
The American Journal of Engineering and Technology 60 https://www.theamericanjournals.com/index.php/tajet

TYPE Original Research

PAGE NO. 60-67

OPEN ACCESS

SUBMITTED 01 December 2023

ACCEPTED 15 December 2023

PUBLISHED 27 December 2023

VOLUME Vol.05 Issue 12 2023

CITATION

COPYRIGHT

© 2023 Original content from this work may be used under the terms

of the creative common’s attributes 4.0 License.

Advancing Transient Fault Mitigation
in Multicore Systems Through

Software Replication and Hybrid

Resilience Techniques

John A. Prescott
Department of Computer Engineering, Midland Institute of

Technology

Abstract: This article presents an integrative,

theoretically grounded framework for software-centric

transient fault tolerance in multicore embedded

systems, with an emphasis on automotive zonal

controllers and real-time multimedia platforms. The

framework synthesizes thread replication, n-modular

redundancy, checkpoint/rollback strategies, and hybrid

mitigation approaches to produce a cohesive design

methodology that balances reliability, performance,

energy consumption, and implementation cost. The

paper first outlines the fundamental physical and

architectural sources of transient faults in contemporary

semiconductor processes and embedded platforms,

then systematically examines software-level detection

and mitigation techniques reported in the literature.

Building on these foundations, a detailed method is

proposed for selecting and composing fault tolerance

mechanisms according to system constraints such as

timing budgets, safety integrity levels, power envelope,

and hardware support (e.g., ARM Cortex-A series, Zynq-

7000 SoCs). The proposed method includes precise

procedures for thread replication placement,

lightweight output comparison, adaptive replication

factor adjustment, and hybrid checkpoint strategies that

combine forward error detection with limited rollback.

A descriptive evaluation synthesizes expected

outcomes—detection latency, false positive/negative

tradeoffs, worst-case execution overheads, and energy

impacts—by mapping method choices to known

experimental results and theoretical models. The

discussion interrogates tradeoffs, considers

counterarguments (e.g., hardware redundancy

superiority, worst-case real-time violations), and lays

out a research agenda bridging theory and practice. The

conclusion distills actionable guidelines for system

The American Journal of Engineering and Technology 61 https://www.theamericanjournals.com/index.php/tajet

architects seeking to integrate software-centric fault

tolerance into modern automotive and embedded

platforms while preserving real-time guarantees.

Keywords: transient faults, software fault tolerance,

multicore, thread replication, automotive zonal

controllers, checkpoint rollback, hybrid mitigation

Introduction

Contemporary escape rooms have evolved markedly

Semiconductor scaling, driven by continued demand for

higher performance and energy efficiency, has led to

increased susceptibility of integrated circuits to

transient faults—single-event upsets, soft errors

induced by radiation, and charge-related disturbances—

affecting both processor cores and memory elements

(Baumann, 2005). Concurrently, the embedded

landscape, especially in automotive and industrial

domains, has shifted from single-core microcontrollers

to complex multicore systems on chips (SoCs), such as

ARM Cortex-A series and programmable SoCs (ARM,

2011; Xilinx, 2016). These shifts create acute reliability

challenges because multicore systems consolidate

functions and increase the potential impact of a single

transient error. Given stringent safety requirements in

automotive applications and real-time constraints in

multimedia and control systems, architects must adopt

effective fault tolerance strategies that preserve

functional correctness without violating timing and

energy constraints.

The literature offers multiple approaches to transient

fault detection and mitigation. Hardware redundancy

and dual-core lockstep designs provide strong

guarantees but incur area and cost overheads and are

not always available in commercial off-the-shelf (COTS)

platforms (Abdul Salam Abdul Karim, 2023). Software

solutions—thread replication, n-modular redundancy,

checkpoint/rollback recovery, and hybrid techniques—

offer flexibility and applicability to existing hardware,

facilitating retrofitting of safety features onto general-

purpose multicore processors (Shye et al., 2009;

Mushtaq et al., 2013; Serrano-Cases et al., 2019).

