W
THE USA
!‘(')URNA'I.?

The American Journal of
Engineering and Technology

ISSN 2689-0984 | Open Access

’i»b Check for updates

OPEN ACCESS

01 December 2023
15 December 2023
27 December 2023
Vol.05 Issue 12 2023

© 2023 Original content from this work may be used under the terms
of the creative common’s attributes 4.0 License.

The American Journal of Engineering and Technology

60

Original Research
60-67

Advancing Transient Fault Mitigation
in Multicore Systems Through
Software Replication and Hybrid
Resilience Techniques

John A. Prescott
Department of Computer Engineering, Midland Institute of
Technology

Abstract: This article

theoretically grounded framework for software-centric

presents an integrative,

transient fault tolerance in multicore embedded
systems, with an emphasis on automotive zonal
controllers and real-time multimedia platforms. The
framework synthesizes thread replication, n-modular
redundancy, checkpoint/rollback strategies, and hybrid
mitigation approaches to produce a cohesive design
methodology that balances reliability, performance,
energy consumption, and implementation cost. The
paper first outlines the fundamental physical and
architectural sources of transient faults in contemporary
semiconductor processes and embedded platforms,
then systematically examines software-level detection
and mitigation techniques reported in the literature.
Building on these foundations, a detailed method is
proposed for selecting and composing fault tolerance
mechanisms according to system constraints such as
timing budgets, safety integrity levels, power envelope,
and hardware support (e.g., ARM Cortex-A series, Zyng-
7000 SoCs). The proposed method includes precise
thread
lightweight output comparison, adaptive replication

procedures for replication placement,
factor adjustment, and hybrid checkpoint strategies that
combine forward error detection with limited rollback.
A descriptive evaluation synthesizes expected
outcomes—detection latency, false positive/negative
tradeoffs, worst-case execution overheads, and energy

impacts—by mapping method choices to known

experimental results and theoretical models. The
discussion interrogates tradeoffs, considers
counterarguments (e.g., hardware redundancy

superiority, worst-case real-time violations), and lays
out a research agenda bridging theory and practice. The
conclusion distills actionable guidelines for system

https://www.theamericanjournals.com/index.php/tajet

architects seeking to integrate software-centric fault
tolerance into modern automotive and embedded

platforms while preserving real-time guarantees.

Keywords: transient faults, software fault tolerance,
thread
controllers, checkpoint rollback, hybrid mitigation

multicore, replication, automotive zonal

Introduction

Contemporary escape rooms have evolved markedly
Semiconductor scaling, driven by continued demand for
higher performance and energy efficiency, has led to
increased circuits to

susceptibility of integrated

transient faults—single-event upsets, soft errors
induced by radiation, and charge-related disturbances—
affecting both processor cores and memory elements
2005). the embedded

landscape, especially in automotive and industrial

(Baumann, Concurrently,
domains, has shifted from single-core microcontrollers
to complex multicore systems on chips (SoCs), such as
ARM Cortex-A series and programmable SoCs (ARM,
2011; Xilinx, 2016). These shifts create acute reliability
challenges because multicore systems consolidate
functions and increase the potential impact of a single
transient error. Given stringent safety requirements in
automotive applications and real-time constraints in
multimedia and control systems, architects must adopt
effective fault tolerance strategies that preserve
functional correctness without violating timing and
energy constraints.

The literature offers multiple approaches to transient
fault detection and mitigation. Hardware redundancy
and dual-core lockstep designs provide strong
guarantees but incur area and cost overheads and are
not always available in commercial off-the-shelf (COTS)
platforms (Abdul Salam Abdul Karim, 2023). Software
solutions—thread replication, n-modular redundancy,
checkpoint/rollback recovery, and hybrid techniques—
offer flexibility and applicability to existing hardware,
facilitating retrofitting of safety features onto general-
purpose multicore processors (Shye et al., 2009;
Mushtaq et al., 2013; Serrano-Cases et al., 2019).
However, each software approach exhibits tradeoffs
among detection latency, performance overhead,
energy consumption, and coverage of fault models
(Reinhardt & Mukherjee, 2000; Baharvand & Miremadi,
2017). The growing body of hybrid proposals aims to
combine low overhead with high detection probability
(Chielle et al., 2016; Azambuija et al., date unknown), but

a comprehensive, systematic method for selecting and

The American Journal of Engineering and Technology

61

composing software-level mechanisms for deployed
multicore embedded systems is still lacking.

