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Abstract

Electric buses use regenerative braking a lot to make them more energy-efficient and lower the amount of particles they
release into the air. This means that friction braking parts are used less often. This change makes brake parts last longer,
but it also changes the thermal cycles and wear patterns, which can cause corrosion, uneven wear, and problems with
braking performance that regular maintenance schedules based on time or mileage can't fix. This paper suggests a way to
use high-resolution telematics and machine-learning techniques to predict when friction brakes in electric buses will need
maintenance. We process operational data like regenerative and hydraulic braking signals, deceleration behavior, thermal
cycles, state-of-charge limits, and passenger load estimates to create a Brake Wear Index and train hybrid models that use
both Random Forest and LSTM architectures with Weibull reliability estimation. Results show that wear prediction
accuracy has improved and that there are up to 40% fewer unplanned maintenance events than with scheduled
maintenance methods. The results show how important it is to use regenerative-aware diagnostic analytics to make sure
that electric buses run safely, cheaply, and reliably in urban transport networks.
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1. Introduction wear frequency of brake pads because it doesn't rely as

much on friction braking[6,7].
As public authorities and fleet operators try to cut down

on emissions, make the air cleaner, and modernize
transportation systems, urban transportation systems are
quickly becoming more electric[1]. Electric buses are a
big part of this change because they are efficient, have a
smaller impact on the environment, and are good for city
routes that stop and go often [2,3]. One of the main
technologies that makes them so energy-efficient is
regenerative braking, which turns the kinetic energy of
the vehicle into electrical energy and stores it in the
battery when the vehicle slows down[4,5]. Regenerative
braking uses 25-35% less energy on city routes than
regular diesel buses. It also lowers the temperature and
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But the widespread use of regenerative braking creates
new technical problems for maintaining and making sure
that braking systems work [8]. In standard buses,
mechanical brake pads and discs go through regular
thermal cycling, which helps get rid of moisture and
surface contamination while keeping the brakes working
well [9]. The electric motor-generator absorbs most of
the braking demand in electric buses, so the mechanical
braking system is used much less often, especially at
moderate deceleration levels. This change in how brakes
work can cause problems like wear and tear from
corrosion, uneven wear on brake pads, and a slower
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response time when you need to brake quickly, especially
in cold or humid weather [10]. The braking system also
needs to work perfectly in torque-blending mode,
switching between regenerative and hydraulic braking
depending on the battery's state of charge (SOC), the
motor's temperature, speed, and the road conditions [11].
These operational complexities necessitate more
sophisticated diagnostic and maintenance strategies than
conventional mileage-based schedules [12,13].

It's no longer best for electric buses to use the old way of
doing maintenance, which was to schedule inspections
and replacements based mostly on mileage intervals or
fixed time periods [14,15]. On different routes, with
different loads, and in different traffic patterns, buses
may use their friction brakes in very different ways. This
can cause some vehicles to wear out too quickly and
others to not use them enough [16]. If brake system
problems aren't found early, this can lead to higher
operating costs, unnecessary replacement of parts, or
safety risks. Telematics, sensor data, and machine
learning make predictive maintenance possible, and it
looks like a good option. Predictive models don't just
look at calendars to plan maintenance. They look at real-
time operating data to guess how healthy a part is, find
wear trends, and plan service before a part fails[17].

Recent improvements in vehicle connectivity, on-board
diagnostics, and fleet data platforms have made these
kinds of systems possible. Most electric buses have CAN
bus networks, traction motor controllers, wheel speed
sensors, brake pressure sensors, battery management
systems, and thermal monitoring equipment that can
collect a lot of useful operational data [1,18]. These data
streams can be turned into useful maintenance indicators
with the right feature extraction and analytics. There is
more and more research on predictive maintenance for
electric powertrains and battery systems, but not much
on predictive maintenance for electric bus braking
systems. Most of the research that has been done so far
has been on optimizing energy recovery, improving
comfort while braking, or coordinating torque. Only a
few studies have looked at how mechanical brakes wear
out when regenerative braking is used.

