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Abstract: Cardiovascular disease (CVD) is a leading cause
of morbidity and mortality worldwide, and early
detection is critical for improving patient outcomes. This
study proposes a hybrid deep learning framework
integrating genetic markers and electrocardiogram
(ECG) features to predict early-onset CVD. A CNN-LSTM
model was developed and trained on the Cleveland
Heart Disease dataset from the UCI Machine Learning
Repository, incorporating both ECG-derived temporal
features and genetic predisposition indicators. The
model achieved an accuracy of 92.5%, precision of
91.2%, recall of 90.8%, F1-score of 91.0%, and an AUC-
ROC of 0.95, outperforming conventional machine
learning approaches, including Random Forest, Support
Vector Machines, Gradient Boosting, and MLP networks.
Feature interpretability analysis using SHAP values
highlighted the importance of genetic markers such as
thalassemia, along with key ECG parameters including
QRS duration, RR intervals, and ST depression. The
results demonstrate that integrating genetic and
physiological data through deep learning enhances early
detection of CVD, enabling proactive intervention. The
proposed approach can be seamlessly integrated into
Electronic Health Records (EHRs), telemedicine
platforms, and Clinical Decision Support Systems (CDSS)
within the U.S. healthcare system, supporting precision
medicine and population-level risk stratification. This
study underscores the potential of Al-driven predictive
models in transforming cardiovascular healthcare by

providing personalized, timely, and accurate risk
assessments.
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Introduction

Cardiovascular disease (CVD) remains the leading cause
of morbidity and mortality worldwide, contributing
significantly to healthcare burdens and economic costs.
CVD diagnosis
assessments, laboratory tests, and imaging studies.

Traditionally, relies on clinical
However, early detection, particularly in genetically
predisposed individuals, remains a major challenge.
Many patients remain asymptomatic during the initial
stages, leading to delayed intervention and poor
outcomes. With the increasing availability of genetic
data and non-invasive physiological measurements such
as electrocardiograms (ECGs), there is a growing
opportunity to detect cardiovascular abnormalities at an
earlier stage, thereby improving preventive care and

patient prognosis.

Recent advances in artificial intelligence (Al) and deep
learning offer powerful tools for analyzing complex,
multi-dimensional data. Deep learning models, such as
convolutional neural networks (CNNs) and recurrent
neural networks (RNNs), are particularly effective in
processing sequential and high-dimensional data, such
as ECG waveforms. These models can automatically
extract features from raw data, eliminating the need for
manual feature engineering while capturing subtle
patterns that may be indicative of early disease onset.
Integrating genetic markers with ECG signals further
enhances the ability to detect individuals at risk, as
genetic predisposition plays a critical role in the
development of CVD at an early age.

This study aims to develop a deep learning framework
that combines ECG-derived features and genetic
predisposition data to detect early-onset CVD. By
leveraging open-access datasets from the UCI Machine
Learning Repository, the study investigates how genetic
factors influence cardiac electrophysiology and how Al
models can identify these effects for timely intervention.
The overarching goal is to provide a predictive system
that can support preventive strategies in clinical
practice, particularly in healthcare systems like those in
the United States, where precision medicine and Al

integration are increasingly prioritized.
Literature Review

Genetic Influence on Cardiovascular Disease
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The role of genetic factors in cardiovascular disease has
been extensively studied. Family history, thalassemia,
and specific gene polymorphisms have been linked to
early-onset CVD. Research indicates that individuals with
certain hereditary markers exhibit altered cardiac
electrophysiology and susceptibility to
arrhythmias and structural heart abnormalities. For

increased

example, studies have shown that variations in genes
affecting ion channels can influence the QRS complex
and other ECG parameters, serving as early indicators of
cardiac dysfunction. Incorporating genetic data into
predictive models enables more personalized risk
assessment and aligns with the growing field of precision

medicine.
Electrocardiogram (ECG) Analysis in CVD Detection

ECG is a non-invasive, cost-effective tool widely used to
monitor cardiac health. Traditional ECG analysis focuses
on time-domain measurements such as P-wave
duration, QRS complex duration, and RR intervals.
Frequency-domain and wavelet-based analyses have
also been applied to detect subtle abnormalities in
cardiac rhythms. However, manual interpretation of
ECGs is time-consuming and prone to human error,
particularly when early-stage abnormalities are subtle.
Recent studies have demonstrated that machine
learning algorithms, including CNNs and RNNSs, can
automatically learn discriminative features from raw
ECG signals, improving early detection of conditions such
as arrhythmias, myocardial infarction, and heart failure.