This article fills that gap by synthesizing the theoretical
underpinnings and empirical knowledge into a unified,
practical framework. The framework guides architects
through hazard analysis, policy selection (replication,
checkpointing, hybrid), placement decisions, and run-
It emphasizes the
importance of matching mitigation mechanisms to the

time adaptation strategies.
system’s temporal and energy constraints and offers
alternatives where strict real-time budgets preclude full
replication. Throughout, claims and design steps are
anchored to the established literature on software fault
and multicore
architecture behavior (Baumann, 2005; Shye et al,
2009; Mushtaq et al., 2013; Serrano-Cases et al., 2019;

Reinhardt & Mukherjee, 2000).

tolerance, transient fault sources,

Methodology

The methodology synthesizes
mechanisms into an actionable process for embedding
software-centric fault tolerance into multicore systems.

literature-supported

The approach comprises five phases: (1) system hazard
and constraint analysis, (2) fault model formalization, (3)
mechanism selection and (4)
implementation mapping, and (5) verification and
adaptation. Each phase is elaborated below with step-
wise procedures, rationale, and references.

composition,

Phase 1 — System Hazard and Constraint Analysis. This
phase
functions, real-time deadlines, safety integrity levels,

requires a rigorous cataloging of system

acceptable failure modes, power constraints, and
existing hardware reliability features. The cataloging
process maps tasks to criticality levels; for instance,
tasks controlling braking or steering in an automotive
zonal controller are assigned the highest integrity levels
and minimal tolerance for undetected errors (Abdul
Salam Abdul Karim, 2023). For lower integrity tasks, such
as infotainment streams, a probabilistic tolerance for
degraded output may be acceptable (Baharvand &

Miremadi, 2017). Detailed characterization includes

worst-case execution time (WCET) budgets and
acceptable latency for detection and recovery. These
constraints determine feasible mechanisms: full

replication is plausible only for functions with slack;
checkpoint/rollback may be used where bounded
rollback is acceptable (Bowen & Pradham, 1993).

Phase 2 — Fault Model Formalization. A precise fault
model clarifies which transient behaviors must be

https://www.theamericanjournals.com/index.php/tajet

detected. Common transient faults include single-bit
flips in registers and memory, multi-bit errors due to
particle strikes, and transient control-flow corruptions
that alter instruction sequences or memory addresses
2005).
enumerating affected hardware elements (registers,

(Baumann, Formalizing the model involves
caches, interconnects) and classifying fault temporal
profiles (single event vs. bursts) and spatial locality
(isolated vs. correlated across cores). This stage
leverages empirical studies indicating that soft errors
manifest predominantly as transient single event upsets
but that multi-bit events are increasingly relevant in
scaled technologies (Baumann, 2005). The formalized
model also determines the type of detection required:
value comparison (data correctness), control-flow
monitoring (behavioral correctness), or timing-based

anomalies (sudden deviations in latency).

Phase 3 — Mechanism Selection and Composition. This
phase maps fault models and system constraints to
concrete mitigation techniques. We consider the

following software-centric mechanisms:

Thread Replication and Output Comparison. Thread
replication executes two or more instances of a task on
separate cores and compares outputs to detect
discrepancies (Serrano-Cases et al., 2019; Shye et al.,
2009). Dual redundancy (DMR)
mismatches but cannot correct by itself; triple modular

modular detects
redundancy (TMR) can mask single faulty threads
through majority voting (Baharvand & Miremadi, 2017).
Thread replication is attractive on multicore platforms
because it leverages existing cores without requiring
specialized hardware (Shye et al.,, 2009). However,
execution overhead is proportional to the replication
factor and can violate timing constraints in hard real-
time tasks.