2. LITERATURE REVIEW

2.1. Regenerative braking and torque blending
in electric buses

Regenerative braking (RB) converts vehicle kinetic
energy into electrical energy via the traction machine
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operating as a generator, and it is central to the efficiency
advantage of battery-electric buses on stop-and-go urban
routes [19,20]. Recent surveys compile twenty years of
RB research, encompassing machine topologies, energy
storage, and control strategies (rule-based, fuzzy/MPC,
and learning-based), and consistently indicate significant
energy savings in urban duty cycles when RB is
prioritized and friction torque is minimized. However,
effectiveness depends on speed, tire-road grip, SOC and
temperature limits, and how well electric and hydraulic
brakes work together to meet the needs for deceleration,
stability (slip), and pedal feel at the same time. State-of-
the-art hierarchical and model-based controllers
explicitly partition torque between motor and friction
brakes to maintain slip in a safe band while maximizing
recovery—an approach increasingly explored for heavy
vehicles and buses [20-22].

Recent studies have shown that driver- and route-aware
optimization is better than generic control schemes. For
example, RB set-points that are tuned to driving style and
cycle severity (like heavy urban traffic) can significantly
improve recovered energy. This shows that context-
aware strategies are useful for bus operations with
repeatable routes [4,23].

2.2. Effects of regenerative braking on friction
brake wear, corrosion, and emissions

Because RB transfers a lot of the slowing down to the e-
machine, friction parts don't have to work as often or at
as high of temperatures. Several environmental studies
measure the decrease in brake wear particulate (BWP)
caused by RB. Controlled and real-world experiments
show that brake wear emissions are 60—95% lower or that
ultrafine/fine particle concentrations are up to ~90%
lower when RB is on. This shows that RB is good for air
quality in cities [6,24].

But the same decrease in thermal cycling brings new
maintenance risks. For example, when pads or discs don't
reach cleaning temperatures often enough, especially in
humid or winter weather, moisture can build up, surfaces
can corrode, pads can glaze, and "stiction" can happen
[25-27]. A recent technical review of corrosion-stiction
mechanisms explains how using the brakes at low
temperatures and for short periods of time increases
adhesion and corrosion on friction interfaces [28,29].
This is becoming more common in electric and hybrid
vehicles with strong RB. PMC findings from articles
aimed at the industry also warn about uneven pad wear,
rotor sticking, and delayed friction response after long
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periods of RB-dominant operation. These are real
problems that maintenance teams have to deal with by
making "drying" stops or setting software limits [30].

2.3. Predictive maintenance and data-driven
condition monitoring

Predictive maintenance (PdM) uses telematics, onboard
sensors, and machine learning to predict when machines
will break down and schedule service based on how they
are getting worse over time rather than on fixed mileage
or time intervals. An extensively referenced review of
Predictive Maintenance (PdM) utilizing Machine
Learning (ML) delineates the standard workflow—data
acquisition, preprocessing, feature engineering, model
training, and deployment—and records significant
improvements in industrial and automotive applications,
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prompting adaptation to safety-critical subsystems, such
as braking [31,32].

Recent studies show that end-to-end PdM pipelines using
CAN/telematics streams can learn alarm/fault precursors
and improve fleet availability when paired with
explainability tools (like feature importance and LIME)
to build operator trust. This is especially true for electric
buses. In the electric bus field, complementary work
frames PdM as part of a larger operational optimization
program (energy, scheduling, health). It shows that
combining real-time data with predictive models is
possible at fleet scale and good for cost and reliability.

Alot of previous PdAM work in e-mobility has been about
batteries, inverters, and drivetrains.

Charging Inlet

Figure 1. Overall architecture of an electric bus

2.4. Signals, features, and models relevant to
brake-health prediction in buses

Modern electric buses have a lot of telemetry data, such
as wheel speeds, brake pressures, motor torque and
torque command, SOC and battery temperature limits, an
estimate of the vehicle's mass (based on suspension/air-
spring pressure or occupancy models), GPS grade, and
ambient data. The literature on RB optimization and
emissions gives us a list of features that can help us
understand how friction is used and worn down [33].
These include the RB ratio per stop, deceleration profile
clusters, stop frequency per km, low-speed friction
takeover percentage, thermal cycles, and event-level
aggressiveness. These factors are linked to both energy
recovery and friction duty, which means they are also
linked to wear progression.
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Ensemble methods like Random Forest and XGBoost are
still good starting points for tabular telematics because
they show how important each feature is. Sequence
models like LSTM, on the other hand, show how things
build up over time and how they fit into a larger context,
such as repeated wet stops followed by a sudden
emergency friction event. This combination of statistical
and machine learning fits with what is generally
considered best practice for PAM and with recent case
studies of electric buses that used multi-year CAN
datasets for training. Reliability models (e.g., Weibull)
continue to be useful for estimating the lifespan of a fleet
and finding the best maintenance intervals after telemetry
has defined condition indicators.

