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Abstract: Cloud-native LLM inference has bursty and 

size-variable demand that leads to head-of-line 

blocking, cold-start overheads, and infinitely variable 

tail latency. An end-to-end design that integrates 

token-sensitive scheduling with serverless GPU 

orchestration to achieve TTFT/TLET SLOs at reduced 

cost is proposed through this study. Its architecture 

combines a feasibility-sensitive admission controller, 

prefill and decode sensitive micro-batching, KV-cache 

paging with watermarks, warm pools to eliminate cold 

starts, and autoscaling based upon queue- and token-

level cues; placement encompasses full-GPU, MIG, and 

MPS modes using per-tenant policies. Deployed on 

Kubernetes on 7B-70B decoder-only models using 

vLLM/TensorRT-LLM/Triton backends, the system is 

aimed at heterogeneous H100/A100/L4 fleets and 

chat/RAG workloads with heavy-tailed token lengths. 

In experimentation, the strategy advanced cluster 

throughput 31.7 percent more than the finest 

baseline, decreased P95 TTFT to 420 ms and P99 to 1.3 

s, increased SM and memory-bandwidth utilization, 

and lessened cost per one million output tokens by 

26.8 percent, while offering a similar degree of per-tier 

fairness on the same basis. This study provides 

contributions, including a production-ready 

control/data-plane design, SLO-aware admission tests, 

degradation, and routing, token-aware batching, and 

KV-cache usage/freezing to avoid memory-driven 

stalls, an easily reproducible evaluation recipe with 

KPIs (TTFT, P95/P99 latency, tokens/s, utilization, and 

$/1M tokens). Such findings introduce a scalable 

deployment avenue to foreseeable latency and 

efficiency. The blueprint reflects the reality of the 
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operators today. 

Keywords: Cloud-native LLM serving, Serverless GPU 

orchestration, Token-aware scheduling, SLO-aware 

admission control, KV-cache management 

1. Introduction 

Large language models offered today are consumed as a 

service, demand for which is spiky and heterogeneous. 

Arrival rate can be massively multiplied due to product 

launch, seasonality, and social amplification, which 

generates queue and tail latency. The requests range 

widely due to the number of input prompts and 

generated output both being given in tokens; heavy-

tailed distributions produce a lot of variation in compute 

time and memory footprint. Inference is also a two-

stage prefill, which computes the prompt to initialize the 

key-value cache, and decode, which spits out tokens 

reusing such a cache. The prefill cost is superliner in the 

length of the prompt owing to attention, but the decode 

cost is approximately linear in the produced tokens. 

High-cost GPUs have to be utilized effectively, and 

numerous applications are multi-tenant, with various 

SLOs, budgets, and responsive profiles. The solution has 

to provide a low cost per million tokens as well as a low 

time-to-first-token. 

Head ratio bad blocking, with long prompts dominating 

(short request) prefill, causing delays on short requests, 

while bloating tails. Dynamic batching is beneficial for 

throughput; however, TTFT may suffer as shorts are 

waiting behind more extended sequences. Serverless 

platforms now add cold start overheads: the container 

pulls and loads to disk, model weights on the remote 

object store to local NVMe and on GPU HBM, runtimes 

are initialized, CUDA graphs are captured/kernels are 

compiled. The end-to-end results are added tens of 

seconds unless warm pools and snapshotting are used. 

Heterogeneous accelerators make placement and 

fairness complicated: A100, H100, and L4 have varying 

memory size, capacity, and tensor-core throughput, so a 

one-size-fits-all scheduler underperforms. NVIDIA Multi-

Instance GPU (MIG) offers the ability to carve out 

predictable slices at a high level of isolation, but has the 

risk of having stranded capacity. In contrast, CUDA MPS 

allows fine‑grained sharing and increased concurrency 

at the cost of weaker isolation and the possibility of 

cross‑interference. The key cloud native serving 

challenge is balancing such trade‑offs with multi‑tenant 

SLOs. 

This study claims that token-aware GPU scheduling, 

combined with serverless GPU orchestration, can 

achieve lower latency, greater utilization, and reduced 

costs at scale. The author of this study present an 

architecture where a token-aware router, a goal-aware 

admission controller, and a micro-batching scheduler 

with signal-based autoscaling are jointly configured. 

Short and long requests are routed, the length of 

context and output is capped per tier, and the size is 

matched to the choice of GPU or MIG slices. The 

contributions of the study include: (1) an end-to-end 

sketch of Kubernetes infrastructure, including device 

plugins, node pools, and model servers; (2) node 

admission with SLO-awareness, computing per‑request 

deadlines by summing TTFT and end-to-end budgets; (3) 

KV-cache-taming scheduling and memory methods that 

maintain throughput, and (4) a benchmark recipe with 

KPIs: TTFT, TLET, P95/P99 latencies, utilization, and cost 

per million tokens spent. The author also provides 

repeatable configuration patterns that can be modified 

promptly by operators. 

The author’s focus was a decoder‑only LLM in inference 

in the range of 7B to 70B parameters, single region, 

single cloud, through the use of Kubernetes, providing a 

control plane. The orchestration logic is implementation 

agnostic, with models being served with commodity 

engines like vLLM, TensorRT‑LLM, or Triton. Key 

definitions: Time-to-first-token (TTFT) is the duration 

between receiving the request and the first streamed 

token; time-between-tokens (TBT) is the delay between 

any two tokens when you decode; time to last emitted 

token (TLET) counts completion. Throughput is 

tokens/second/GPU or tokens/second/cluster. 

Utilization is the ratio of the peak token‑generating 

capacity utilized, with consideration to idle and cold 

start times. Works consist of interactive chat, retrieval 

enhanced generation (RAG) over long contexts, and 

batched with bound outputs. The study leave training, 

alignment, and multi-region routing out. It limit context 

and output lengths to defend memory and SLOs where 

needed. 

