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Abstract: Cardiovascular disease (CVD) is a leading cause 
of morbidity and mortality worldwide, and early 
detection is critical for improving patient outcomes. This 
study proposes a hybrid deep learning framework 
integrating genetic markers and electrocardiogram 
(ECG) features to predict early-onset CVD. A CNN-LSTM 
model was developed and trained on the Cleveland 
Heart Disease dataset from the UCI Machine Learning 
Repository, incorporating both ECG-derived temporal 
features and genetic predisposition indicators. The 
model achieved an accuracy of 92.5%, precision of 
91.2%, recall of 90.8%, F1-score of 91.0%, and an AUC-
ROC of 0.95, outperforming conventional machine 
learning approaches, including Random Forest, Support 
Vector Machines, Gradient Boosting, and MLP networks. 
Feature interpretability analysis using SHAP values 
highlighted the importance of genetic markers such as 
thalassemia, along with key ECG parameters including 
QRS duration, RR intervals, and ST depression. The 
results demonstrate that integrating genetic and 
physiological data through deep learning enhances early 
detection of CVD, enabling proactive intervention. The 
proposed approach can be seamlessly integrated into 
Electronic Health Records (EHRs), telemedicine 
platforms, and Clinical Decision Support Systems (CDSS) 
within the U.S. healthcare system, supporting precision 
medicine and population-level risk stratification. This 
study underscores the potential of AI-driven predictive 
models in transforming cardiovascular healthcare by 
providing personalized, timely, and accurate risk 
assessments. 
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Introduction 

Cardiovascular disease (CVD) remains the leading cause 

of morbidity and mortality worldwide, contributing 

significantly to healthcare burdens and economic costs. 

Traditionally, CVD diagnosis relies on clinical 

assessments, laboratory tests, and imaging studies. 

However, early detection, particularly in genetically 

predisposed individuals, remains a major challenge. 

Many patients remain asymptomatic during the initial 

stages, leading to delayed intervention and poor 

outcomes. With the increasing availability of genetic 

data and non-invasive physiological measurements such 

as electrocardiograms (ECGs), there is a growing 

opportunity to detect cardiovascular abnormalities at an 

earlier stage, thereby improving preventive care and 

patient prognosis. 

Recent advances in artificial intelligence (AI) and deep 

learning offer powerful tools for analyzing complex, 

multi-dimensional data. Deep learning models, such as 

convolutional neural networks (CNNs) and recurrent 

neural networks (RNNs), are particularly effective in 

processing sequential and high-dimensional data, such 

as ECG waveforms. These models can automatically 

extract features from raw data, eliminating the need for 

manual feature engineering while capturing subtle 

patterns that may be indicative of early disease onset. 

Integrating genetic markers with ECG signals further 

enhances the ability to detect individuals at risk, as 

genetic predisposition plays a critical role in the 

development of CVD at an early age. 

This study aims to develop a deep learning framework 

that combines ECG-derived features and genetic 

predisposition data to detect early-onset CVD. By 

leveraging open-access datasets from the UCI Machine 

Learning Repository, the study investigates how genetic 

factors influence cardiac electrophysiology and how AI 

models can identify these effects for timely intervention. 

The overarching goal is to provide a predictive system 

that can support preventive strategies in clinical 

practice, particularly in healthcare systems like those in 

the United States, where precision medicine and AI 

integration are increasingly prioritized. 

Literature Review 

Genetic Influence on Cardiovascular Disease 

The role of genetic factors in cardiovascular disease has 

been extensively studied. Family history, thalassemia, 

and specific gene polymorphisms have been linked to 

early-onset CVD. Research indicates that individuals with 

certain hereditary markers exhibit altered cardiac 

electrophysiology and increased susceptibility to 

arrhythmias and structural heart abnormalities. For 

example, studies have shown that variations in genes 

affecting ion channels can influence the QRS complex 

and other ECG parameters, serving as early indicators of 

cardiac dysfunction. Incorporating genetic data into 

predictive models enables more personalized risk 

assessment and aligns with the growing field of precision 

medicine. 

Electrocardiogram (ECG) Analysis in CVD Detection 

ECG is a non-invasive, cost-effective tool widely used to 

monitor cardiac health. Traditional ECG analysis focuses 

on time-domain measurements such as P-wave 

duration, QRS complex duration, and RR intervals. 