However, each software approach exhibits tradeoffs

among detection latency, performance overhead,

energy consumption, and coverage of fault models

(Reinhardt & Mukherjee, 2000; Baharvand & Miremadi,

2017). The growing body of hybrid proposals aims to

combine low overhead with high detection probability

(Chielle et al., 2016; Azambuja et al., date unknown), but

a comprehensive, systematic method for selecting and

composing software-level mechanisms for deployed

multicore embedded systems is still lacking.

This article fills that gap by synthesizing the theoretical

underpinnings and empirical knowledge into a unified,

practical framework. The framework guides architects

through hazard analysis, policy selection (replication,

checkpointing, hybrid), placement decisions, and run-

time adaptation strategies. It emphasizes the

importance of matching mitigation mechanisms to the

system’s temporal and energy constraints and offers

alternatives where strict real-time budgets preclude full

replication. Throughout, claims and design steps are

anchored to the established literature on software fault

tolerance, transient fault sources, and multicore

architecture behavior (Baumann, 2005; Shye et al.,

2009; Mushtaq et al., 2013; Serrano-Cases et al., 2019;

Reinhardt & Mukherjee, 2000).

Methodology

 The methodology synthesizes literature-supported

mechanisms into an actionable process for embedding

software-centric fault tolerance into multicore systems.

The approach comprises five phases: (1) system hazard

and constraint analysis, (2) fault model formalization, (3)

mechanism selection and composition, (4)

implementation mapping, and (5) verification and

adaptation. Each phase is elaborated below with step-

wise procedures, rationale, and references.

Phase 1 — System Hazard and Constraint Analysis. This

phase requires a rigorous cataloging of system

functions, real-time deadlines, safety integrity levels,

acceptable failure modes, power constraints, and

existing hardware reliability features. The cataloging

process maps tasks to criticality levels; for instance,

tasks controlling braking or steering in an automotive

zonal controller are assigned the highest integrity levels

and minimal tolerance for undetected errors (Abdul

Salam Abdul Karim, 2023). For lower integrity tasks, such

as infotainment streams, a probabilistic tolerance for

degraded output may be acceptable (Baharvand &

Miremadi, 2017). Detailed characterization includes

worst-case execution time (WCET) budgets and

acceptable latency for detection and recovery. These

constraints determine feasible mechanisms: full

replication is plausible only for functions with slack;

checkpoint/rollback may be used where bounded

rollback is acceptable (Bowen & Pradham, 1993).

Phase 2 — Fault Model Formalization. A precise fault

model clarifies which transient behaviors must be

The American Journal of Engineering and Technology 62 https://www.theamericanjournals.com/index.php/tajet

detected. Common transient faults include single-bit

flips in registers and memory, multi-bit errors due to

particle strikes, and transient control-flow corruptions

that alter instruction sequences or memory addresses

(Baumann, 2005). Formalizing the model involves

enumerating affected hardware elements (registers,

caches, interconnects) and classifying fault temporal

profiles (single event vs. bursts) and spatial locality

(isolated vs. correlated across cores). This stage

leverages empirical studies indicating that soft errors

manifest predominantly as transient single event upsets

but that multi-bit events are increasingly relevant in

scaled technologies (Baumann, 2005). The formalized

model also determines the type of detection required:

value comparison (data correctness), control-flow

monitoring (behavioral correctness), or timing-based

anomalies (sudden deviations in latency).

Phase 3 — Mechanism Selection and Composition. This

phase maps fault models and system constraints to

concrete mitigation techniques. We consider the

following software-centric mechanisms:

Thread Replication and Output Comparison. Thread

replication executes two or more instances of a task on

separate cores and compares outputs to detect

discrepancies (Serrano-Cases et al., 2019; Shye et al.,

2009). Dual modular redundancy (DMR) detects

mismatches but cannot correct by itself; triple modular

redundancy (TMR) can mask single faulty threads

through majority voting (Baharvand & Miremadi, 2017).

Thread replication is attractive on multicore platforms

because it leverages existing cores without requiring

specialized hardware (Shye et al., 2009). However,

execution overhead is proportional to the replication

factor and can violate timing constraints in hard real-

time tasks.