Software Checkpointing and Rollback. Checkpointing
periodically saves system state and, upon detection of
an error, rolls back to a previously consistent state.
Techniques vary from coarse-grained whole-system
snapshots to fine-grained application checkpoints
(Bowen & Pradham, 1993). The checkpoint period
trades off rollback cost and detection latency: frequent
checkpoints reduce lost work but increase run-time
overhead. In real-time systems, unbounded rollback
may violate deadlines; thus, bounded rollback with
recovery windows or selective replay is advocated
(Bowen & Pradham, 1993).

Hybrid Approaches. Hybrid methods combine

The American Journal of Engineering and Technology

62

lightweight detection (e.g., control-flow signatures or
with
checkpointing when anomalies are flagged, reducing

watchdog timers) selective replication or
average cost while retaining high coverage (Chielle et al.,
2016; Azambuja et al., date unknown). For example, a
system might run a primary thread and a lightweight
checker thread that monitors critical control-flow
the
replication or rollback for deep validation (Shye et al.,

2009).

checkpoints; on mismatch, system triggers

Adaptive and Energy-Aware Strategies. Adaptive
approaches modify replication level or checkpoint
frequency at run-time based on observed error rates,
budgets

(Baharvand & Miremadi, 2017). In low-risk conditions,

workload characteristics, and power
the system reduces replication to save energy; in high-
risk scenarios—e.g., elevated radiation exposure—
replication increases to maintain safety integrity

(Baumann, 2005).

Instrumentation and Comparison Mechanisms. Output
comparison can be full (bitwise comparison of outputs)
or partial (hashes, checksums, or sampled comparisons).
Partial comparisons reduce overhead but risk false
negatives. Control-flow checking can be implemented
via signature-based monitors that validate the expected
sequence of basic blocks at runtime (Reinhardt &
Mukherjee, 2000). The selection depends on the
tolerance for false and the

system’s positives

consequences of undetected errors.

Phase 4
translates chosen mechanisms into platform-specific

Implementation Mapping. This phase

implementations. Considerations include core
allocation, inter-core communication latency, memory
coherence, cache interference, and available operating
system support (e.g., real-time OS such as FreeRTOS)
2017).

platform documentation, such as ARM Cortex-A9

(Barry, Implementation must account for
behavior and Zyng-7000 fabric specifics, to avoid hidden
reliability traps (ARM, 2011; Xilinx, 2016). The mapping
process includes:

Core Assignment Policies. Allocate replicas to cores
segregated by power domains or with minimal shared
failure modes. In heterogeneous systems (e.g., cores
and programmable logic), consider placing checkers in
distinct hardware to reduce correlated failures (Xilinx,
2016).

Memory and Cache Management. Mitigate sharing-
induced interference by partitioning caches or using

https://www.theamericanjournals.com/index.php/tajet

cache coloring to ensure replicates do not evict each
data,
performance degradation that could mimic faults
(Mushtaq et al., 2013).

other’s critical thereby preventing silent

Comparison Synchronization. Establish synchronization
points for output comparison that respect real-time
deadlines. Use nonblocking communication channels
and prioritized scheduling to ensure comparisons occur
promptly without starving critical tasks (Shye et al.,
2009).

Instrumentation Overhead Minimization. Optimize
checkpoints and comparisons by leveraging platform
features—e.g., hardware support for snapshotting or
DMA transfers to offload state backups—when available

(Xilinx, 2016).

Phase 5 — Verification and Adaptation. Finally, verify
the composed system through fault injection (software-
based and hardware-assisted), worst-case scheduling
analysis, and energy profiling. Fault injection exercises
the system under modeled transient conditions,
validating detection coverage and recovery efficacy
(Techniques to Detect Transient Faults in Embedded
2014). loop adjusts

replication factors and checkpoint intervals based on

Processors, The adaptation

observed fault rates and operational constraints
(Baharvand & Miremadi, 2017).

Collectively, these phases form a prescriptive yet flexible
methodology for integrating software-centric transient
fault tolerance into modern multicore embedded

systems.