Chapter 2 surveys prior art in cloud‑native inference 

stacks, serverless GPU orchestration, scheduling deep 

networks and LLMs, and KV‑cache memory techniques, 

and points out these limitations, which motivate our 

design. Chapter 3 describes methods and techniques: 

the serverless GPU orchestrator, GPU provisioning and 

placement, token-aware scheduling and micro-batching, 
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KV-cache and memory management, and streaming 

networking. Chapter 4 advances the SLO-aware control 

plane, as a set of traffic modeling, queueing analysis, 

admission feasibility tests, autoscaling policies, and 

warm-pool sizing as a playbook that can be executed. 

Chapter 5 defines the experimentation facility, 

baselines, and metrics, and provides the results in 

bursty, multi‑tenant workloads. Chapter 6 deals with 

trade‑offs, operational issues, security, and 

observability; Chapter 7 covers future work; and 

Chapter 8 concludes. The readers will be able to airlift 

the configuration patterns, alerts, and offer a mirror of 

the habits in owning clusters. There are also limitations 

and assumptions. 

2. Literature Review 

2.1 Cloud Native Inference Stacks 

It is most effective to engineer cloud-native large 

language model (LLM) inference as a three-tier stack 

composed of model servers, which are the numerical 

kernels, and serving layers that use replicas to 

coordinate traffic patterns, and edge gateways that 

provide application programming interface (API) and 

streaming semantics. The layering insulates issues so 

that each of the tiers can scale and fail in isolation 

(although end-to-end tracing is still supported). Tokens, 

the execution of attention and MLPs, handling of 

key-value (KV) cache by allocation and reuse, and 

transmission of tokens across long-lived connections are 

absorbed by model servers. They maintain budgets on 

the length of the context they receive, place constraints 

on the decoder, and the memory watermarks, to guard 

against out-of-memory errors. One such important role 

is throughput optimization across the user-visible 

service-level objectives (SLOs), specifically time-to-first-

token (TTFT) and last-token. In that regard, modern 

servers provide dynamic or adaptive batching and 

token-level interleaving whereby multiple sequences 

proceed in lockstep during decode. They also expose 

tunables, maximum batch size, per-stage time budgets, 

and sets of decoding parameters that work with others, 

so that higher layers can affect the latency/throughput 

trade-offs under bursty demand. 

The cloud-native LLM inference is implemented as a 

three-tier stack: the model servers run attention/MLP 

kernels, maintain KV-cache with memory watermarks, 

and export serving tunables to enable dynamic batching 

and token-level interleaving; the serving layer directs 

replicas and traffic; and the edge gateway provides APIs 

and streaming semantics, as shown in the figure below. 

This layering isolates failures, enables end-to-end 

tracing, and allows operators to tune maximum batch 

size, stage time budgets, and decoder constraints to 

optimize trade-offs between time-to-first-token and 

throughput in the face of bursty workloads as the 

system scales elastically on the container-native 

platform. 

 

Figure 1: Cloud-native inference stack: model servers, serving layer, edge gateways 

What can be safely merged is under the control of compatibility awareness batching. Requests on different 
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models or quantization modes cannot share a batch. 

Tensor shapes even within a single model must match, 

and the total KV cache space must be within device 

memory, including runtime overheads. The 

performance profile of prefill and decode is different, 

and therefore, servers differentiate them. Prefill 

consists mainly of large matrix multiplications, which 

cost superlinearly in input length when factored by 

quadratic attention; decode steps one token at a time 

and are more or less linear in the number of tokens 

generated, although again length affects attention cost. 

Such systems thus have stage-sensitive batching 

windows: a small time budget in prefill to defend TTFT, 

and a wider window in decode to increase tokens-per-

second due to interleaving. Separation of stages forms 

the basis of token-aware scheduling in higher layers 

since it helps identify the stage where latency is most 

sensitive to request size. 

Layers above kernel execution serve as the multi-tenant 

control plane. They redirect requests to model versions, 

apply per-tenant quotas, and enact admission-decision 

policies; these take into consideration backlog and 

projected service time and SLO budgets. This is the 

natural place of token-sensitive logic: limits on 

maximum new tokens, ceilings on context length, 

separate short queue and long queue, and ranges of 

tokens in batch separands (batched as time budgets 

rather than set limits). Traffic shaping, such as canary or 

shadow rollouts, compatibility checks to help with batch 

construction, exposing signals, like queue depth, wait-

time percentiles, and tokens in flight, can also be 

orchestrated by the serving layer that can feed into 

autoscalers. Central location of such decisions can then 

be used to provide uniform policy within replicas, and a 

pattern can be created of joint admission and 

autoscaling that causes the cluster to respond to 

imminent SLO violations as opposed to remedial action 

on later graded utilization measures. 

The client-to-cluster connection is made complete with 

gateways. High-performance gateways accept TLS, and 

apply HTTP/2 or HTTP/1.1, including server-sent events, 

and translate public REST requests to internal gRPC 

requests with flow control. They handle both 

authentication and rate limits, request coalescing, and 

streaming flush intervals, which also have a direct 

impact on perceived interactivity (19). When 

downstream queues increase, gateways will use 

backpressure and then spread the cancellation so that 

once requests have been abandoned, they do not still 

consume GPU cycles. The semantics of transport cannot 

be changed with one another. Server-sent events (SSE) 

can be easily deployed behind commodity load 

balancers and are well-suited for one-way token 

streams. The multiplexing and flow control provided by 

gRPC limit the level of head-of-line blocking in a 

concurrent stream environment, but they frequently 

need special proxies. WebSockets give a two-way 

control channel appropriate for cancellation and 

parameter updates. Cancellation is required to be first-

class in any case, or autoscalers and schedulers will 

misinterpret work backlogs. 