Software Checkpointing and Rollback. Checkpointing

periodically saves system state and, upon detection of

an error, rolls back to a previously consistent state.

Techniques vary from coarse-grained whole-system

snapshots to fine-grained application checkpoints

(Bowen & Pradham, 1993). The checkpoint period

trades off rollback cost and detection latency: frequent

checkpoints reduce lost work but increase run-time

overhead. In real-time systems, unbounded rollback

may violate deadlines; thus, bounded rollback with

recovery windows or selective replay is advocated

(Bowen & Pradham, 1993).

Hybrid Approaches. Hybrid methods combine

lightweight detection (e.g., control-flow signatures or

watchdog timers) with selective replication or

checkpointing when anomalies are flagged, reducing

average cost while retaining high coverage (Chielle et al.,

2016; Azambuja et al., date unknown). For example, a

system might run a primary thread and a lightweight

checker thread that monitors critical control-flow

checkpoints; on mismatch, the system triggers

replication or rollback for deep validation (Shye et al.,

2009).

Adaptive and Energy-Aware Strategies. Adaptive

approaches modify replication level or checkpoint

frequency at run-time based on observed error rates,

workload characteristics, and power budgets

(Baharvand & Miremadi, 2017). In low-risk conditions,

the system reduces replication to save energy; in high-

risk scenarios—e.g., elevated radiation exposure—

replication increases to maintain safety integrity

(Baumann, 2005).

Instrumentation and Comparison Mechanisms. Output

comparison can be full (bitwise comparison of outputs)

or partial (hashes, checksums, or sampled comparisons).

Partial comparisons reduce overhead but risk false

negatives. Control-flow checking can be implemented

via signature-based monitors that validate the expected

sequence of basic blocks at runtime (Reinhardt &

Mukherjee, 2000). The selection depends on the

system’s tolerance for false positives and the

consequences of undetected errors.

Phase 4 — Implementation Mapping. This phase

translates chosen mechanisms into platform-specific

implementations. Considerations include core

allocation, inter-core communication latency, memory

coherence, cache interference, and available operating

system support (e.g., real-time OS such as FreeRTOS)

(Barry, 2017). Implementation must account for

platform documentation, such as ARM Cortex-A9

behavior and Zynq-7000 fabric specifics, to avoid hidden

reliability traps (ARM, 2011; Xilinx, 2016). The mapping

process includes:

Core Assignment Policies. Allocate replicas to cores

segregated by power domains or with minimal shared

failure modes. In heterogeneous systems (e.g., cores

and programmable logic), consider placing checkers in

distinct hardware to reduce correlated failures (Xilinx,

2016).

Memory and Cache Management. Mitigate sharing-

induced interference by partitioning caches or using

The American Journal of Engineering and Technology 63 https://www.theamericanjournals.com/index.php/tajet

cache coloring to ensure replicates do not evict each

other’s critical data, thereby preventing silent

performance degradation that could mimic faults

(Mushtaq et al., 2013).

Comparison Synchronization. Establish synchronization

points for output comparison that respect real-time

deadlines. Use nonblocking communication channels

and prioritized scheduling to ensure comparisons occur

promptly without starving critical tasks (Shye et al.,

2009).

Instrumentation Overhead Minimization. Optimize

checkpoints and comparisons by leveraging platform

features—e.g., hardware support for snapshotting or

DMA transfers to offload state backups—when available

(Xilinx, 2016).

Phase 5 — Verification and Adaptation. Finally, verify

the composed system through fault injection (software-

based and hardware-assisted), worst-case scheduling

analysis, and energy profiling. Fault injection exercises

the system under modeled transient conditions,

validating detection coverage and recovery efficacy

(Techniques to Detect Transient Faults in Embedded

Processors, 2014). The adaptation loop adjusts

replication factors and checkpoint intervals based on

observed fault rates and operational constraints

(Baharvand & Miremadi, 2017).

Collectively, these phases form a prescriptive yet flexible

methodology for integrating software-centric transient

fault tolerance into modern multicore embedded

systems.