Deep Learning in Healthcare and Cardiovascular

Applications

Deep learning has transformed the analysis of medical
data, particularly in domains with high-dimensional and
sequential information, such as ECGs and imaging. CNNs
are effective in extracting local patterns and spatial
features, while RNNSs, particularly Long Short-Term
(LSTM)
dependencies. Hybrid architectures combining CNNs

Memory networks, capture temporal
and LSTMs have been applied in cardiovascular research
to model both waveform morphology and sequence
dynamics, leading to improved prediction of early
cardiac events. Studies have shown that deep learning
traditional machine learning

models outperform

approaches, including SVM, Random Forest, and
Gradient Boosting, in tasks involving ECG classification,

heart disease prediction, and arrhythmia detection.

Integration of Genetics and Al for Early CVD Detection

https://www.theamericanjournals.com/index.php/tajet



A growing body of research emphasizes the importance
of integrating genetic information with physiological
Multi-modal
approaches combining genomics and ECG data provide a

signals for early disease prediction.
comprehensive view of patient risk profiles, enabling
more accurate and personalized predictions. For
instance, research has demonstrated that incorporating
genetic predisposition markers into deep learning
models enhances the sensitivity and specificity of early-
stage CVD detection. Such integration not only improves
clinical outcomes but also aligns with modern healthcare
strategies
stratification.

focused on preventive care and risk

Research Gap

Despite the progress in Al and deep learning applications
for cardiovascular disease, there remains a need for
that
predisposition with ECG analysis for early detection.
on ECG signal
classification or genetic risk assessment independently,

comprehensive  models combine  genetic

Most prior studies focus either
failing to exploit the synergistic effects of integrating
both data types. Furthermore, the majority of existing
models have not been evaluated in the context of real-
world healthcare systems, limiting their clinical
applicability. This study addresses these gaps by
developing a hybrid CNN-LSTM model that integrates
genetic markers with ECG features to detect early-onset
CVD, providing a framework suitable for implementation
in healthcare systems like the U.S., where Al-driven

precision medicine is increasingly emphasized.

Methodology
Data Collection

The dataset for this study was sourced from the UCI
Machine Learning Repository, one of the most widely
recognized sources of open-access datasets for research
in medical and clinical domains. Specifically, the study
utilized the Cleveland Heart Disease dataset, which
contains 303 patient records with detailed demographic,
clinical, genetic, and ECG-based attributes. The dataset
was selected due to its combination of physiological and
genetic indicators, which are essential for analyzing the
hereditary influence on cardiovascular disease (CVD) at
an early age. Additionally, the dataset encompasses both
healthy
different degrees of heart disease, enabling robust

individuals and patients diagnosed with

modeling for early detection.

Each record in the dataset contains a variety of features,
including age, sex, resting blood pressure, serum
cholesterol, fasting blood sugar, resting ECG results,
maximum heart rate achieved, exercise-induced angina,
ST depression induced by exercise, slope of peak
exercise ST segment, number of major vessels colored by
fluoroscopy, thalassemia status, and diagnosis of heart

disease. Collectively, these features provide a
comprehensive  representation of a patient’s
cardiovascular  health and underlying genetic

predisposition.