Observability links the tiers with each other. The request 

metadata (tenant, model, context length, and decoding 

parameters) is recorded in a structured log. Distributed 

tracing associates gateway spans, serving-layer 

decisions, and model-server stages to allow operators to 

discriminate network wait, prefill compute, and decode 

interleaving. Prompts are hashed and lengths bucketed, 

except for logging verbatim to prevent excessive 

cardinality. To a certain extent, the metrics are arranged 

in four axes: traffic (arrival rate and mix), scheduling 

(queue depth, batch composition, wait time), runtime 

(TTFT and time between tokens, completion latency), 

and resources (GPU utilization subscale, VRAM free 

pages, spill bandwidth). Other latency-sensitive 

communication systems offer practices that can be 

applied wholesale in LLM gateways and serving layers 

that need to prevent accelerator overload without 

sacrificing interactive experience: fault-tolerant routing, 

idempotent operations, durable queues, and disciplined 

backpressure (28). 

2.2 Serverless & GPU Orchestration Patterns 

GPUs on Kubernetes are exposed through device 

plugins, which help advertise accelerator properties 

and, in supported cases, semi-permanent 

fractionalization like NVIDIA Multi-Instance GPU (MIG). 

Clusters are divided into a node pool by accelerator 

family (H100, A100, L4) and by price class (on-demand 

versus spot/preemptible). There are three typical 

feedback loops in autoscaling. A Horizontal Pod 

Autoscaler (HPA) scales replicas based on autoscaler-

specific metrics like queueing delay or predicted TTFT. 

Kubernetes Event-Driven Autoscaler (KEDA) is an 

automation tool that is used to scale on backlog in event 

sources such as message queues that queue requests. A 

serverless layer like Knative controls scale-to-zero and 
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activation. Every loop has a purpose: KEDA responds to 

backlog, HPA keeps a steady state under latency 

constraints, and Knative eliminates idle capacity without 

jeopardizing readiness. 

The main key practical issue in serverless GPU serving is 

cold-start management. Image builds have to be 

compact with the right CUDA stack and model-server 

runtime situated in them. To prevent object-store re-

downloads, operators pre-stage the weights of their 

models to local NVMe storage volumes, and startup 

procedures cache CUDA graphs or construct kernels to 

ensure that subsequent operator requests do not take 

the time to compile their programs. A limited, warm 

pool of pre-initialized pods decreases the occurrence 

and impact of cold starts at the cost of uniform cost in 

favor of tail predictability. Policy rules the creation, 

refreshment, and eviction of warm pods, with standard 

rules to maintain a base during peak times and reduce 

the pool at night, and grace periods to avoid trash. The 

determining policy of placement offsets usage with 

interference (14). MIG partitions provide high levels of 

isolation and predictable performance due to their 

dedicated service to strict SLO tiers. However, fixed 

slicing may leave capacity stranded with a change in 

request mix. It uses CUDA Multi-Process Service (MPS) 

to support fine-grained concurrency on full GPUs at the 

cost of less stringent isolation, so it is comparable to 

bronze or silver. 

The use of autoscaling policies is advantageous, as there 

are various signals beyond raw utilization. Latency in 

queues and the forecasted TTFT respond immediately to 

user experience, whereas tokens in aviation and the 

forecasted prefill FLOPs act almost as a proxy of the 

work backlog in the graphics processor. HPA can use 

custom metrics over a Prometheus adapter and can 

scale using queue depth with KEDA. Scaling task to zero 

by Knative applies latency at the point of activation 

when the first request comes; mitigations include 

leaving a small number of pods running during high-

demand moments, and finally, reserving a warm pool to 

store model weights in VRAM. There is additional 

confusion over spot capacity. Node taints redirect vital 

workloads to on-demand pools, and preemption hooks 

grant termination inspection opportunities to ensure in-

flight batches complete cleanly. Where possible, drains 

should checkpoint state to local NVMe, and, in such 

cases, perform topology-aware rescheduling that 

retains NVMe affinity and large bandwidth links. The 

signals provided by health include error rates, ECC, and 

PCIe retraining event trigger, which proactively cordons 

off before regressions emerge. Last but not least is the 

fact that pipeline hygiene is a must. By adding static and 

dynamic security analysis to CI/CD, containers get 

hardened, a dependency tree is validated, and 

promotion gates to serve the images and model artifacts 

are established to be auditable (15). 

2.3 Scheduling for DNN/LLM Inference 

Efficiency and tail latency are highly affected by the 

scheduling policy. First-Come-First-Served (FCFS) is 

simple, but has the head-of-line blocking problem with 

long queues followed by short queues. 

Shortest-Job-First (SJF) or preemptive 

Shortest-Remaining-Processing-Time (SRPT) produces a 

more negligible mean and tail latency by ordering 

requests based on small predicted service time, where 

the size is estimated as input tokens plus predicted 

output tokens. Earliest-Deadline-First (EDF) requests are 

ordered by deadlines based on SLOs, and admission 

discards or degrades requests that cannot satisfy TTFT 

or end-to-end budget. Interleaving at the token level 

and dynamic micro-batching boost throughput, but the 

delay imposed on the formation of a batch needs to be 

limited so as not to jeopardize TTFT (1). Such evidence 

can be considered in terms of related areas of 

optimization practice: algorithm-based dispatching with 

clear objectives and constraint management 

outperforms heuristic rules in stochastic, bursty 

demand, an analogy that speaks to principled size and 

deadline-based scheduling of LLM inference (22). 