Results

 Because this article synthesizes literature into a

methodological framework rather than reporting novel

empirical experiments, the “results” here are descriptive

in nature: expected performance impacts, detection

capabilities, and recovery tradeoffs inferred from the

literature and theoretical analysis. Each subsection

below maps design choices to probable outcomes,

referencing experimental findings and theoretical

models where available.

Detection Coverage and Latency. Thread replication

with full output comparison can achieve near-complete

detection coverage for in-task computational errors,

matching or exceeding the detection probability of some

hardware-based monitors when replication is

independent and majority voting is used (Shye et al.,

2009; Serrano-Cases et al., 2019). DMR (dual modular

redundancy) detects mismatches but cannot correct

them, requiring a recovery step; TMR masks single faults

via majority voting but triples resource usage

(Baharvand & Miremadi, 2017). Control-flow signature

checking detects a broad class of faults that corrupt

instruction sequences or produce anomalous control

transitions, but it can miss data-only corruptions that

preserve control flow (Reinhardt & Mukherjee, 2000).

Checkpointing provides a powerful recovery mechanism

for transient errors but detection latency depends on

monitoring frequency and checkpoint granularity;

detection that occurs between checkpoints leads to

rollback to the last checkpoint, resulting in lost

computation proportional to the checkpoint interval

(Bowen & Pradham, 1993).

Execution Overhead. The execution overhead of

replication is approximately linear in the replication

factor for fully replicated tasks: duplicating a task on a

second core roughly doubles its CPU use (Shye et al.,

2009). However, overhead can be mitigated by selective

replication—only critical tasks are replicated—or by

adaptive replication that responds to runtime risk.

Hybrid approaches that perform lightweight detection

most of the time and engage replication only upon

anomaly detection can dramatically reduce average

overhead while maintaining high coverage (Chielle et al.,

2016). Checkpointing overhead depends on checkpoint

frequency and state size; fine-grained checkpoints

reduce rollback cost but increase runtime overhead,

while coarse checkpoints have the opposite effect

(Bowen & Pradham, 1993).

Energy Implications. Energy consumption correlates

with CPU utilization and data movement; thus,

replication increases energy in proportion to execution

duplication, while checkpointing consumes energy for

state copying and storage. Adaptive strategies offer

energy savings by lowering replication when

environmental conditions and observed fault rates

indicate low risk (Baharvand & Miremadi, 2017).

Empirical studies indicate that approximate

redundancy—using approximate computing principles

for noncritical tasks—can reduce energy while

maintaining acceptable application-level correctness

(Baharvand & Miremadi, 2017). However, approximate

techniques require careful selection of tasks where

minor inaccuracies are tolerable.

Real-Time Schedulability. For systems with strict

deadlines, replication and rollback must be evaluated by

The American Journal of Engineering and Technology 64 https://www.theamericanjournals.com/index.php/tajet

schedulability analysis. Replication can be compatible

with real-time scheduling when cores and budgets are

provisioned a priori for replicated execution; otherwise,

it may violate deadlines (Mushtaq et al., 2013).

Checkpoint/rollback complicates schedulability because

rollbacks can extend task execution beyond worst-case

execution time assumptions. Thus, mechanisms must be

bounded and incorporated into worst-case analyses.

Hybrid approaches that localize replication to short

critical sections or that use redundancy only when slack

exists offer practical paths to maintain schedulability

(Shye et al., 2009).

Fault Masking and Recovery Effectiveness. TMR

provides active masking for single faults and is effective

where resources permit. Software TMR, implemented

through replicated threads and majority voting,

provides similar masking but can be vulnerable to

correlated errors that affect multiple replicas

(Baharvand & Miremadi, 2017). Checkpointing with

rollback can recover from a wide variety of transient

errors but requires reliable detection and a mechanism

to reestablish consistent external interfaces (Bowen &

Pradham, 1993). Hybrid techniques that use signatures

or lightweight checking to trigger targeted replication or

rollback can achieve a balance of masking and recovery

with manageable resource use (Chielle et al., 2016).

Platform Mapping and Practical Implementability.