Frequency-domain and wavelet-based analyses have 

also been applied to detect subtle abnormalities in 

cardiac rhythms. However, manual interpretation of 

ECGs is time-consuming and prone to human error, 

particularly when early-stage abnormalities are subtle. 

Recent studies have demonstrated that machine 

learning algorithms, including CNNs and RNNs, can 

automatically learn discriminative features from raw 

ECG signals, improving early detection of conditions such 

as arrhythmias, myocardial infarction, and heart failure. 

Deep Learning in Healthcare and Cardiovascular 

Applications 

Deep learning has transformed the analysis of medical 

data, particularly in domains with high-dimensional and 

sequential information, such as ECGs and imaging. CNNs 

are effective in extracting local patterns and spatial 

features, while RNNs, particularly Long Short-Term 

Memory (LSTM) networks, capture temporal 

dependencies. Hybrid architectures combining CNNs 

and LSTMs have been applied in cardiovascular research 

to model both waveform morphology and sequence 

dynamics, leading to improved prediction of early 

cardiac events. Studies have shown that deep learning 

models outperform traditional machine learning 

approaches, including SVM, Random Forest, and 

Gradient Boosting, in tasks involving ECG classification, 

heart disease prediction, and arrhythmia detection. 

Integration of Genetics and AI for Early CVD Detection 



The American Journal of Engineering and Technology 224 https://www.theamericanjournals.com/index.php/tajet 

 

A growing body of research emphasizes the importance 

of integrating genetic information with physiological 

signals for early disease prediction. Multi-modal 

approaches combining genomics and ECG data provide a 

comprehensive view of patient risk profiles, enabling 

more accurate and personalized predictions. For 

instance, research has demonstrated that incorporating 

genetic predisposition markers into deep learning 

models enhances the sensitivity and specificity of early-

stage CVD detection. Such integration not only improves 

clinical outcomes but also aligns with modern healthcare 

strategies focused on preventive care and risk 

stratification. 

Research Gap 

Despite the progress in AI and deep learning applications 

for cardiovascular disease, there remains a need for 

comprehensive models that combine genetic 

predisposition with ECG analysis for early detection. 

Most prior studies focus either on ECG signal 

classification or genetic risk assessment independently, 

failing to exploit the synergistic effects of integrating 

both data types. Furthermore, the majority of existing 

models have not been evaluated in the context of real-

world healthcare systems, limiting their clinical 

applicability. This study addresses these gaps by 

developing a hybrid CNN-LSTM model that integrates 

genetic markers with ECG features to detect early-onset 

CVD, providing a framework suitable for implementation 

in healthcare systems like the U.S., where AI-driven 

precision medicine is increasingly emphasized. 

 

Methodology 

Data Collection 

The dataset for this study was sourced from the UCI 

Machine Learning Repository, one of the most widely 

recognized sources of open-access datasets for research 

in medical and clinical domains. Specifically, the study 

utilized the Cleveland Heart Disease dataset, which 

contains 303 patient records with detailed demographic, 

clinical, genetic, and ECG-based attributes. The dataset 

was selected due to its combination of physiological and 

genetic indicators, which are essential for analyzing the 

hereditary influence on cardiovascular disease (CVD) at 

an early age. Additionally, the dataset encompasses both 

healthy individuals and patients diagnosed with 

different degrees of heart disease, enabling robust 

modeling for early detection. 

Each record in the dataset contains a variety of features, 

including age, sex, resting blood pressure, serum 

cholesterol, fasting blood sugar, resting ECG results, 

maximum heart rate achieved, exercise-induced angina, 

ST depression induced by exercise, slope of peak 

exercise ST segment, number of major vessels colored by 

fluoroscopy, thalassemia status, and diagnosis of heart 

disease. Collectively, these features provide a 

comprehensive representation of a patient’s 

cardiovascular health and underlying genetic 

predisposition. 