2.4 Memory & KV Cache Management 

Memory dictates the number of sequences that can 

concurrently operate on a GPU and thus becomes a 

limiting factor on throughput decoder-only models. KV 

cache scales in size with layers, number of attention 

heads, head dimension, as well as total tokens; it is also 

common to hit the memory ceiling earlier in terms of 

compute saturation. Page-based KV allocators split the 

cache into fixed-size pages whose existence is managed 

per sequence and layer, providing constant-time 

allocation and reclamation and minimizing external 

fragmentation. To avoid the pathological 

overcommitment, telemetry reveals that the free-page-

based watermarks and admission throttles are 

employed to ensure that a process cannot exceed the 

capacity. Fragmentation management is not the 

responsibility of the allocator. Since the lengths of 
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sequences can vary, padding is often necessary to match 

the tensors in a batch; gathering requests that share 

some length in common can minimize the amount of 

wasted memory and computation. The frequent 

compaction that results in a temporary halt undertaken 

in low load windows allows a favorable contiguity and 

the subsequent batch density. Multi-tenant serving 

brings adapter management: popular adapters are 

pinned, while others are loaded on demand to save 

VRAM. Spill strategies impose flexibility upon the 

memory breach. The cold KV pages are migrated to CPU 

memory and, in extreme cases, to local NVMe through 

batched DMA. Hot pages spilling cause prefill 

performance to drop precipitously. Thus, systems select 

conservative thresholds, retain early-layer pages as they 

are visited at each decode level, and favor NUMA-local 

spill destinations. Pseudo-environments, Such as 

quantization policies, alter static footprint and dynamic 

KV utilization. Quantization Weight only (8- or 4-bit) 

decreases the representation size and allows for more 

suitable batch sizes on memory-bound GPUs. KV 

quantization also decreases per-token memory 

consumption measurably, allowing more simultaneous 

sequences to be active, but will require attention-

minimizing dequantization overhead to prevent adding 

compute stalls in the kernels. Throughout memory 

Robust accounting Memory is closely linked with 

orchestration: placement takes into account base 

weights and runtime overhead, as well as expected KV 

growth based on batch size and percentile context 

length; autoscalers monitor spill rates and watermarks 

as leading indicators; and brownout policies can limit the 

maximum tokens delivered or refuse long contexts to 

conserve SLOs during crises. 

 

Figure 2: Memory hierarchy and KV-cache paging for scalable LLM inference 

The serving performance of LLM is determined by 

attention performance and the hierarchy of memory. 

GPU SRAM/HBM and CPU DRAM bandwidths constrain 

the density of the batch, and FlashAttention minimizes 

kernel time, as evident in Figure 2 above. KV-cache 

pages are claimed and discarded promptly, and free-

page watermarks gate access to prevent overcommit. 

Cold pages are subject to spill to host or NVMe through 

batched DMA, hot early-layer pages remaining in HBM 

to decode. Quantization decreases the weights and KV 

and multiplies concurrent sequences. Orchestrators 

monitor spill rates and enforce context/output rate 

limits to keep TTFT SLOs on load. 

2.5 Gaps & Opportunities 

There is a gap across stacks and orchestration patterns. 

A small number of deployments provide a single point of 

identity for serverless-compatible deployments, a token 

that is aware of the control plane based on SLOs (9).  

Model servers are very efficient numerically, but are 

unaware of cluster-level cold starts and delays in 

provisioning. Serverless platforms offer elasticity, but 

pods are seen as opaque boxes with little visibility into 

the behavior of tokens. This leads to a split-brain system, 

where autoscalers respond to trailing indicators and 

where schedulers take local decisions without a global 

view. Another opportunity comes in the form of 

evaluation practice. Benchmarks tend to focus on 

average throughput, and not the cost of achieving that 

rate, the rate of cold starts, tail behavior under diurnal 
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bursts, and recovery on node drains. Realistic traffic 

should be injected and tenants with divergent SLOs 

should be mixed, timelines at the token level measured, 

and (P50/P95/P99 reported on the network wait, prefill, 

TTFT, inter-token wait times, and completion. Cost must 

be brought into standard units of dollars per million 

tokens and broken out into steady compute, warm-pool 

overhead, and scaling waste. Microservices literature 

also warns against the limitless scalability independent 

of budget control that is not a strategy (37).  Integrating 

cost-sensitive control devices, cost-focused autoscaling 

goals set in dollars per million tokens, SLO levels 

allocated to price buckets, and feedback that leaves 

marginal dollars per token revealed to service owners 

and reduces wastage during bursty scale-outs (5). 

3. Methods and Techniques 

3.1 System Architecture: Serverless GPU 

Orchestrator 

The serving system is designed with a cloud-native 

control plane and a high-throughput data plane. An API 

gateway at the edge terminates TLS, authenticates a 

caller, standardizes headers, and assigns a tenant 

handle. A request classifier next takes low-cost features-

-the model identifier, input tokens observed, maximum 

new tokens requested, decoding parameters, and 

tenant class--and passes them to a token-sensitive 

router, which calculates an approximate size estimate 

and adds scheduling hints propagated by the request 

end-to-end. The router hence does initial triage by 

putting requests into short or long classes and makes a 

candidate GPU tier decision that is based upon projected 

VRAM pressure and time-to-first-token (TTFT). A 

feasibility-checking admission controller assesses the 

possibility that the request may satisfy its SLOs on the 

selected tier; infeasible requests are degraded, 

redirected to a higher tier, or rejected with a 

recommended retry stance. 

The control plane encompasses a policy engine, an 

autoscaler, and a warm-pool manager. The policy engine 

assembles per-tenant settings into the execution-time 

rules context ceilings, output caps, maximum 

concurrency, and priority mapping (30).The autoscaler 

tracks queue-time percentiles, forecasted service load, 

token throughput, GPU usage, and free-page 

watermarks. When the backlog poses a threat to TTFT, it 

can add capacity by activating prewarmed pods or 

expanding the node group, and when demand drops, it 

can consolidate load and drain excess pods. A warm-

pool manager maintains a desired number of pods per 

model hot, with local NVMe with weights, pinned in the 

device memory, CUDA graphs on-disk, and tokenizer 

caches pre-warmed. Ready gates require that traffic can 

only be accepted by warm pods when graph capture is 

successful. 