Results

Because this article synthesizes literature into a
methodological framework rather than reporting novel
empirical experiments, the “results” here are descriptive
in nature: expected performance impacts, detection
capabilities, and recovery tradeoffs inferred from the
literature and theoretical analysis. Each subsection
below maps design choices to probable outcomes,
referencing experimental findings and theoretical

models where available.

Detection Coverage and Latency. Thread replication
with full output comparison can achieve near-complete
detection coverage for in-task computational errors,
matching or exceeding the detection probability of some
hardware-based monitors when replication is
independent and majority voting is used (Shye et al.,

2009; Serrano-Cases et al., 2019). DMR (dual modular

The American Journal of Engineering and Technology

63

redundancy) detects mismatches but cannot correct
them, requiring a recovery step; TMR masks single faults
via majority voting but triples resource usage
(Baharvand & Miremadi, 2017). Control-flow signature
checking detects a broad class of faults that corrupt
instruction sequences or produce anomalous control
transitions, but it can miss data-only corruptions that
preserve control flow (Reinhardt & Mukherjee, 2000).
Checkpointing provides a powerful recovery mechanism
for transient errors but detection latency depends on
monitoring frequency and checkpoint granularity;
detection that occurs between checkpoints leads to
rollback to the
computation proportional to the checkpoint interval

(Bowen & Pradham, 1993).

last checkpoint, resulting in lost

Execution Overhead. The execution overhead of
replication is approximately linear in the replication
factor for fully replicated tasks: duplicating a task on a
second core roughly doubles its CPU use (Shye et al.,
2009). However, overhead can be mitigated by selective
replication—only critical tasks are replicated—or by
adaptive replication that responds to runtime risk.
Hybrid approaches that perform lightweight detection
most of the time and engage replication only upon
anomaly detection can dramatically reduce average
overhead while maintaining high coverage (Chielle et al.,
2016). Checkpointing overhead depends on checkpoint
frequency and state size; fine-grained checkpoints
reduce rollback cost but increase runtime overhead,
while coarse checkpoints have the opposite effect
(Bowen & Pradham, 1993).

Energy Implications. Energy consumption correlates
thus,
replication increases energy in proportion to execution

with CPU utilization and data movement;

duplication, while checkpointing consumes energy for
state copying and storage. Adaptive strategies offer
by
environmental conditions and observed fault rates
indicate low risk (Baharvand & Miremadi, 2017).
that
redundancy—using approximate computing principles

energy savings lowering replication when

Empirical studies indicate approximate

for noncritical tasks—can reduce energy while
maintaining acceptable application-level correctness
(Baharvand & Miremadi, 2017). However, approximate
techniques require careful selection of tasks where

minor inaccuracies are tolerable.

Real-Time Schedulability. For systems with strict

deadlines, replication and rollback must be evaluated by

https://www.theamericanjournals.com/index.php/tajet

schedulability analysis. Replication can be compatible
with real-time scheduling when cores and budgets are
provisioned a priori for replicated execution; otherwise,
it may violate deadlines (Mushtaq et al., 2013).
Checkpoint/rollback complicates schedulability because
rollbacks can extend task execution beyond worst-case
execution time assumptions. Thus, mechanisms must be
bounded and incorporated into worst-case analyses.
Hybrid approaches that localize replication to short
critical sections or that use redundancy only when slack
exists offer practical paths to maintain schedulability
(Shye et al., 2009).

TMR
provides active masking for single faults and is effective

Fault Masking and Recovery Effectiveness.

where resources permit. Software TMR, implemented

through replicated threads and majority voting,
provides similar masking but can be vulnerable to
correlated errors that affect multiple replicas
(Baharvand & Miremadi, 2017). Checkpointing with
rollback can recover from a wide variety of transient
errors but requires reliable detection and a mechanism
to reestablish consistent external interfaces (Bowen &
Pradham, 1993). Hybrid techniques that use signatures
or lightweight checking to trigger targeted replication or
rollback can achieve a balance of masking and recovery

with manageable resource use (Chielle et al., 2016).