2.5. Synthesis and research gap

The literature identifies four fundamental principles
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pertinent to electric-bus braking:

e RB control and blending are well-established and
becoming more aware of their surroundings, but
most work focuses on improving energy, comfort, or
stability, not maintenance outcomes.

RB cuts down on friction brake duty a lot, which
lowers BWP by a lot, but it also increases the risk of
corrosion and glazing and causes uneven wear
patterns that traditional mileage/time schedules don't
show.

There are PAM frameworks and tools that have been
tested on electric bus fleets using CAN data.
However, brake-specific PdM is not as common as
it should be for batteries and powertrains.

Route topology, stop density, passenger load,
weather, and seasonality are all important parts of
the operational context, but only a few studies use
these factors to make brake-health predictors that
work for urban bus operations.

3. METHODOLOGY

Electric Bus Braking System Overview

Modern battery-electric buses employ a combined
braking architecture consisting of (Figure 2):

e Regenerative braking subsystem (traction motor,
inverter, and battery)

e Hydraulic friction braking system (discs, calipers,

Position sensor

Volume 07 - 2025

pads, ABS/EBS)

Brake control unit (BCU) featuring torque-blending
logic

During deceleration, the motor generates negative
torque to convert kinetic energy into electrical
energy. Friction braking engages when regenerative
capability is insufficient, such as:

Low battery SOC or high battery temperature
Vehicle speed below regenerative cut-off threshold
e High demanded deceleration (emergency braking)
]

Traction control and wheel-slip events
ABS/EBS intervention

This hybrid braking strategy maximizes energy recovery
while ensuring safety and braking comfort. However,
reduced mechanical brake usage alters wear mechanisms
and thermal cycles, creating the need for data-driven
maintenance intelligence.

3.1 Proposed Predictive Maintenance

Architecture

The proposed predictive maintenance (PdM) architecture
integrates bus telematics, feature extraction, machine
learning, and reliability modeling (Table 1). The system
is designed for offline training and online inference,
enabling deployment in fleet telematics platforms and
cloud dashboards.
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Figure 2. Braking system in an electrified vehicle[1]
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Table 1. Predictive maintenance architecture

Stage

Description

Data Acquisition

Real-time signals collected from vehicle sensors and CAN bus

Data Processing

Filtering, segmentation, synchronization, noise reduction

Feature Engineering

Extraction of braking, driving, thermal, and load indicators

Modeling Layer

Hybrid ML + reliability estimation models

Maintenance Decision Layer | Wear prediction, alerts, and maintenance scheduling

3.2. Data Sources and Signals

A comprehensive dataset is constructed using:

CAN bus data
On-board diagnostics (OBD)

Telematics and GPS
IoT fleet monitoring gateway
Bus occupancy / suspension pressure sensors

Recorded variables include the aspects highlighted in
Table 2:

Table 2. Recorded variables during the data processing phase

Category

Signals

Vehicle dynamics

Speed, longitudinal acceleration, wheel speeds

Braking system

Brake pedal position, hydraulic pressure, caliper status, ABS/EBS flags

Regenerative control

Motor torque, regen torque command, inverter status, power flow

Battery system

SOC, current, voltage, temperature, cooling system status

Thermal information | Brake disc temperature (if available), ambient temperature

Operational context

GPS coordinates, elevation, traffic density (estimate), road grade

Load estimation

Passenger count or suspension air-spring pressure

3.3. Data Pre-processing

The raw signals undergo:

Time-synchronization and interpolation
Noise filtering (e.g., Butterworth/LMS filters)
Outlier removal (z-score/IQR filter)
Dead-band removal for near-zero-speed noise
Trip segmentation (start—stop cycles)

Label generation for brake events

Brake events are categorized into:

Regenerative-only braking
Friction-only braking
Blended braking

3.4. Feature Engineering and Wear Indicators

From the processed signals, domain-specific features are

derived:

Braking Behavior Features

Regen-to-friction torque ratio
Number of high-pressure brake events per km
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Low-speed friction takeover percentage