Data plane will consist of model pods that are connected 

to a complete GPU or MIG slice through device plugins. 

Every pod is configured to support a streaming model 

server, a tokenizer library, and a lightweight sidecar that 

exports custom metrics, like decode cadence, tokens per 

second, free KV pages, admission decisions, and cold-

start events. Concurrency limits are visible to the 

scheduler, so micro-batching is aware of TTFT budgets 

and so avoids over-admission choices leading to 

memory consumption of KVs. Expect pods to take 

messages controlling draining, loading of an adapter, 

and also compaction windows; draining happens at 

token boundaries, so active sequences do not lose their 

state. The weight of models is resident, and KV cache 

pages are reserved only when needed. 

The loop is completed with observability and operability. 

The stack reveals TTFT, TLET, P95/P99 latency, GPU 

usage, VRAM load, queueing depth, and rejection cause. 

Distributed traces align gateway spans, control-plane 

decisions, and pod execution such that each source can 

be composited on a scheduling decision. There is a clean 

bounded context between routing, admission, 

scheduling, and autoscaling, which reduces coupling and 

clean division of responsibility, which simplifies 

evolution and prevents large blast radius; this is 

identified as a separation of concerns in microservices 

literature (4). 

3.2 GPU Provisioning & Placement 

VRAM accounting is the initiation of provisioning. In 

decoder-only inference, the resident set supports base 

model weights, run-time workspaces, and the per-token 

key-value (KV) cache. Weights are assigned per-model 

fixedly and pinned once per-pod; KV cache can scale 

linearly to the concurrency and the context length, and 

hence is very dominant in its variability. Practical sizing 

rule provides KV budget with the calculation as KV bytes 

the approximate value of B, the number of active 

sequences in the micro ⁠-batch, L, the effective context 

length (prompt and the part of generated tokens that is 

retained), H, the hidden size, dtype factor is the number 

of bytes per element (2 FP16, 1 when INT8/FP8 is 

supported), and layers is number of transformer blocks. 
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Heads factor reflects both key and value tensors and 

head partitioning. Operators are stuck with a percentage 

of headroom to cushion bursty arrivals, and capped L per 

tenant to clear KV footprint, which is predictable. Since 

paging between device memory and host is costly, pages 

are allocated by the allocator using preallocated arenas 

instead of utilizing general-purpose malloc. 

Placement has to assign pods to accelerators so that no 

SLOs are missed and capacity is not stranded. NVIDIA 

Multi-Instance GPU (MIG) allows predictable slicing 

(such as 1g.10 GB, 2g.20 GB, 3g.40 GB) into isolation 

with deterministic VRAM ceilings on H100 nodes or an 

A100 node. Larger slices can be scheduled to high-

priority tenants to reduce the chance of contention, 

whereas the cost-sensitive tiers can share smaller slices. 

MIG minimizes noisy-neighbor effects and can increase 

internal fragmentation when workload shapes change, 

so the scheduler monitors free pages and could 

rebalance hot partitions. Another concurrency 

mechanism is CUDA Multi-Process Service (MPS), which 

can enable multiple processes to share a full GPU (20). 

MPS may achieve greater throughput when mixed, short 

requests are made, but has less isolation; as such, MPS 

is conservative in its admission and denies memory 

over-commitment. 

The topology-aware placement lessens the variance of 

latency. PCIe generation, NUMA domains, and NVLink 

connectivity are labeled at the node; the scheduler 

favors NVMe local to GPUs as weight snapshots and 

does not replicate tensor-parallel shards with their GPUs 

across NVLink islands. In case a model is sharded, the 

orchestrator co-schedules sibling pods on GPUs with 

direct NVLink to reduce inter-GPU traffic during prefill 

and decode. The controller complies with 

PodDisruptionBudgets and reserves spare capacity to 

support rolling updates to ensure availability. When cost 

optimization requires the use of spot instances, a drain 

controller reacts to preemption notices by flagging pods 

unschedulable, retries of requests still in-flight 

upstream, and checkpointing warm-pool state to local 

NVMe on the replacement node. Lastly, operators 

publish longer-lived resources through device plugins, 

Node Feature Discovery to annotate hardware 

capabilities, and set anti-affinity to ensure that all the 

replicas of an instance of the same model do not form a 

single failover point on a common host. 

Table 1: GPU provisioning & placement: VRAM, KV-cache, MIG/MPS, topology-aware scheduling 

Component / 

Decision Area 

Key Purpose / 

Challenges 
Practical Rules / Calculations 

Operational Actions / Scheduler 

Behavior 

VRAM 

accounting 

Ensure pods fit GPU 

memory without SLO 

misses or stranded 

capacity 

Resident set = base weights (pinned 

per pod) + runtime workspaces + KV 

cache 

Track per-pod footprints; reserve 

headroom for bursts; deny 

overcommit 

KV cache sizing 

Dominant, variable 

memory driver in 

decoder-only inference 

KV bytes ≈ B × L × H × dtype × 

layers × heads×2 (keys & values); 

dtype: FP16≈2B, INT8/FP8≈1B 

Cap L per tenant; forecast KV 

growth from batch B and 

percentile L 

Memory 

allocator 

strategy 

Avoid costly 

device↔host paging 

and fragmentation 

Preallocated arenas; page-based KV 

allocator with constant-time 

alloc/free 

Enforce free-page watermarks; 

admission throttles when below 

watermark 

Headroom 

policy 

Cushion bursty arrivals; 

keep latency stable 

Maintain % free VRAM above 

predicted peak KV; fixed weight 

pinning 

Reject or defer requests if 

headroom breached 

MIG slicing 

Predictable isolation and 

VRAM ceilings on 

A100/H100 

Slice profiles (e.g., 1g.10GB, 

2g.20GB, 3g.40GB) mapped to SLO 

tiers 

Give larger slices to high-priority 

tenants; monitor free pages; 

rebalance hot partitions 

MPS 

concurrency 
Higher throughput for 

mixed short requests, 

Share full GPU among processes; no 

memory over-commit 

Conservative admission; deny 

when memory risk detected 
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Component / 

