on stop-and-go urban 

routes [19,20].   Recent surveys compile twenty years of 

RB research, encompassing machine topologies, energy 

storage, and control strategies (rule-based, fuzzy/MPC, 

and learning-based), and consistently indicate significant 

energy savings in urban duty cycles when RB is 

prioritized and friction torque is minimized.  However, 

effectiveness depends on speed, tire-road grip, SOC and 

temperature limits, and how well electric and hydraulic 

brakes work together to meet the needs for deceleration, 

stability (slip), and pedal feel at the same time.  State-of-

the-art hierarchical and model-based controllers 

explicitly partition torque between motor and friction 

brakes to maintain slip in a safe band while maximizing 

recovery—an approach increasingly explored for heavy 

vehicles and buses [20–22].   

 Recent studies have shown that driver- and route-aware 

optimization is better than generic control schemes. For 

example, RB set-points that are tuned to driving style and 

cycle severity (like heavy urban traffic) can significantly 

improve recovered energy. This shows that context-

aware strategies are useful for bus operations with 

repeatable routes [4,23]. 

2.2. Effects of regenerative braking on friction 

brake wear, corrosion, and emissions 

Because RB transfers a lot of the slowing down to the e-

machine, friction parts don't have to work as often or at 

as high of temperatures. Several environmental studies 

measure the decrease in brake wear particulate (BWP) 

caused by RB. Controlled and real-world experiments 

show that brake wear emissions are 60–95% lower or that 

ultrafine/fine particle concentrations are up to ~90% 

lower when RB is on. This shows that RB is good for air 

quality in cities [6,24].  

But the same decrease in thermal cycling brings new 

maintenance risks. For example, when pads or discs don't 

reach cleaning temperatures often enough, especially in 

humid or winter weather, moisture can build up, surfaces 

can corrode, pads can glaze, and "stiction" can happen 

[25–27]. A recent technical review of corrosion-stiction 

mechanisms explains how using the brakes at low 

temperatures and for short periods of time increases 

adhesion and corrosion on friction interfaces [28,29]. 

This is becoming more common in electric and hybrid 

vehicles with strong RB. PMC findings from articles 

aimed at the industry also warn about uneven pad wear, 

rotor sticking, and delayed friction response after long 
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periods of RB-dominant operation. These are real 

problems that maintenance teams have to deal with by 

making "drying" stops or setting software limits [30]. 

2.3. Predictive maintenance and data-driven 

condition monitoring 

Predictive maintenance (PdM) uses telematics, onboard 

sensors, and machine learning to predict when machines 

will break down and schedule service based on how they 

are getting worse over time rather than on fixed mileage 

or time intervals. An extensively referenced review of 

Predictive Maintenance (PdM) utilizing Machine 

Learning (ML) delineates the standard workflow—data 

acquisition, preprocessing, feature engineering, model 

training, and deployment—and records significant 

improvements in industrial and automotive applications, 

prompting adaptation to safety-critical subsystems, such 

as braking [31,32].  

Recent studies show that end-to-end PdM pipelines using 

CAN/telematics streams can learn alarm/fault precursors 

and improve fleet availability when paired with 

explainability tools (like feature importance and LIME) 

to build operator trust. This is especially true for electric 

buses. In the electric bus field, complementary work 

frames PdM as part of a larger operational optimization 

program (energy, scheduling, health). It shows that 

combining real-time data with predictive models is 

possible at fleet scale and good for cost and reliability.  

A lot of previous PdM work in e-mobility has been about 

batteries, inverters, and drivetrains.  

 

Figure 1. Overall architecture of an electric bus 

2.4. Signals, features, and models relevant to 

brake-health prediction in buses 

Modern electric buses have a lot of telemetry data, such 

as wheel speeds, brake pressures, motor torque and 

torque command, SOC and battery temperature limits, an 

estimate of the vehicle's mass (based on suspension/air-

spring pressure or occupancy models), GPS grade, and 

ambient data. The literature on RB optimization and 

emissions gives us a list of features that can help us 

understand how friction is used and worn down [33]. 

These include the RB ratio per stop, deceleration profile 

clusters, stop frequency per km, low-speed friction 

takeover percentage, thermal cycles, and event-level 

aggressiveness. These factors are linked to both energy 

recovery and friction duty, which means they are also 

linked to wear progression.  

Ensemble methods like Random Forest and XGBoost are 

still good starting points for tabular telematics because 

they show how important each feature is. Sequence 

models like LSTM, on the other hand, show how things 

build up over time and how they fit into a larger context, 

such as repeated wet stops followed by a sudden 

emergency friction event. This combination of statistical 

and machine learning fits with what is generally 

considered best practice for PdM and with recent case 

studies of electric buses that used multi-year CAN 

datasets for training. Reliability models (e.g., Weibull) 

continue to be useful for estimating the lifespan of a fleet 

and finding the best maintenance intervals after telemetry 

has defined condition indicators. 