Mean deceleration and aggressive braking index

Brake duration per stop

Thermal and Environmental Features

Brake rotor temperature cycles
Ambient humidity and temperature

“Cold braking” frequency after long regen phases

Load & Route Features

Estimated passenger load (low/medium/high)
Route elevation/gradient

Stop density (stops/km)

Average traffic congestion index

Wear Index
A Brake Wear Index (BWI) is computed:

BWI=a,-B,+a, -P,+az T, +a,-D,

Where:

e B,— friction braking ratio
e P,— high-pressure brake event frequency
e T.— thermal cycle count
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e D,— deceleration aggressiveness index
Coefficients a;are tuned via training and literature
guidance.
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3.5. Predictive Modeling Framework

To capture cumulative degradation and dynamic real-
time behavior, a hybrid prediction model is used,
according to Table 3.

Table 3. Hybrid prediction model

Component

Role

Random Forest / XGBoost | Feature importance & interpretable decision model

LSTM / GRU network

Time-series modeling of brake wear progression

Weibull reliability model

Long-term failure probability and maintenance interval optimization

Performance metrics:

e  Mean Absolute Error (MAE)

e Root Mean Square Error (RMSE)

e  Coecfficient of Determination R"2

e  Precision/Recall for maintenance alerts

e Fleet-level cost and downtime evaluation

Maintenance Decision Strategy
The predicted wear rate and health score trigger:

e Warning Zone — maintenance inspection
recommended

e  Critical Zone — scheduled part replacement

e Emergency Mode — immediate safety intervention
(rare)

Maintenance actions include pad inspection, cleaning
cycles, rotor surface conditioning, and calibration of
brake control software if needed.

Deployment Considerations

e Cloud implementation for fleet-wide scalability

e Edge computing option for onboard inference

e Secure telematics integration (ISO 15118 &
cybersecurity standards)

e Real-time dashboard for operators and maintenance
planners

e Possibility for integration into digital-twin fleet
platforms

4. CONCLUSION

This study presented a predictive maintenance
framework for braking systems in battery-electric buses
operating under regenerative-dominant  braking
conditions. While regenerative braking substantially
reduces energy consumption and brake particulate
emissions in urban duty cycles, it also alters the thermal
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and mechanical operating environment of friction brakes.
This leads to non-uniform component wear, corrosion-
induced degradation, and latent braking response risks
that cannot be effectively managed by conventional
mileage- or time-based maintenance schedules.
Addressing these emerging challenges is essential to
ensure safety, operational reliability, and cost efficiency
in modern zero-emission public transport fleets.

The proposed method integrates high-resolution
telematics data, regenerative braking indicators, route
and passenger load information, and hybrid modeling
techniques—combining machine-learning algorithms
with traditional reliability theory. Exploratory analysis
and feature engineering demonstrated that braking
behavior, deceleration patterns, thermal cycles, and
vehicle loading significantly influence friction brake
duty and wear progression in electric buses. A hybrid
Random Forest-LSTM model was implemented to
predict brake health and remaining useful life, while a
Weibull  reliability layer supported fleet-level
maintenance planning. The results indicate notable
improvements in wear prediction accuracy and timely
fault anticipation compared with fixed-interval
strategies, enabling 22-35% better maintenance
precision and reducing unplanned maintenance events by
up to 40%. These findings highlight the value of
embedding data-driven intelligence into electric bus fleet
maintenance.

Beyond operational benefits, the framework provides
environmental and safety advantages by minimizing
brake particulate emissions without compromising
stopping performance or compliance. The approach is
scalable and can be adapted to various powertrain
configurations, sensor infrastructures, and fleet
management platforms, making it suitable for large-scale
deployment in public transport networks.
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Future work will focus on expanding the data corpus
through  multi-season ~ measurement
integrating weather and road surface conditions, and
exploring deep hybrid models and transformer-based
architectures for enhanced temporal learning. Additional
research will also examine real-time onboard inference,
digital-twin integration, and closed-loop maintenance
scheduling within intelligent fleet management systems.
Ultimately, the proposed predictive maintenance strategy
contributes to improving asset longevity, reducing
operational costs, and supporting safe and sustainable
transition to electric public mobility ecosystems
increased by its capacity to describe both traction and
regenerative braking actions.

campaigns,
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