Platform Mapping and Practical Implementability.
Mapping software strategies onto contemporary SoCs—
such as ARM Cortex-A cores in an automotive domain or
Zyng-7000 SoCs with programmable logic—requires
attention to platform-specific pitfalls and features
(ARM, 2011; 2016).

programmable logic to host hardware checkers can

Xilinx, For instance, using
reduce latency for comparison operations and provide
isolated execution contexts that lower correlated failure
probability (Xilinx, 2016). Conversely, shared caches in
multicore processors can lead to interference between
replicated threads, compromising timing predictability
and causing false positives in anomaly detection;
therefore, cache partitioning and careful scheduling are

essential (Mushtaq et al., 2013).

Safety and Certification Considerations. Automotive
systems often require certification to functional safety
(e.g., ISO 26262), which
demonstrable evidence of failure rates and detection

standards demand
coverage. Software-centric solutions can be part of a

certification strategy if accompanied by rigorous

verification, fault injection campaigns, and traceable

The American Journal of Engineering and Technology

64

analyses linking mechanisms to safety goals (Abdul
Salam Abdul Karim, 2023).
strategies complicate certification due to dynamic

Hybrid and adaptive

behavior; however, if modes and adaptation bounds are

restricced and formally specified, they can be
accommodated within safety cases.
In sum, literature-informed results indicate that

software-centric approaches—when carefully chosen,
implemented, and verified—can achieve high detection
coverage and practical recovery with acceptable
overheads for many embedded and automotive
applications. The exact balance among detection,
overhead, energy, and schedulability depends on
system constraints and must be explicitly analyzed

during design.

Discussion

This section interprets the results, explores nuanced
tradeoffs, examines counterarguments, and proposes
directions for future research and practice.

Interpreting Tradeoffs: Detection Versus Overhead. The
fundamental tradeoff in software-centric transient fault
tolerance is between detection coverage and overhead.
Full
provides masking at the cost of significant resource
duplication (Shye et al., 2009; Baharvand & Miremadi,
2017). Conversely, lightweight detection methods, such

replication or TMR maximizes detection and

as control-flow signatures or checksums, incur lower
overhead but can leave classes of faults undetected
(Reinhardt & Mukherjee, 2000). Deciding where on this
spectrum a system should reside requires a multi-
criteria assessment of the consequences of an
undetected error (safety impact), available resources,
2005). The

methodology proposed earlier supports this decision by

and environmental risk (Baumann,

linking hazard analysis to mechanism selection.

Counterarguments: Hardware Redundancy Superiority.
A that
redundancy—dual-core lockstep or hardware ECC—

common counterargument s hardware
provides stronger guarantees with lower programmer
burden, making software solutions inferior (Abdul Salam
Abdul Karim, 2023). While hardware redundancy indeed
offers strong protection, it is not universally available in
COTS platforms and adds silicon cost and area. Software
solutions enable retrofit and cost-effective protection in
platforms lacking hardware redundancy (Shye et al.,
2009). Moreover, software strategies can be more
flexible, enabling selective protection and adaptivity

that hardware replication lacks. The pragmatic approach

https://www.theamericanjournals.com/index.php/tajet

often combines hardware and software methods: apply
hardware ECC for memory and caches, while using
software measures for control-flow and application logic
(Baumann, 2005).

and the Limits of Software

Replication. Another challenge is the risk of correlated

Correlated Failures

failures where a single transient event affects multiple
replicas—common in spatially proximate cores or
through shared resources like caches and power rails—
reducing the effectiveness of replication (Baharvand &
Miremadi, 2017). Mitigation requires careful replica
placement (spatial separation), use of heterogeneous
(e.g.,
programmable logic), and minimizing shared state or

execution domains mixing cores and
communication paths. The methodology addresses
these concerns by including core allocation and memory

partitioning as essential steps.

Real-Time Constraints and Certifiability. Real-time
systems impose strict limits on allowable overhead;
replication and rollback mechanisms must be bounded
and analyzable for WCET. This poses a significant
challenge for software solutions that exhibit dynamic
behavior (Mushtaq et al., 2013). The response is multi-
pronged: design for bounded adaptivity (pre-specified
modes with known overheads), use hybrid methods that
localize expensive operations to noncritical windows,
and conduct exhaustive schedulability analysis including
fault recovery scenarios (Shye et al., 2009). For
certification, thorough fault injection and traceable
safety cases are mandatory, and adaptive strategies
must be constrained to maintain certifiability (Abdul
Salam Abdul Karim, 2023).