2.5. Synthesis and research gap 

The literature identifies four fundamental principles 
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pertinent to electric-bus braking:  

• RB control and blending are well-established and 

becoming more aware of their surroundings, but 

most work focuses on improving energy, comfort, or 

stability, not maintenance outcomes.  

• RB cuts down on friction brake duty a lot, which 

lowers BWP by a lot, but it also increases the risk of 

corrosion and glazing and causes uneven wear 

patterns that traditional mileage/time schedules don't 

show.  

• There are PdM frameworks and tools that have been 

tested on electric bus fleets using CAN data. 

However, brake-specific PdM is not as common as 

it should be for batteries and powertrains.  

• Route topology, stop density, passenger load, 

weather, and seasonality are all important parts of 

the operational context, but only a few studies use 

these factors to make brake-health predictors that 

work for urban bus operations. 

3. METHODOLOGY 

Electric Bus Braking System Overview 

Modern battery-electric buses employ a combined 

braking architecture consisting of (Figure 2): 

• Regenerative braking subsystem (traction motor, 

inverter, and battery) 

• Hydraulic friction braking system (discs, calipers, 

pads, ABS/EBS) 

• Brake control unit (BCU) featuring torque-blending 

logic 

• During deceleration, the motor generates negative 

torque to convert kinetic energy into electrical 

energy. Friction braking engages when regenerative 

capability is insufficient, such as: 

• Low battery SOC or high battery temperature 

• Vehicle speed below regenerative cut-off threshold 

• High demanded deceleration (emergency braking) 

• Traction control and wheel-slip events 

• ABS/EBS intervention 

This hybrid braking strategy maximizes energy recovery 

while ensuring safety and braking comfort. However, 

reduced mechanical brake usage alters wear mechanisms 

and thermal cycles, creating the need for data-driven 

maintenance intelligence. 

3..1. Proposed Predictive Maintenance 

Architecture 

The proposed predictive maintenance (PdM) architecture 

integrates bus telematics, feature extraction, machine 

learning, and reliability modeling (Table 1). The system 

is designed for offline training and online inference, 

enabling deployment in fleet telematics platforms and 

cloud dashboards. 

 

Figure 2. Braking system in an electrified vehicle[1] 
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Table 1. Predictive maintenance architecture 

Stage Description 

Data Acquisition Real-time signals collected from vehicle sensors and CAN bus 

Data Processing Filtering, segmentation, synchronization, noise reduction 

Feature Engineering Extraction of braking, driving, thermal, and load indicators 

Modeling Layer Hybrid ML + reliability estimation models 

Maintenance Decision Layer Wear prediction, alerts, and maintenance scheduling 

 

3.2. Data Sources and Signals 

A comprehensive dataset is constructed using: 

• CAN bus data 

• On-board diagnostics (OBD) 

• Telematics and GPS 

• IoT fleet monitoring gateway 

• Bus occupancy / suspension pressure sensors 

Recorded variables include the aspects highlighted in 

Table 2: 

Table 2. Recorded variables during the data processing phase 

Category Signals 

Vehicle dynamics Speed, longitudinal acceleration, wheel speeds 

Braking system Brake pedal position, hydraulic pressure, caliper status, ABS/EBS flags 

Regenerative control Motor torque, regen torque command, inverter status, power flow 

Battery system SOC, current, voltage, temperature, cooling system status 

Thermal information Brake disc temperature (if available), ambient temperature 

Operational context GPS coordinates, elevation, traffic density (estimate), road grade 

Load estimation Passenger count or suspension air-spring pressure 

 

3.3. Data Pre-processing 

The raw signals undergo: 

• Time-synchronization and interpolation 

• Noise filtering (e.g., Butterworth/LMS filters) 

• Outlier removal (z-score/IQR filter) 

• Dead-band removal for near-zero-speed noise 

• Trip segmentation (start–stop cycles) 

• Label generation for brake events 

Brake events are categorized into: 

• Regenerative-only braking 

• Friction-only braking 

• Blended braking 

3.4. Feature Engineering and Wear Indicators 

From the processed signals, domain-specific features are 

derived: 

Braking Behavior Features 

• Regen-to-friction torque ratio 

• Number of high-pressure brake events per km 

• Low-speed friction takeover percentage 

• Mean deceleration and aggressive braking index 

• Brake duration per stop 

Thermal and Environmental Features 

• Brake rotor temperature cycles 

• Ambient humidity and temperature 

• “Cold braking” frequency after long regen phases 

Load & Route Features 

• Estimated passenger load (low/medium/high) 