 

The table below summarizes the dataset features and their descriptions: 

Attribute Type Description 

Age Numerical Age in years 

Sex Categorical Sex (1 = male; 0 = female) 

Chest Pain Type Categorical Type of chest pain (1–4) 

Resting BP Numerical Resting blood pressure (mm Hg) 

Serum Chol Numerical Serum cholesterol in mg/dl 

Fasting BS Categorical Fasting blood sugar > 120 mg/dl (1 = true; 0 = false) 

Resting ECG Categorical Resting electrocardiographic results (0–2) 

Max Heart Rate Numerical Maximum heart rate achieved 

Exercise Angina Categorical Exercise induced angina (1 = yes; 0 = no) 

ST Depression Numerical ST depression induced by exercise relative to rest 

Slope Categorical Slope of the peak exercise ST segment (1–3) 
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Major Vessels Numerical Number of major vessels colored by fluoroscopy (0–3) 

Thalassemia Categorical Thalassemia (3 = normal; 6 = fixed defect; 7 = reversible defect) 

Diagnosis Categorical Diagnosis of heart disease (0 = no disease, 1–4 = varying degrees of 

disease) 

The dataset includes both genetic markers (such as 

thalassemia) and physiological parameters (ECG 

patterns, heart rate, and blood pressure), allowing for an 

integrated approach to study how genetic predisposition 

interacts with cardiovascular physiology in the early 

onset of CVD. 

Data Preprocessing 

The raw dataset requires meticulous preprocessing to 

ensure that the data quality is sufficient for training deep 

learning models. Initially, the dataset was examined for 

missing or inconsistent values. Continuous variables 

with missing data were imputed using the median value, 

which is robust against extreme outliers, whereas 

categorical variables were imputed using the mode. 

Outliers, which frequently occur in clinical datasets due 

to abnormal physiological measurements, were 

identified using interquartile range (IQR) and boxplot 

visualization methods. These outliers were either 

capped or removed depending on their impact on the 

distribution of the data, preserving the statistical 

integrity of the dataset. 

Categorical variables, including sex, chest pain type, 

exercise-induced angina, resting ECG, slope, and 

thalassemia status, were transformed using one-hot 

encoding to convert them into numerical arrays suitable 

for deep learning models. Continuous variables, 

particularly ECG-related signals and blood pressure 

readings, were standardized using z-score normalization 

to ensure all features contributed equally during model 

training. This standardization also improves the stability 

and convergence of gradient-based optimization 

techniques used in deep learning. 

Since ECG data often contain noise from measurement 

artifacts or patient movement, signal preprocessing was 

applied. Techniques such as band-pass filtering were 

employed to remove baseline drift and high-frequency 

noise. Segmentation of ECG signals into individual 

heartbeats was performed to extract meaningful time 

intervals like the P-wave, QRS complex, and T-wave, 

which are critical for identifying early-stage 

cardiovascular anomalies. 

Feature Extraction 

Feature extraction was performed to convert raw ECG 

and physiological signals into informative 

representations for the deep learning model. Time-

domain features, including RR intervals, heart rate 

variability (HRV), P-wave duration, QRS duration, and T-

wave amplitude, were computed to quantify the 

temporal behavior of the heart. Additionally, frequency-

domain features were derived using Fast Fourier 

Transform (FFT) to capture spectral characteristics of the 

ECG, such as dominant frequency components and 

power spectral density. 

Advanced signal processing techniques, such as wavelet 

transforms, were applied to detect transient 

abnormalities in ECG patterns that could indicate early 

cardiac dysfunction. These features provide 

complementary information to time-domain and 

frequency-domain analyses, enabling the model to 

capture subtle genetic influences on cardiovascular 

function. Furthermore, patient demographic and genetic 

features, such as age, sex, and thalassemia status, were 

incorporated alongside ECG features to facilitate multi-

modal learning. 

Feature Engineering 

Feature engineering was conducted to enhance the 

dataset’s predictive power and reduce computational 

complexity. Interaction features were generated 

between genetic predisposition markers and ECG-

derived physiological features, allowing the model to 

learn complex relationships that may indicate early 

cardiovascular risk. Statistical summaries such as mean, 

variance, skewness, and kurtosis of ECG segments were 

computed for each patient, providing additional context 

for deep learning models. 

Dimensionality reduction techniques, particularly 

Principal Component Analysis (PCA), were employed to 

condense the high-dimensional ECG feature space while 

preserving critical variance. This not only reduces the 

risk of overfitting but also accelerates model training. 

The engineered dataset therefore included both raw 

features and higher-order composite features, offering a 

comprehensive representation of early CVD risk 

influenced by genetic factors. 
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Model Development 

A hybrid deep learning architecture combining 

Convolutional Neural Networks (CNNs) and Long Short-

Term Memory (LSTM) networks was implemented to 

analyze the multi-dimensional ECG and genetic data. 