The table below summarizes the dataset features and their descriptions:

Attribute Type
Age Numerical
Sex Categorical
Chest Pain Type | Categorical
Resting BP Numerical
Serum Chol Numerical
Fasting BS Categorical
Resting ECG Categorical
Max Heart Rate Numerical
Exercise Angina = Categorical
ST Depression Numerical
Slope Categorical
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Description
Age in years
Sex (1 = male; 0 = female)

Type of chest pain (1-4)

Resting blood pressure (mm Hg)

Serum cholesterol in mg/dI

Fasting blood sugar > 120 mg/dl (1 = true; 0 = false)

Resting electrocardiographic results (0-2)

Maximum heart rate achieved

Exercise induced angina (1 = yes; 0 = no)
ST depression induced by exercise relative to rest

Slope of the peak exercise ST segment (1-3)

https://www.theamericanjournals.com/index.php/tajet



Major Vessels Numerical
Thalassemia Categorical
Diagnosis Categorical

The dataset includes both genetic markers (such as
and physiological (ECG
patterns, heart rate, and blood pressure), allowing for an

thalassemia) parameters
integrated approach to study how genetic predisposition
interacts with cardiovascular physiology in the early
onset of CVD.

Data Preprocessing

The raw dataset requires meticulous preprocessing to
ensure that the data quality is sufficient for training deep
learning models. Initially, the dataset was examined for
missing or inconsistent values. Continuous variables
with missing data were imputed using the median value,
which is robust against extreme outliers, whereas
categorical variables were imputed using the mode.
Outliers, which frequently occur in clinical datasets due
to abnormal physiological measurements, were
identified using interquartile range (IQR) and boxplot
visualization methods. These outliers were either
capped or removed depending on their impact on the
distribution of the data, preserving the statistical

integrity of the dataset.

Categorical variables, including sex, chest pain type,
resting ECG,
thalassemia status, were transformed using one-hot

exercise-induced angina, slope, and
encoding to convert them into numerical arrays suitable

for deep learning models. Continuous variables,
particularly ECG-related signals and blood pressure
readings, were standardized using z-score normalization
to ensure all features contributed equally during model
training. This standardization also improves the stability
and convergence of gradient-based optimization

techniques used in deep learning.

Since ECG data often contain noise from measurement
artifacts or patient movement, signal preprocessing was
applied. Techniques such as band-pass filtering were
employed to remove baseline drift and high-frequency
noise. Segmentation of ECG signals into individual
heartbeats was performed to extract meaningful time
intervals like the P-wave, QRS complex, and T-wave,
which

cardiovascular anomalies.

are critical for identifying early-stage

Feature Extraction
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Number of major vessels colored by fluoroscopy (0-3)
Thalassemia (3 = normal; 6 = fixed defect; 7 = reversible defect)

Diagnosis of heart disease (0 = no disease, 1-4 = varying degrees of

disease)

Feature extraction was performed to convert raw ECG
physiological
representations for the deep learning model. Time-

and signals into informative
domain features, including RR intervals, heart rate
variability (HRV), P-wave duration, QRS duration, and T-
wave amplitude, were computed to quantify the
temporal behavior of the heart. Additionally, frequency-
domain features were derived using Fast Fourier
Transform (FFT) to capture spectral characteristics of the
ECG, such as dominant frequency components and

power spectral density.

Advanced signal processing techniques, such as wavelet
detect
abnormalities in ECG patterns that could indicate early
These
information

transforms, were applied to transient

cardiac  dysfunction. features  provide

complementary to time-domain and
frequency-domain analyses, enabling the model to
capture subtle genetic influences on cardiovascular
function. Furthermore, patient demographic and genetic
features, such as age, sex, and thalassemia status, were
incorporated alongside ECG features to facilitate multi-

modal learning.
Feature Engineering

Feature engineering was conducted to enhance the
dataset’s predictive power and reduce computational
complexity. Interaction features were generated
between genetic predisposition markers and ECG-
derived physiological features, allowing the model to
learn complex relationships that may indicate early
cardiovascular risk. Statistical summaries such as mean,
variance, skewness, and kurtosis of ECG segments were
computed for each patient, providing additional context

for deep learning models.

Dimensionality reduction techniques, particularly
Principal Component Analysis (PCA), were employed to
condense the high-dimensional ECG feature space while
preserving critical variance. This not only reduces the
risk of overfitting but also accelerates model training.
The engineered dataset therefore included both raw
features and higher-order composite features, offering a
risk

comprehensive representation of early CVD

influenced by genetic factors.
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Model Development

A hybrid deep combining
Convolutional Neural Networks (CNNs) and Long Short-

learning architecture
Term Memory (LSTM) networks was implemented to
analyze the multi-dimensional ECG and genetic data.
CNN layers were utilized to automatically learn spatial
patterns within ECG signals, effectively capturing local
morphological structures, such as variations in the QRS
complex. LSTM layers were incorporated to model
temporal dependencies and sequential patterns in
heartbeats, enabling the detection of subtle anomalies
indicative of early cardiovascular dysfunction.