Mapping software strategies onto contemporary SoCs—

such as ARM Cortex-A cores in an automotive domain or

Zynq-7000 SoCs with programmable logic—requires

attention to platform-specific pitfalls and features

(ARM, 2011; Xilinx, 2016). For instance, using

programmable logic to host hardware checkers can

reduce latency for comparison operations and provide

isolated execution contexts that lower correlated failure

probability (Xilinx, 2016). Conversely, shared caches in

multicore processors can lead to interference between

replicated threads, compromising timing predictability

and causing false positives in anomaly detection;

therefore, cache partitioning and careful scheduling are

essential (Mushtaq et al., 2013).

Safety and Certification Considerations. Automotive

systems often require certification to functional safety

standards (e.g., ISO 26262), which demand

demonstrable evidence of failure rates and detection

coverage. Software-centric solutions can be part of a

certification strategy if accompanied by rigorous

verification, fault injection campaigns, and traceable

analyses linking mechanisms to safety goals (Abdul

Salam Abdul Karim, 2023). Hybrid and adaptive

strategies complicate certification due to dynamic

behavior; however, if modes and adaptation bounds are

restricted and formally specified, they can be

accommodated within safety cases.

In sum, literature-informed results indicate that

software-centric approaches—when carefully chosen,

implemented, and verified—can achieve high detection

coverage and practical recovery with acceptable

overheads for many embedded and automotive

applications. The exact balance among detection,

overhead, energy, and schedulability depends on

system constraints and must be explicitly analyzed

during design.

Discussion

 This section interprets the results, explores nuanced

tradeoffs, examines counterarguments, and proposes

directions for future research and practice.

Interpreting Tradeoffs: Detection Versus Overhead. The

fundamental tradeoff in software-centric transient fault

tolerance is between detection coverage and overhead.

Full replication or TMR maximizes detection and

provides masking at the cost of significant resource

duplication (Shye et al., 2009; Baharvand & Miremadi,

2017). Conversely, lightweight detection methods, such

as control-flow signatures or checksums, incur lower

overhead but can leave classes of faults undetected

(Reinhardt & Mukherjee, 2000). Deciding where on this

spectrum a system should reside requires a multi-

criteria assessment of the consequences of an

undetected error (safety impact), available resources,

and environmental risk (Baumann, 2005). The

methodology proposed earlier supports this decision by

linking hazard analysis to mechanism selection.

Counterarguments: Hardware Redundancy Superiority.

A common counterargument is that hardware

redundancy—dual-core lockstep or hardware ECC—

provides stronger guarantees with lower programmer

burden, making software solutions inferior (Abdul Salam

Abdul Karim, 2023). While hardware redundancy indeed

offers strong protection, it is not universally available in

COTS platforms and adds silicon cost and area. Software

solutions enable retrofit and cost-effective protection in

platforms lacking hardware redundancy (Shye et al.,

2009). Moreover, software strategies can be more

flexible, enabling selective protection and adaptivity

that hardware replication lacks. The pragmatic approach

The American Journal of Engineering and Technology 65 https://www.theamericanjournals.com/index.php/tajet

often combines hardware and software methods: apply

hardware ECC for memory and caches, while using

software measures for control-flow and application logic

(Baumann, 2005).

Correlated Failures and the Limits of Software

Replication. Another challenge is the risk of correlated

failures where a single transient event affects multiple

replicas—common in spatially proximate cores or

through shared resources like caches and power rails—

reducing the effectiveness of replication (Baharvand &

Miremadi, 2017). Mitigation requires careful replica

placement (spatial separation), use of heterogeneous

execution domains (e.g., mixing cores and

programmable logic), and minimizing shared state or

communication paths. The methodology addresses

these concerns by including core allocation and memory

partitioning as essential steps.

Real-Time Constraints and Certifiability. Real-time

systems impose strict limits on allowable overhead;

replication and rollback mechanisms must be bounded

and analyzable for WCET. This poses a significant

challenge for software solutions that exhibit dynamic

behavior (Mushtaq et al., 2013). The response is multi-

pronged: design for bounded adaptivity (pre-specified

modes with known overheads), use hybrid methods that

localize expensive operations to noncritical windows,

and conduct exhaustive schedulability analysis including

fault recovery scenarios (Shye et al., 2009). For

certification, thorough fault injection and traceable

safety cases are mandatory, and adaptive strategies

must be constrained to maintain certifiability (Abdul

Salam Abdul Karim, 2023).