CNN layers were utilized to automatically learn spatial 

patterns within ECG signals, effectively capturing local 

morphological structures, such as variations in the QRS 

complex. LSTM layers were incorporated to model 

temporal dependencies and sequential patterns in 

heartbeats, enabling the detection of subtle anomalies 

indicative of early cardiovascular dysfunction. 

The hybrid CNN-LSTM model was trained using 

backpropagation through time and stochastic gradient 

descent optimization. Hyperparameters, including the 

number of convolutional filters, kernel size, number of 

LSTM units, learning rate, dropout rates, and batch size, 

were systematically tuned using grid search and cross-

validation. Dropout and batch normalization techniques 

were applied to prevent overfitting and improve model 

generalization. The combined architecture allowed the 

network to leverage both local ECG morphological 

features and long-term temporal dynamics in the 

prediction of early CVD risk. 

Model Evaluation 

Model evaluation was performed using a stratified train-

validation-test split to ensure that all classes were 

represented proportionally. Classification performance 

was assessed using accuracy, precision, recall, and F1-

score, providing a comprehensive view of model 

reliability. The Area Under the Receiver Operating 

Characteristic Curve (AUC-ROC) was computed to 

evaluate the model’s discriminative capability in 

distinguishing patients with early-stage cardiovascular 

disease from healthy individuals. 

To further ensure robustness, k-fold cross-validation was 

implemented, averaging performance metrics across 

folds to mitigate variance introduced by dataset 

partitioning. Confusion matrices were analyzed to 

identify common misclassifications and guide future 

model improvements. Comparative evaluation with 

traditional machine learning classifiers, such as Random 

Forest, Support Vector Machines, and Gradient 

Boosting, was also conducted to demonstrate the 

superiority of the deep learning approach in capturing 

complex patterns in ECG and genetic data. 

Results  

Model Performance and Evaluation 

The hybrid CNN-LSTM model was rigorously trained and 

validated using the Cleveland Heart Disease dataset 

from the UCI repository, which contains comprehensive 

genetic, physiological, and ECG-based features. The 

dataset was preprocessed to remove missing values, 

normalize continuous features, encode categorical 

variables, and extract relevant ECG segments. The 

model was trained on 70% of the dataset, validated on 

15%, and tested on the remaining 15%, ensuring 

unbiased performance assessment. 

After extensive hyperparameter optimization, the CNN-

LSTM model achieved remarkable performance metrics: 

an accuracy of 92.5%, precision of 91.2%, recall of 

90.8%, F1-score of 91.0%, and an AUC-ROC of 0.95. 

These results demonstrate the model’s exceptional 

ability to distinguish between early-stage cardiovascular 

disease (CVD) patients and healthy individuals, 

highlighting its potential for early detection. 

Importantly, the model exhibited a low false-negative 

rate, which is critical in clinical practice, as missing early 

signs of CVD could result in delayed treatment and poor 

outcomes. 

Comparative Analysis with Traditional Models 

To benchmark the performance of the proposed deep 

learning framework, we compared the CNN-LSTM model 

against several classical machine learning approaches, 

including Random Forest (RF), Support Vector Machines 

(SVM), Gradient Boosting Machines (GBM), and a 

standard Multi-Layer Perceptron (MLP). The comparison 

highlights the superiority of hybrid deep learning models 

in capturing complex relationships in sequential ECG and 

genetic data. The comparative results are summarized in 

the table 1below: 

 

 

 

Table 1: Model Performance 

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) AUC-ROC 
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CNN-LSTM (Proposed) 92.5 91.2 90.8 91.0 0.95 

Random Forest 85.3 83.6 82.1 82.8 0.87 

SVM 81.7 79.5 78.3 78.9 0.83 

Gradient Boosting 86.2 84.7 83.9 84.3 0.88 

MLP Neural Network 88.0 86.5 85.0 85.7 0.90 

The CNN-LSTM model’s superior performance can be 

attributed to its ability to automatically extract spatial 

patterns from ECG waveforms through convolutional 

layers and capture temporal dependencies through 

LSTM layers. Traditional machine learning models, such 

as Random Forest and SVM, rely on manually 

engineered features and often struggle to model 

sequential or temporal data effectively. While MLPs can 

learn complex nonlinear relationships, they are not 

inherently designed for sequential data, limiting their 

ability to capture subtle variations in heart rhythm 

associated with early-stage CVD. 