Energy and Approximate Techniques. Energy constraints
in automotive and mobile embedded systems motivate
approximate redundancy for noncritical tasks.
Techniques like Lexact, which merge approximate
computing with n-modular redundancy, reduce energy
while maintaining acceptable levels of correctness for
selected functions (Baharvand & Miremadi, 2017).
However, these techniques require a sophisticated
application-level understanding of error tolerance and
downstream effects; they are unsuitable for high-
integrity control functions. The literature suggests
promising energy savings but emphasizes careful task

selection and end-to-end analysis.

Hybrid Techniques: Strengths and Weaknesses. Hybrid
approaches—using lightweight detectors to trigger
heavier recovery actions—offer a balanced route. They

The American Journal of Engineering and Technology

65

lower average overhead while providing high coverage
when needed (Chielle et al., 2016). The principal
weakness is the potential for false positives from
lightweight detectors that trigger expensive recovery
unnecessarily, thus harming performance and energy
budgets. Calibration of detectors and selection of robust
comparison functions (e.g., cryptographic hashes for
critical outputs) mitigate this risk. The methodology
recommends a staged approach: use conservative
thresholds
operational deployment, and allow cautious relaxation

detection during certification and
only with demonstrable continued safety through

monitoring.

Platform Considerations: ARM Cortex-A and Zynq SoCs.
Practical deployment must respect platform specifics.
ARM Cortex-A cores offer features like virtualization and
trust zones that can be leveraged for isolation and
secure checkers (ARM, 2011). Zyng-7000 SoCs combine
processing systems with programmable logic that can
host dedicated, isolated checkers and implement low-
latency comparisons or ECC offload (Xilinx, 2016). The
framework encourages using these features to reduce
correlated failure modes and offload critical functions to
more isolated execution contexts, while acknowledging
the increased development complexity and the need for
co-verification of programmable logic designs (Xilinx,
2016).

Limitations of the Framework. The proposed framework

synthesizes existing techniques and provides
prescriptive steps, but it has limitations. First, the lack of
a one-size-fits-all solution means that extensive
platform- and application-specific tuning will always be
required. Second, runtime adaptivity complicates formal
verification and certification. Third, the efficacy of
software techniques against severe multi-bit events and
complex transient interactions involving caches and
interconnects is less well characterized than for single-
bit register flips; further empirical research is needed to
guantify under

coverage contemporary process

technologies (Baumann, 2005).

Future Research Directions. Several avenues warrant
focused research:

Empirical Studies on Correlated Failures. Systematic
fault injection campaigns exploring correlated transient
events across cores, caches, and interconnects are
needed to quantify real replication failure probabilities
on modern SoCs. Such studies should link physical fault
models to software manifestations.

https://www.theamericanjournals.com/index.php/tajet

Formal Methods for Hybrid and Adaptive Strategies. The
should
frameworks to reason about bounded adaptivity and to

verification community develop formal

provide certifiable guarantees for hybrid mitigation
strategies.

Fault Tolerance. Research should

continue into approximate redundancy and energy-

Energy-Aware

aware redundancy schemes that can be integrated into
safety cases for noncritical functions.

Toolchains for Ease of Adoption. Developer tooling that

automates replica placement, comparison
instrumentation, and schedulability analysis would
the

approaches in industry.

lower barrier to adopting software-centric

Cross-Layer Design Patterns. Investigations into cross-
layer patterns—coordinating hardware ECC, OS support,
and software replication—will enable more robust
solutions that leverage the strengths of each layer.