Energy and Approximate Techniques. Energy constraints

in automotive and mobile embedded systems motivate

approximate redundancy for noncritical tasks.

Techniques like Lexact, which merge approximate

computing with n-modular redundancy, reduce energy

while maintaining acceptable levels of correctness for

selected functions (Baharvand & Miremadi, 2017).

However, these techniques require a sophisticated

application-level understanding of error tolerance and

downstream effects; they are unsuitable for high-

integrity control functions. The literature suggests

promising energy savings but emphasizes careful task

selection and end-to-end analysis.

Hybrid Techniques: Strengths and Weaknesses. Hybrid

approaches—using lightweight detectors to trigger

heavier recovery actions—offer a balanced route. They

lower average overhead while providing high coverage

when needed (Chielle et al., 2016). The principal

weakness is the potential for false positives from

lightweight detectors that trigger expensive recovery

unnecessarily, thus harming performance and energy

budgets. Calibration of detectors and selection of robust

comparison functions (e.g., cryptographic hashes for

critical outputs) mitigate this risk. The methodology

recommends a staged approach: use conservative

detection thresholds during certification and

operational deployment, and allow cautious relaxation

only with demonstrable continued safety through

monitoring.

Platform Considerations: ARM Cortex-A and Zynq SoCs.

Practical deployment must respect platform specifics.

ARM Cortex-A cores offer features like virtualization and

trust zones that can be leveraged for isolation and

secure checkers (ARM, 2011). Zynq-7000 SoCs combine

processing systems with programmable logic that can

host dedicated, isolated checkers and implement low-

latency comparisons or ECC offload (Xilinx, 2016). The

framework encourages using these features to reduce

correlated failure modes and offload critical functions to

more isolated execution contexts, while acknowledging

the increased development complexity and the need for

co-verification of programmable logic designs (Xilinx,

2016).

Limitations of the Framework. The proposed framework

synthesizes existing techniques and provides

prescriptive steps, but it has limitations. First, the lack of

a one-size-fits-all solution means that extensive

platform- and application-specific tuning will always be

required. Second, runtime adaptivity complicates formal

verification and certification. Third, the efficacy of

software techniques against severe multi-bit events and

complex transient interactions involving caches and

interconnects is less well characterized than for single-

bit register flips; further empirical research is needed to

quantify coverage under contemporary process

technologies (Baumann, 2005).

Future Research Directions. Several avenues warrant

focused research:

Empirical Studies on Correlated Failures. Systematic

fault injection campaigns exploring correlated transient

events across cores, caches, and interconnects are

needed to quantify real replication failure probabilities

on modern SoCs. Such studies should link physical fault

models to software manifestations.

The American Journal of Engineering and Technology 66 https://www.theamericanjournals.com/index.php/tajet

Formal Methods for Hybrid and Adaptive Strategies. The

verification community should develop formal

frameworks to reason about bounded adaptivity and to

provide certifiable guarantees for hybrid mitigation

strategies.

Energy-Aware Fault Tolerance. Research should

continue into approximate redundancy and energy-

aware redundancy schemes that can be integrated into

safety cases for noncritical functions.

Toolchains for Ease of Adoption. Developer tooling that

automates replica placement, comparison

instrumentation, and schedulability analysis would

lower the barrier to adopting software-centric

approaches in industry.

Cross-Layer Design Patterns. Investigations into cross-

layer patterns—coordinating hardware ECC, OS support,

and software replication—will enable more robust

solutions that leverage the strengths of each layer.