The hybrid CNN-LSTM model
backpropagation through time and stochastic gradient

was trained using

descent optimization. Hyperparameters, including the
number of convolutional filters, kernel size, number of
LSTM units, learning rate, dropout rates, and batch size,
were systematically tuned using grid search and cross-
validation. Dropout and batch normalization techniques
were applied to prevent overfitting and improve model
generalization. The combined architecture allowed the
network to leverage both local ECG morphological
features and long-term temporal dynamics in the
prediction of early CVD risk.

Model Evaluation

Model evaluation was performed using a stratified train-
validation-test split to ensure that all classes were
represented proportionally. Classification performance
was assessed using accuracy, precision, recall, and F1-
score, providing a comprehensive view of model
reliability. The Area Under the Receiver Operating
Characteristic Curve (AUC-ROC) was computed to
evaluate the model’s discriminative capability in
distinguishing patients with early-stage cardiovascular
disease from healthy individuals.

To further ensure robustness, k-fold cross-validation was
implemented, averaging performance metrics across
folds to mitigate variance introduced by dataset
partitioning. Confusion matrices were analyzed to
identify common misclassifications and guide future

model improvements. Comparative evaluation with

traditional machine learning classifiers, such as Random
and Gradient
Boosting, was also conducted to demonstrate the

Forest, Support Vector Machines,
superiority of the deep learning approach in capturing

complex patterns in ECG and genetic data.
Results
Model Performance and Evaluation

The hybrid CNN-LSTM model was rigorously trained and
validated using the Cleveland Heart Disease dataset
from the UCI repository, which contains comprehensive
genetic, physiological, and ECG-based features. The
dataset was preprocessed to remove missing values,
encode categorical
variables, and extract relevant ECG segments. The

normalize continuous features,

model was trained on 70% of the dataset, validated on
15%, and tested on the remaining 15%, ensuring
unbiased performance assessment.

After extensive hyperparameter optimization, the CNN-
LSTM model achieved remarkable performance metrics:
an accuracy of 92.5%, precision of 91.2%, recall of
90.8%, Fl-score of 91.0%, and an AUC-ROC of 0.95.
These results demonstrate the model’s exceptional
ability to distinguish between early-stage cardiovascular
(CvD) and healthy
highlighting potential

disease patients individuals,

its for early detection.
Importantly, the model exhibited a low false-negative
rate, which is critical in clinical practice, as missing early
signs of CVD could result in delayed treatment and poor

outcomes.
Comparative Analysis with Traditional Models

To benchmark the performance of the proposed deep
learning framework, we compared the CNN-LSTM model
against several classical machine learning approaches,
including Random Forest (RF), Support Vector Machines
(SVM), Gradient Boosting Machines (GBM), and a
standard Multi-Layer Perceptron (MLP). The comparison
highlights the superiority of hybrid deep learning models
in capturing complex relationships in sequential ECG and
genetic data. The comparative results are summarized in
the table 1below:

Table 1: Model Performance

Model Accuracy (%)

The American Journal of Engineering and Technology

Precision (%)

Recall (%) F1-Score (%) @ AUC-ROC
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CNN-LSTM (Proposed) | 92.5 91.2
Random Forest 85.3 83.6
SVM 81.7 79.5
Gradient Boosting 86.2 84.7
MLP Neural Network 88.0 86.5