Decision Area 

Key Purpose / 

Challenges 
Practical Rules / Calculations 

Operational Actions / Scheduler 

Behavior 

weaker isolation 

Placement 

objective 

Avoid SLO violations and 

stranded capacity 

Match pod footprint + KV growth to 

GPU/MIG capacity 

Bin-pack by VRAM; route shapes 

to suitable tiers (full GPU vs slice) 

Topology 

awareness 

Reduce latency variance 

and inter-GPU traffic 

Use node labels: PCIe gen, NUMA, 

NVLink topology, local NVMe 

Favor NVMe local to GPUs for 

weight snapshots; co-schedule 

sharded pods on same NVLink 

island 

Sharded 

models 

Minimize cross-link 

chatter during 

prefill/decode 

Keep tensor-parallel siblings 

topologically close 

Anti-affinity across hosts for 

replicas; NVLink-aware co-

scheduling 

Availability 

during updates 

Maintain capacity while 

rolling 

Respect PodDisruptionBudgets; 

reserve spare nodes/slices 

Staged rollouts; keep warm 

capacity during updates 

Spot instances 
Control preemption risk 

while cutting cost 

Use spot for elastic capacity, on-

demand for critical 

Drain on preemption notice; 

mark pods unschedulable; retry 

upstream; checkpoint warm-pool 

state to local NVMe 

Hardware 

discovery 

Publish capabilities for 

accurate scheduling 

Device plugins; Node Feature 

Discovery annotations 

Scheduler filters/affinity rules by 

capability set 

Anti-affinity / 

blast radius 

Avoid single-host failure 

for a model’s replicas 

Spread replicas across hosts/NUMA 

domains 

Enforce anti-affinity; maintain 

spare capacity for failover 

3.3 Token-Aware Scheduling & Micro Batching 

Scheduling begins with an estimate of the size \hat{n} = 

n_in + E[n_out], where n_in is the observed input length 

and E[n_out] is the expected number of tokens 

generated conditional on the prompt branch and stop 

conditions and tenant defaults. This estimate is 

consumed by a service-time model \hat{s} = a · 

nin^omega + b · nout · f(ctx). The first one approximates 

prefill cost; 1 > /alpha/ reflects the fact that the benefit 

of attention increases super-linearly with context size. 

The second term is a model of decode, in which the 

per-token latency grows as a factor of nout but also 

grows with context by a factor of f(ctx). Coefficients a 

and b will be trained based on offline profiling per 

model, and per GPU tier, and should be periodically 

refreshed, as with production telemetry.The router puts 

requests on short or long queues and calculates priority 

proportional to weight/\hat{s} under a weighted 

shortest-remaining-processing-time (SRPT) policy. A 

local scheduler running on each GPU slice or MIG slice 

consumes several tokens out of these queues into a 

token-aware micro-batcher. In prefill, the batcher 

restricts the number of long prompts it will accept 

simultaneously to keep TTFT within budget; during 

decode, it interleaves as many short sequences as 

possible to maximize tokens per second. A batch is 

limited by two constraints: the estimated prefill time 

cannot be greater than the TTFT budget of the median 

request in the batch, and the expected KV reservation 

after admission should be kept above a free-page 

watermark. As the queue length increases, the 

scheduler will reserve a portion of slots for the long jobs 

to prevent starvation. 

Time is closely linked to admission and 

scheduling. Each queue keeps an estimated completion 

time based on the current decode cadence and the 

estimated prefill of running jobs. A request is accepted 

when predicted waiting time + the prefill is below the 

TTFT budget. A degradation ladder is used: lower 

max_new_tokens on bronze tiers, prioritize gold, route 
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to faster GPU tier, or send a fast failure with retry hints. 

Preemption is done on the boundaries of tokens to 

prevent corruption of state; the batcher defers to 

tenants with higher priorities when their TTFT would 

have been lost. Deficit round-robin imposes fairness 

across moving windows of the number of tokens 

emitted per tenant, so allocation is based on GPU work 

instead of the request counts (18). 

Both memory and time prediction are used when 

selecting the GPU tier. Suppose \hat{s} is known, and at 

an instance the KV estimate is known, then the mapping 

will choose the cheapest tier in which the TTFT and end-

to-end latency meet the SLO of the tenant, and its free 

pages after the admission meet a low watermark. The 

scheduler decouples batches when head-of-line 

blocking is identified, and this action occurs when the 

longest-to-median ratio of n in a pending batch is too 

high relative to a configured parameter. 

3.4 KV Cache & Memory Techniques 

Consistency in throughput is determined by the well-

managed key-value (KV) cache. At startup, each pod 

configures fixed-size page arenas of keys and values that 

are aligned with kernel preferences and the memory 

granularity (24). Per-layer free lists support constant-

time allocation, and this is combined with allocating on 

uncertain bursts, which limits contention during bursts. 

The allocator allocates pages during admission to 

safeguard the prompt and an over-approximation of the 

output tokens issued; during decode, to resolve spikes, 

it can allocate more pages in small units. They reference 

count pages based on the sequence of pages, so they 

can be released quickly on cancel or completion. 

There is early-warning control through watermarks. 