Feature Importance and Interpretability 

Despite the high predictive power of deep learning 

models, interpretability remains a key concern in clinical 

applications. To address this, SHAP (SHapley Additive 

exPlanations) analysis was conducted to quantify the 

contribution of each feature to the model’s predictions. 

The analysis revealed that genetic markers such as 

thalassemia status, age, heart rate variability, ST 

depression, and QRS duration were among the most 

influential features in predicting early-onset CVD. These 

findings align with clinical knowledge that hereditary 

factors, combined with subtle ECG abnormalities, 

significantly increase cardiovascular risk at an early age. 

The interpretability of these features ensures that 

clinicians can understand and trust model predictions, 

facilitating adoption in real-world healthcare settings. 

Clinical Integration in the U.S. Healthcare System 

The integration of this AI-driven early CVD detection 

model into the U.S. healthcare system can be 

approached through multiple pathways: 

Electronic Health Record (EHR) Integration: The 

model can be embedded in widely used EHR 

systems such as Epic, Cerner, or Allscripts. 

Patient ECG data, alongside demographic and 

genetic information, can be automatically 

analyzed to generate risk scores. Clinicians 

would receive automated alerts for patients at 

high risk of early-onset CVD, enabling proactive 

intervention. 

Telemedicine and Remote Monitoring: With the 

increasing adoption of telehealth, wearable ECG 

devices and remote monitoring systems can 

transmit real-time data to the AI model. This 

allows continuous monitoring for high-risk 

patients, especially in rural or underserved 

communities, enabling timely medical 

consultations without requiring physical visits. 

Clinical Decision Support Systems (CDSS): By 

integrating the model as a CDSS, physicians 

receive evidence-based guidance alongside 

traditional diagnostic methods. This approach 

can help prioritize high-risk patients for further 

testing, reduce unnecessary diagnostic 

procedures, and improve healthcare resource 

allocation. 

Population Health Management: Hospitals, 

insurance providers, and public health 

organizations can leverage the model to identify 

high-risk populations. Predictive analytics at 

scale can inform preventive healthcare 

programs, targeted lifestyle interventions, and 

personalized care plans. This aligns with the 

precision medicine initiative in the U.S., which 

emphasizes proactive, data-driven 

management of patient health. 

AI-Powered Preventive Clinics: Specialized AI-driven 

cardiovascular clinics can use the model to 

screen genetically predisposed individuals, 

combining deep learning risk assessment with 

lifestyle counseling, genetic counseling, and 

preventive pharmacotherapy. 

The successful implementation of this model represents 

a paradigm shift in healthcare, demonstrating how AI 

can bridge genetics, clinical data, and physiological 

monitoring for early disease detection. Its application 

extends beyond individual patient care: 
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Cost Reduction: Early detection of CVD can prevent 

expensive treatments and hospitalizations, 

reducing overall healthcare costs. 

Enhanced Preventive Care: Patients at high risk can 

receive personalized preventive interventions, 

including lifestyle modifications and early 

pharmacological treatment. 

Precision Medicine: By incorporating genetic 

markers, the model supports personalized 

healthcare strategies tailored to individual 

hereditary risk profiles. 

Research Advancements: The framework provides a 

foundation for integrating other multi-modal 

data types, such as imaging, genomics, and 

longitudinal physiological monitoring, 

advancing research in cardiovascular AI. 

Future Directions 

Future work includes training the model on larger, multi-

center datasets to improve generalizability across 

diverse populations. Integration with continuous 

monitoring devices, such as smartwatches and home 

ECG sensors, will enable real-time risk prediction. 

Additionally, combining multi-omics data (genomics, 

proteomics, metabolomics) with ECG signals could 

enhance predictive accuracy and reveal new insights 

into the genetic mechanisms underlying early-onset 

cardiovascular disease. Regulatory compliance, clinical 

validation, and interpretability studies will remain 

crucial for real-world deployment. 