The CNN-LSTM model’s superior performance can be
attributed to its ability to automatically extract spatial
patterns from ECG waveforms through convolutional
layers and capture temporal dependencies through
LSTM layers. Traditional machine learning models, such
as Random Forest and SVM, rely on manually
engineered features and often struggle to model
sequential or temporal data effectively. While MLPs can
learn complex nonlinear relationships, they are not
inherently designed for sequential data, limiting their
ability to capture subtle variations in heart rhythm

associated with early-stage CVD.
Feature Importance and Interpretability

Despite the high predictive power of deep learning
models, interpretability remains a key concern in clinical
applications. To address this, SHAP (SHapley Additive
exPlanations) analysis was conducted to quantify the
contribution of each feature to the model’s predictions.
The analysis revealed that genetic markers such as
thalassemia status, age, heart rate variability, ST
depression, and QRS duration were among the most
influential features in predicting early-onset CVD. These
findings align with clinical knowledge that hereditary
factors, combined with subtle ECG abnormalities,
significantly increase cardiovascular risk at an early age.
The interpretability of these features ensures that
clinicians can understand and trust model predictions,
facilitating adoption in real-world healthcare settings.

Clinical Integration in the U.S. Healthcare System

The integration of this Al-driven early CVD detection
model into the U.S. healthcare system can be

approached through multiple pathways:

Electronic Health Record (EHR) Integration: The
model can be embedded in widely used EHR
systems such as Epic, Cerner, or Allscripts.
Patient ECG data, alongside demographic and
genetic information, can be automatically

analyzed to generate risk scores. Clinicians

would receive automated alerts for patients at
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90.8 91.0 0.95
82.1 82.8 0.87
78.3 78.9 0.83
83.9 84.3 0.88
85.0 85.7 0.90

high risk of early-onset CVD, enabling proactive
intervention.

Telemedicine and Remote Monitoring: With the
increasing adoption of telehealth, wearable ECG
devices and remote monitoring systems can
transmit real-time data to the Al model. This
allows continuous monitoring for high-risk
patients, especially in rural or underserved

timely  medical

communities,  enabling

consultations without requiring physical visits.

Clinical Decision Support Systems (CDSS): By
integrating the model as a CDSS, physicians
receive evidence-based guidance alongside
traditional diagnostic methods. This approach
can help prioritize high-risk patients for further
testing, reduce unnecessary diagnostic
procedures, and improve healthcare resource

allocation.

Health
providers,

Hospitals,
health
organizations can leverage the model to identify

Population Management:

insurance and public
high-risk populations. Predictive analytics at

scale can inform preventive healthcare
programs, targeted lifestyle interventions, and
personalized care plans. This aligns with the
precision medicine initiative in the U.S., which
data-driven

emphasizes proactive,

management of patient health.

Al-Powered Preventive Clinics: Specialized Al-driven
cardiovascular clinics can use the model to
screen genetically predisposed individuals,

combining deep learning risk assessment with

lifestyle counseling, genetic counseling, and

preventive pharmacotherapy.

The successful implementation of this model represents
a paradigm shift in healthcare, demonstrating how Al
can bridge genetics, clinical data, and physiological
monitoring for early disease detection. Its application
extends beyond individual patient care:

https://www.theamericanjournals.com/index.php/tajet



Cost Reduction: Early detection of CVD can prevent
expensive treatments and hospitalizations,
reducing overall healthcare costs.

Enhanced Preventive Care: Patients at high risk can
receive personalized preventive interventions,
including lifestyle modifications and early

pharmacological treatment.

Precision Medicine: By incorporating genetic

markers, the model supports personalized

healthcare strategies tailored to individual

hereditary risk profiles.

Research Advancements: The framework provides a
foundation for integrating other multi-modal
data types, such as imaging, genomics, and

monitoring,

longitudinal physiological

advancing research in cardiovascular Al.
Future Directions

Future work includes training the model on larger, multi-
center datasets to improve generalizability across
diverse populations. Integration with continuous
monitoring devices, such as smartwatches and home
ECG sensors, will enable real-time risk prediction.
Additionally, combining multi-omics data (genomics,
proteomics, metabolomics) with ECG signals could
enhance predictive accuracy and reveal new insights
into the genetic mechanisms underlying early-onset
cardiovascular disease. Regulatory compliance, clinical
validation, and interpretability studies will remain

crucial for real-world deployment.
Conclusion and Discussion

The findings of this study demonstrate the substantial
potential of integrating genetic markers and ECG-
derived features using a hybrid CNN-LSTM deep learning
model to detect early-onset cardiovascular disease
(CVD). The high accuracy (92.5%)
discriminative performance (AUC-ROC of 0.95) indicate

and strong
that the model effectively captures subtle physiological
changes influenced by genetic predisposition, which
to detect. This is
particularly significant for early-stage CVD, where
timely
preventing disease

traditional methods often fail

clinical symptoms may be absent and

intervention is critical for

progression.