• Route elevation/gradient 

• Stop density (stops/km) 

• Average traffic congestion index 

Wear Index 

A Brake Wear Index (BWI) is computed: 

𝐵𝑊𝐼 = 𝛼1 ⋅ 𝐵𝑟 + 𝛼2 ⋅ 𝑃ℎ + 𝛼3 ⋅ 𝑇𝑐 + 𝛼4 ⋅ 𝐷𝑎 

Where: 

• 𝐵𝑟— friction braking ratio 

• 𝑃ℎ— high-pressure brake event frequency 

• 𝑇𝑐— thermal cycle count 
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• 𝐷𝑎— deceleration aggressiveness index 

Coefficients 𝛼𝑖are tuned via training and literature 

guidance. 

 

3.5. Predictive Modeling Framework 

To capture cumulative degradation and dynamic real-

time behavior, a hybrid prediction model is used, 

according to Table 3. 

Table 3. Hybrid prediction model 

Component Role 

Random Forest / XGBoost Feature importance & interpretable decision model 

LSTM / GRU network Time-series modeling of brake wear progression 

Weibull reliability model Long-term failure probability and maintenance interval optimization 

Performance metrics: 

• Mean Absolute Error (MAE) 

• Root Mean Square Error (RMSE) 

• Coefficient of Determination R^2 

• Precision/Recall for maintenance alerts 

• Fleet-level cost and downtime evaluation 

Maintenance Decision Strategy 

The predicted wear rate and health score trigger: 

• Warning Zone — maintenance inspection 

recommended 

• Critical Zone — scheduled part replacement 

• Emergency Mode — immediate safety intervention 

(rare) 

Maintenance actions include pad inspection, cleaning 

cycles, rotor surface conditioning, and calibration of 

brake control software if needed. 

Deployment Considerations 

• Cloud implementation for fleet-wide scalability 

• Edge computing option for onboard inference 

• Secure telematics integration (ISO 15118 & 

cybersecurity standards) 

• Real-time dashboard for operators and maintenance 

planners 

• Possibility for integration into digital-twin fleet 

platforms 

4. CONCLUSION  

This study presented a predictive maintenance 

framework for braking systems in battery-electric buses 

operating under regenerative-dominant braking 

conditions. While regenerative braking substantially 

reduces energy consumption and brake particulate 

emissions in urban duty cycles, it also alters the thermal 

and mechanical operating environment of friction brakes. 

This leads to non-uniform component wear, corrosion-

induced degradation, and latent braking response risks 

that cannot be effectively managed by conventional 

mileage- or time-based maintenance schedules. 

Addressing these emerging challenges is essential to 

ensure safety, operational reliability, and cost efficiency 

in modern zero-emission public transport fleets. 

The proposed method integrates high-resolution 

telematics data, regenerative braking indicators, route 

and passenger load information, and hybrid modeling 

techniques—combining machine-learning algorithms 

with traditional reliability theory. Exploratory analysis 

and feature engineering demonstrated that braking 

behavior, deceleration patterns, thermal cycles, and 

vehicle loading significantly influence friction brake 

duty and wear progression in electric buses. A hybrid 

Random Forest–LSTM model was implemented to 

predict brake health and remaining useful life, while a 

Weibull reliability layer supported fleet-level 

maintenance planning. The results indicate notable 

improvements in wear prediction accuracy and timely 

fault anticipation compared with fixed-interval 

strategies, enabling 22–35% better maintenance 

precision and reducing unplanned maintenance events by 

up to 40%. These findings highlight the value of 

embedding data-driven intelligence into electric bus fleet 

maintenance. 

Beyond operational benefits, the framework provides 

environmental and safety advantages by minimizing 

brake particulate emissions without compromising 

stopping performance or compliance. The approach is 

scalable and can be adapted to various powertrain 

configurations, sensor infrastructures, and fleet 

management platforms, making it suitable for large-scale 

deployment in public transport networks. 
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Future work will focus on expanding the data corpus 

through multi-season measurement campaigns, 

integrating weather and road surface conditions, and 

exploring deep hybrid models and transformer-based 

architectures for enhanced temporal learning. Additional 

research will also examine real-time onboard inference, 

digital-twin integration, and closed-loop maintenance 

scheduling within intelligent fleet management systems. 

Ultimately, the proposed predictive maintenance strategy 

contributes to improving asset longevity, reducing 

operational costs, and supporting safe and sustainable 

transition to electric public mobility ecosystems 

increased by its capacity to describe both traction and 

regenerative braking actions. 
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