Healthy headroom is a high watermark; a low 

watermark causes admission throttles, or activates 

reserve MIG slices, or causes the autoscaler to add warm 

capacity. Absolute free pages and consumption slope 

are exported to enable the control plane to know when 

it is going to be depleted, so that stalls are avoided. 

Eviction is event-based; background sweeps combine 

small free runs into bigger ones. The windows are 

bounded, and the compaction is synchronized with 

human lulls in the decode cadence so as not to introduce 

noticeable delays. 

Memory is also taken up by multi-tenant adapter 

management. Once tenants bind LoRA adapters, 

popular adapters have the pin assigned on the GPU, and 

less popular adapters are kept in page-locked host 

memory that can quickly do DMA. A lightweight adapter 

router favors pods that have the requested adapter in 

them to reduce the penalty of carrying the extra load. 

Quantization is capacity: Weight only 4-bit or 8-bit 

schemes reduce the size of the static model, and KV-

cache quantization to 8-bit halves the cache size with a 

negligible effect on the quality of many workloads; per 

tenant operators can gate this. 

This dynamic process is supported by dynamic memory 

concepts of neural inference studies to the extent that 

the pathways that choose what to keep in memory and 

what to purge minimize interference and enhance an 

adaptive memory capacity under different demands 

(25). The serving allocator is not a trained entity, but the 

principle is the same: manage memory as an allocation 

in pages and track reservations as evidence is discovered 

during decode. Admission throttles decline or postpone 

requests that, once reserved, would violate a watermark 

or a per-tenant memory budget. Drain endpoints freeze 

new grants and wait until a series reaches a token limit, 

and thereafter, compaction before restart. 

3.5 Networking, I/O, and streaming 

Networking has to conserve the token rhythm 

generated by the scheduler. The serving layer exposes 

gRPC over HTTP/2 with server-streaming RPCs to allow 

tokens to be streamed immediately they are produced; 

native flow control and per-stream deadlines give 

backpressure and safeguard the cluster against 

straggling clients. To consume via browsers, an edge 

gateway translates gRPC stream to Server-Sent Events 

(SSE) and maintains backpressure, including buffering 

quotas and early cancellation. Keepalive pings and idle 

timeouts halt resource waste, and idempotency keys 

make retries seamless following network hiccups and 

non-repetitive. 

Tokenizer locality prevents a hidden hotspot of the CPU. 

Pods preload vocabulary files, tokenizers, and a cache of 

standard system prompts within the process. Requests 

will include a tokenizer class hint so the router can direct 

compatible prompts onto the same shard, thus 

minimizing cache churn. With large documents, 

zero-copy ingestion paths can transfer the data between 

the NIC and the user space to the GPU staging buffers 

without copying along the way. 

Chunking and flush intervals are adjusted to the time 

between tokens profile. Both too-frequent and too-
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infrequent flushing add overhead; the former damages 

perceived interactivity. One token per flush or 20 50 ms 

cadence, whichever is longer, is targeted by a pragmatic 

policy and coalescing of small chunks under bursts. 

Compression depends on the level of token rate and CPU 

headroom; to avoid head-of-line blocking, raw frames 

are desirable in high-throughput decode mode. At the 

edge, request coalescing eliminates both the same 

prompts at thundering-herd arrival times, and a 

rendezvous batcher, a program to assemble compliant 

arrivals in a brief interval. Per-route rate limits and 

tenancy quotas constrained the best-case load. Worst-

case load, and transport security was enforced by 

mutual TLS and scoped tokens with minimal overhead 

on contemporary hardware (35). Network telemetry: 

per-stream TTFT, inter-token histograms, retry counts, 

and gRPC flow-control stalls provide backpressure 

measured at the edge, which is translated to a safe, 

token-aware scheduling decision at all levels of service 

within a cluster. 

4. SLO Aware Admission Control, Autoscaling, and 

Queueing Analysis 

4.1 SLO Definitions & Traffic Modeling 

Cloud-native LLM serving has service-level objectives 

encoding two qualities visible to the users, 

responsiveness and completion. The time-to-first-token 

budget DTTFT limits how long it takes between the 

request arrival at the serving gateway and the first 

streamed token. The end-to-end budget, D E 2 E, is an 

upper bound of the delay between the same arrival 

instant and the last emitted token, often referred to as 

time-to-last-emitted token (TLET). As clients can begin 

to render once the first token has been received, DTTFT 

is the key factor affecting perceived quality; D E2E limits 

total throughput and exposure to cost. Practical SLOs 

give percentile targets (e.g., P95 TTFT <= 300 ms, P99 

TTFT <= 600 ms; P95 TLET <= 4 s) with an error budget 

that can eat rare outliers. These budgets dTTFT = arrival 

+ DTTFT and dE2E = arrival + DE2E are used to give per-

request soft deadlines to the control plane: dTTFT and 

dE2E. Soft deadlines at admission time should degrade, 

redirect, or reject such requests early--either outright or 

with informative hints--rather than letting them wait in 

queues. 

The SLO decision flow (Figure 3) instructs operators to 

select request-based SLOs when signals of a service are 

exposed at per-request granularity and the overall 

performance must be controlled adequately on a per-

interaction basis (i.e., when deadlines apply, such as on 

the TTFT/TLET proposal), and to select window-based 

SLOs when signals are aggregated, traffic is low, and only 

aggregate behavior is relevant. This mapping is the 

admission control-soft deadlines mapping dTTFT and 

dE2E: per-request control degrades, redirects, or drops 

early; window control tracks percentile budgets over 

time windows to guarantee consistent latency and cost. 