Conclusion

 This article presented a comprehensive, literature-

anchored framework for software-centric transient fault

tolerance in multicore embedded systems, emphasizing

applicability to automotive zonal controllers and real-

time platforms. The framework structures design into

hazard analysis, fault model formalization, mechanism

selection and composition, platform-aware

implementation, and verification/adaptation. Thread

replication, checkpoint/rollback, and hybrid approaches

each have roles: replication provides high detection

coverage and masking at increased resource cost;

checkpointing supports broad recovery with rollback

overhead; hybrid techniques balance average cost

against worst-case coverage by engaging expensive

recovery only upon detection. Platform specifics—ARM

Cortex-A features and Zynq-7000 programmable logic—

offer concrete implementation options that can reduce

correlated failures and offload checks.

Key practical recommendations include: perform

rigorous criticality mapping and WCET analyses early;

prefer selective or adaptive replication where resources

are constrained; use programmable logic or physical

separation to reduce correlated failure risks; and ground

certification cases in exhaustive fault injection and

traceable analyses. Limitations remain: correlated multi-

bit events, dynamic adaptivity verifiability, and tooling

deficits are open challenges. Future work should

prioritize empirical fault studies on modern SoCs, formal

verification of adaptive strategies, and development of

practical toolchains to lower industrial adoption

barriers.

By synthesizing decades of research and current

platform realities into a coherent, prescriptive

methodology, this work aims to help system architects

design reliable multicore embedded systems that satisfy

safety, performance, and energy constraints through

pragmatic, implementable software-centric fault

tolerance.

References.

1. H. Mushtaq, Z. Al-Ars, and K. Bertels, “Efficient

software-based fault tolerance approach on

multicore platforms,” in Proc. Design, Automation &

Test in Europe Conference & Exhibition (DATE),

Grenoble, France, 2013, pp. 921–926.

2. ARM, Cortex-A9 MPCore Technical Reference

Manual, 2011.

3. Xilinx Inc., “Zynq-7000 All Programmable SoC:

Technical Reference Manual,” Technical Ref.

Manual UG585, Sept. 2016.

4. Serrano-Cases, F. Restrepo-Calle, S. Cuenca-Asensi,

and A. Martínez-Álvarez, “Softerror mitigation for

multi-core processors based on thread replication,”

Proceedings of the 20th IEEE Latin American Test

Symposium, Chile, March 2019.

5. S. K. Reinhardt and S. S. Mukherjee, “Transient fault

detection via simultaneous multithreading,”

Proceedings of the 27th International Symposium

on Computer Architecture, Vancouver, BC, Canada,

2000, pp. 25–36.

6. J. R. Azambuja, F. Kastensmidt, and J. Becker,

“Hybrid Fault Tolerance,” [Conference/Book details

not provided in input].

7. Abdul Salam Abdul Karim, “Fault-Tolerant Dual-Core

Lockstep Architecture for Automotive Zonal

Controllers Using NXP S32G Processors,”

International Journal of Intelligent Systems and

Applications in Engineering, vol. 11, no. 11s, pp.

877–885, 2023.

8. Techniques to Detect Transient Faults in Embedded

Processors, [S.l.: s.n.], 2014. ISSN 1467-9280. ISBN

9780874216561.

9. F. Baharvand and S. G. Miremadi, “Lexact: Low

energy n-modular redundancy using approximate

computing for real-time multicore processors,” IEEE

The American Journal of Engineering and Technology 67 https://www.theamericanjournals.com/index.php/tajet

Transactions on Emerging Topics in Computing,

2017.

10. R. Barry, “FreeRTOS,” 2017. Available from:

http://www.freertos.org.

11. R. C. Baumann, “Radiation-induced soft errors in

advanced semiconductor technologies,” IEEE

Transactions on Device and Materials Reliability, vol.

5, no. 3, pp. 305–316, Sept. 2005.

12. N. S. Bowen and D. K. Pradham, “Processor- and

memory-based checkpoint and rollback recovery,”

Computer, vol. 26, no. 2, pp. 22–31, Feb. 1993.

13. E. Chielle et al., “Hybrid soft error mitigation

techniques for COTS processor-based systems,” in

2016 17th Latin-American Test Symposium (LATS),

2016, pp. 99–104.

http://www.freertos.org/
http://www.freertos.org/
http://www.freertos.org/