Conclusion

This article presented a comprehensive, literature-
anchored framework for software-centric transient fault
tolerance in multicore embedded systems, emphasizing
applicability to automotive zonal controllers and real-
time platforms. The framework structures design into
hazard analysis, fault model formalization, mechanism
selection and composition, platform-aware
implementation, and verification/adaptation. Thread
replication, checkpoint/rollback, and hybrid approaches
each have roles: replication provides high detection
coverage and masking at increased resource cost;
checkpointing supports broad recovery with rollback
overhead; hybrid techniques balance average cost
against worst-case coverage by engaging expensive
recovery only upon detection. Platform specifics—ARM
Cortex-A features and Zyng-7000 programmable logic—
offer concrete implementation options that can reduce

correlated failures and offload checks.

Key practical recommendations include: perform
rigorous criticality mapping and WCET analyses early;
prefer selective or adaptive replication where resources
are constrained; use programmable logic or physical
separation to reduce correlated failure risks; and ground
certification cases in exhaustive fault injection and
traceable analyses. Limitations remain: correlated multi-
bit events, dynamic adaptivity verifiability, and tooling
deficits are open challenges. Future work should
prioritize empirical fault studies on modern SoCs, formal

verification of adaptive strategies, and development of

The American Journal of Engineering and Technology

66

practical toolchains to lower industrial adoption

barriers.

By synthesizing decades of research and current

platform realities into a coherent, prescriptive

methodology, this work aims to help system architects
design reliable multicore embedded systems that satisfy
safety, performance, and energy constraints through

pragmatic, implementable software-centric fault
tolerance.

References.

1. H. Mushtag, Z. Al-Ars, and K. Bertels, “Efficient

fault tolerance
multicore platforms,” in Proc. Design, Automation &
Test in Europe Conference & Exhibition (DATE),

Grenoble, France, 2013, pp. 921-926.

software-based approach on

ARM, Cortex-A9 MPCore Technical Reference

Manual, 2011.

Xilinx Inc., “Zyng-7000 All
Technical Reference Manual,”
Manual UG585, Sept. 2016.

Programmable SoC:

Technical Ref.

Serrano-Cases, F. Restrepo-Calle, S. Cuenca-Asensi,
and A. Martinez-Alvarez, “Softerror mitigation for
multi-core processors based on thread replication,”
Proceedings of the 20th IEEE Latin American Test
Symposium, Chile, March 2019.

S. K. Reinhardt and S. S. Mukherjee, “Transient fault

detection via simultaneous multithreading,”
Proceedings of the 27th International Symposium
on Computer Architecture, Vancouver, BC, Canada,

2000, pp. 25-36.

J.
“Hybrid Fault Tolerance,” [Conference/Book details

R. Azambuja, F. Kastensmidt, and J. Becker,

not provided in input].

Abdul Salam Abdul Karim, “Fault-Tolerant Dual-Core
Lockstep Architecture for Automotive Zonal
NXP S32G
International Journal of Intelligent Systems and

Controllers Using Processors,”
Applications in Engineering, vol. 11, no. 11s, pp.

877-885, 2023.

Techniques to Detect Transient Faults in Embedded
Processors, [S.l.: s.n.], 2014. ISSN 1467-9280. ISBN
9780874216561.

F. Baharvand and S. G. Miremadi, “Lexact: Low
energy n-modular redundancy using approximate
computing for real-time multicore processors,” IEEE

https://www.theamericanjournals.com/index.php/tajet

10. R.

11.

Transactions on Emerging Topics in Computing,
2017.

“FreeRTOS,” 2017. Available from:

http://www.freertos.org.

Barry,

R. C. Baumann, “Radiation-induced soft errors in
advanced IEEE
Transactions on Device and Materials Reliability, vol.
5, no. 3, pp. 305-316, Sept. 2005.

semiconductor technologies,”

The American Journal of Engineering and Technology

12.

13.

67

N. S. Bowen and D. K. Pradham, “Processor- and
memory-based checkpoint and rollback recovery,”
Computer, vol. 26, no. 2, pp. 22-31, Feb. 1993.

E. Chielle et al.,, “Hybrid soft error mitigation
techniques for COTS processor-based systems,” in
2016 17th Latin-American Test Symposium (LATS),
2016, pp. 99-104.

https://www.theamericanjournals.com/index.php/tajet

http://www.freertos.org/
http://www.freertos.org/
http://www.freertos.org/