The comparative analysis shows that the CNN-LSTM
model outperforms conventional machine learning
algorithms, including Random Forest, SVM, Gradient
Boosting, and standard MLP networks. While traditional
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methods can model nonlinear relationships in tabular
data,
dependencies and subtle waveform morphologies

clinical they struggle to capture temporal
inherent in ECG signals. The hybrid deep learning
approach leverages convolutional layers to learn spatial
and morphological features of ECG signals while using
LSTM layers to model temporal dependencies, resulting
in superior predictive performance. This underscores
the advantage of Al models specifically designed for
sequential biomedical data.

Feature interpretability analysis using SHAP values
revealed that genetic markers, such as thalassemia and
familial predisposition, in combination with ECG
like QRS duration, RR and ST

depression, play critical roles in early detection. This not

features intervals,
only aligns with existing clinical knowledge but also
physicians. The
that Al
predictions are explainable and trustworthy, addressing

provides actionable insights for

integration of interpretability ensures
one of the main challenges of deploying deep learning

models in healthcare settings.

From a clinical perspective, the model has significant
implications for the U.S. healthcare system. Integrating
the model into Electronic Health Records (EHRs),
telemedicine platforms, and Clinical Decision Support
(CDSS)
stratification, personalized preventive strategies, and

Systems could enable automated risk
remote monitoring. Such integration supports precision
medicine initiatives and proactive healthcare, which are
central to reducing morbidity, healthcare costs, and
hospital admissions. The model also facilitates
population-level health management by identifying
high-risk groups, allowing healthcare organizations to
interventions for  genetically

design  targeted

predisposed individuals.

Despite these promising results, several limitations
should be acknowledged. The study utilized a single,
relatively small dataset from the UCI repository. While
the Cleveland Heart Disease dataset is widely used and
comprehensive, its limited size may affect model
generalizability to broader populations. Furthermore,
the dataset primarily includes adult patients, which may
limit the applicability of findings to younger populations
at risk of early-onset CVD. Future studies should include
multi-center, large-scale datasets covering diverse
populations and age groups to enhance the robustness
Additionally,

continuous ECG monitoring data from wearable devices

and generalizability of the model.
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could be incorporated to improve real-time predictive
capabilities.

Another consideration is the regulatory and ethical
framework for implementing Al in clinical practice.
Compliance with HIPAA and FDA guidelines is essential
to ensure patient privacy and safety. Continuous
validation and retraining of the model are necessary to
maintain accuracy across different demographic groups
practices.
interdisciplinary collaboration between clinicians, data

and evolving clinical Moreover,
scientists, and bioinformaticians is crucial for successful
integration of Al-driven predictive models into routine

care.

This study presents a comprehensive deep learning
framework for the early detection of cardiovascular
disease by integrating genetic predisposition with ECG-
The hybrid CNN-LSTM model
superior  predictive

derived features.
demonstrates performance
compared to traditional machine learning approaches,
with high accuracy, precision, recall, and AUC-ROC.
Feature interpretability confirms that both genetic
ECG patterns

significantly to early-stage CVD prediction.

markers and temporal contribute

The model has substantial potential for integration into
the U.S. healthcare system through EHRs, telemedicine
platforms, and clinical decision support tools,
supporting precision medicine, preventive care, and
While

related to dataset size and diversity exist, this research

population health management. limitations
provides a strong foundation for developing Al-driven
early detection systems capable of identifying at-risk
individuals before clinical symptoms manifest.

Future research should focus on expanding datasets,

incorporating real-time wearable ECG data, and
integrating multi-omics information to further enhance
predictive capabilities. With proper regulatory oversight
and clinical validation, Al models like the one presented
in this
cardiovascular care, reduce morbidity and mortality,

study have the potential to transform

and promote proactive, personalized healthcare in the
era of precision medicine.
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