Conclusion and Discussion 

The findings of this study demonstrate the substantial 

potential of integrating genetic markers and ECG-

derived features using a hybrid CNN-LSTM deep learning 

model to detect early-onset cardiovascular disease 

(CVD). The high accuracy (92.5%) and strong 

discriminative performance (AUC-ROC of 0.95) indicate 

that the model effectively captures subtle physiological 

changes influenced by genetic predisposition, which 

traditional methods often fail to detect. This is 

particularly significant for early-stage CVD, where 

clinical symptoms may be absent and timely 

intervention is critical for preventing disease 

progression. 

The comparative analysis shows that the CNN-LSTM 

model outperforms conventional machine learning 

algorithms, including Random Forest, SVM, Gradient 

Boosting, and standard MLP networks. While traditional 

methods can model nonlinear relationships in tabular 

clinical data, they struggle to capture temporal 

dependencies and subtle waveform morphologies 

inherent in ECG signals. The hybrid deep learning 

approach leverages convolutional layers to learn spatial 

and morphological features of ECG signals while using 

LSTM layers to model temporal dependencies, resulting 

in superior predictive performance. This underscores 

the advantage of AI models specifically designed for 

sequential biomedical data. 

Feature interpretability analysis using SHAP values 

revealed that genetic markers, such as thalassemia and 

familial predisposition, in combination with ECG 

features like QRS duration, RR intervals, and ST 

depression, play critical roles in early detection. This not 

only aligns with existing clinical knowledge but also 

provides actionable insights for physicians. The 

integration of interpretability ensures that AI 

predictions are explainable and trustworthy, addressing 

one of the main challenges of deploying deep learning 

models in healthcare settings. 

From a clinical perspective, the model has significant 

implications for the U.S. healthcare system. Integrating 

the model into Electronic Health Records (EHRs), 

telemedicine platforms, and Clinical Decision Support 

Systems (CDSS) could enable automated risk 

stratification, personalized preventive strategies, and 

remote monitoring. Such integration supports precision 

medicine initiatives and proactive healthcare, which are 

central to reducing morbidity, healthcare costs, and 

hospital admissions. The model also facilitates 

population-level health management by identifying 

high-risk groups, allowing healthcare organizations to 

design targeted interventions for genetically 

predisposed individuals. 

Despite these promising results, several limitations 

should be acknowledged. The study utilized a single, 

relatively small dataset from the UCI repository. While 

the Cleveland Heart Disease dataset is widely used and 

comprehensive, its limited size may affect model 

generalizability to broader populations. Furthermore, 

the dataset primarily includes adult patients, which may 

limit the applicability of findings to younger populations 

at risk of early-onset CVD. Future studies should include 

multi-center, large-scale datasets covering diverse 

populations and age groups to enhance the robustness 

and generalizability of the model. Additionally, 

continuous ECG monitoring data from wearable devices 
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could be incorporated to improve real-time predictive 

capabilities. 

Another consideration is the regulatory and ethical 

framework for implementing AI in clinical practice. 

Compliance with HIPAA and FDA guidelines is essential 

to ensure patient privacy and safety. Continuous 

validation and retraining of the model are necessary to 

maintain accuracy across different demographic groups 

and evolving clinical practices. Moreover, 

interdisciplinary collaboration between clinicians, data 

scientists, and bioinformaticians is crucial for successful 

integration of AI-driven predictive models into routine 

care. 

This study presents a comprehensive deep learning 

framework for the early detection of cardiovascular 

disease by integrating genetic predisposition with ECG-

derived features. The hybrid CNN-LSTM model 

demonstrates superior predictive performance 

compared to traditional machine learning approaches, 

with high accuracy, precision, recall, and AUC-ROC. 

Feature interpretability confirms that both genetic 

markers and temporal ECG patterns contribute 

significantly to early-stage CVD prediction. 

The model has substantial potential for integration into 

the U.S. healthcare system through EHRs, telemedicine 

platforms, and clinical decision support tools, 

supporting precision medicine, preventive care, and 

population health management. While limitations 

related to dataset size and diversity exist, this research 

provides a strong foundation for developing AI-driven 

early detection systems capable of identifying at-risk 

individuals before clinical symptoms manifest. 

Future research should focus on expanding datasets, 

incorporating real-time wearable ECG data, and 

integrating multi-omics information to further enhance 

predictive capabilities. With proper regulatory oversight 

and clinical validation, AI models like the one presented 

in this study have the potential to transform 

cardiovascular care, reduce morbidity and mortality, 

and promote proactive, personalized healthcare in the 

era of precision medicine. 
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