 

 

Figure 3: Choosing request- or window-based SLOs for TTFT/TLET control 
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The nonstationary arrival process 00t is bursty. Daily 

variations are interspersed by peaks at launches, 

external linking, or incident diversion, and brief bursts of 

5-20-fold are typical in production systems. Request 

sizes are also not homogeneous since the cost of the 

service consumed is proportional to the number of 

prompt input tokens and the number of output tokens 

produced. Prefill compute grows superlinearly in input 

length (compute grows quadratically with sequence 

length unless optimized), and decode grows linearly in 

output tokens due to reuse of the key-value (KV) cache 

over steps. As a result, two requests for the exact arrival 

time may require vastly dissimilar GPU time and 

memory; head-of-line blocking will occur if they are 

handled in the same way. 

SLOs should also reflect multi-tenancy. Tiers combine 

budgets numerically, policy limitations, and classes of 

resources. A gold tier could impose D_TTFT = 300 ms and 

D_E2E = 4 s, limit the length of context to preserve 

memory, limit the number of generated tokens, and tie 

requests to high-powered accelerator slices with limited 

per-pod concurrency. A bronze tier could enable D EE = 

12 s, D EE = 1 s, support greater concurrency, and favour 

more cost-effective slices. Tier metadata also controls 

permitted decoding parameters, permitted model 

families, and overflow destinations (7). The routing, 

admission, and autoscaling access this metadata to 

balance per-tenant fairness and achieve cluster-level 

performance objectives. 

The model has to have first-class memory pressure. The 

footprint of KV-cache grows with batch size, number of 

layers, hidden width, and precision; spills to CPU or 

NVMe incur stalls contributing to overestimates of 

service time and variance. The controller consequently 

makes the condition based on context length, 

anticipated output length, present batch size, and 

obtainable cache page. When the free pages are left 

unused past a watermark, admission will throttle long 

context primitively, and output limits are rigidized on 

the lower tiers. Such guidelines pair SLOs with resource 

health, inhibiting the occurrence of pathological tail 

behavior due to fragmentation or paging. 

4.2 Queueing Models for Token-Aware Serving 

Any accelerator or MIG slice could be modeled as a 

general arrival station with general service times (i.e., a 

queueing station). A multi-node station with a single 

GPU is a reasonably close analogy to G/G/1, with 

processor sharing (PS) during decode, and exclusive 

service during prefill; a pool of homogeneous nodes is 

G/G/k with bulk-service effects arising through the use 

of dynamic micro-batching. General distributions are 

intractable when it comes to exact analysis, although 

good approximations inform design. The formula by 

Kingman delivers an average queue in G/G/1 without 

vacations: 

W_q ≈ [ρ/(1 − ρ)] × [(c_a² + c_s²)/2] × E[S], 

where ρ = λ·E[S] is utilization, c_a is the coefficient of 

variation (CV) of interarrival times, and c_s is the CV of 

service times. Three operational levers follow. First, 

keep ρ bounded away from one; as ρ → 1, the prefactor 

ρ/(1 − ρ) explodes and W_q grows superlinearly. Second, 

minimize variation; heavy-tail service (c>>1) and burst 

arrival-to-service (c a >1) compound waiting. Third, 

minimise E[S] through batching and optimised kernels. 

These levers provide an incentive to token-aware 

routing (to lower the effective cs), short/long queues (to 

reduce interference), and admission throttles (to 

stabilize at ρ). 

Serverless execution adds cold starts, similar to server 

vacations, where no service is provisioned. Vacations 

extend adequate service time and result in more 

waiting, especially when the demand is high. Practically, 

some cold-start components are image fetch, 

initialization of device plug-in, transfer of weights to 

local NVMe and HBM subsequently, and run-time 

compilation in conjunction with CUDA graph grasp. 

Warm pools eliminate vacations by maintaining a small 

pool of hot replicas; snapshotting and layer caching 

minimise the rest of the startup path (38). The objective 

of the operations is to ensure that warm capacity is 

provided to reduce the likelihood of dispatching to a 

cold copy in bursts. 

Micro-batching is provided by bulk service. The arrivals 

are prefilled in a batch and are arbitrated under PS to 

share the decode phase. Batch-formation time is the 

amount of delay required to build up the requests to 

achieve the target batch size B, with a timeout imposed 

to defend TTFT. In the bursty λ(t) regime, batches fill 

densely, and amortization will take over. Astake over. As 

traffic becomes sparser, the aggressive batch targets 

pay in terms of TTFT penalties. Practical heuristic: The 

heuristic commits at most some fixed percentage of D 

TTFT (40% is a familiar figure) to batch formation and 

prefill. The rest is left to any possible queueing 
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uncertainty and the initial decode. This is a back-solve 

on B at any traffic issue and model setup. 

Basics of delay estimation are difficult in the decode-

phase PS. As the B_active sequences decode in parallel, 

the effective service rate per sequence is the total 

service rate, 1/B_active, so the completion of decode 

time extends more or less proportionately with the 

number of sequences in B_active. In contrast, prefill is 

either not preemptive or loosely preemptive, since 

writing to the KV-cache has to be contiguous. To avoid 

head-of-line blocking, the scheduler interleaves very 

brief prefill windows between small prompts or 

distinguishes between jobs that prefill heavily and those 

that do not (12). Heterogeneous clusters also take 

advantage of cmu-style dispatch: use servers with 

priority weight c times effective service rate mu, and 

keep other things constant, 2U would be mu, which 

incorporates not only compute but also memory 

headroom (free KV pages) so that paging is avoided. 

4.3 Admission Control Algorithms 

Admission control also makes SLOs per request at the 

router. The system will calculate a predicted wait time 

on the target queue, Ŵ_q, and an expected service time 

ŝ, for each arrival. The latter is decomposed into prefill 

and decode components: ŝ = ŝ_prefill + 

ŝ_decode(max_new_tokens). To guard against 

overconfidence, predictions are not taken at their word 

and treated as high-quantile estimates (e.g., P95), with 

an uncertainty allowance in the form of a multiplicative 

guard factor 0 < 1 injected after estimation. Two 

feasibility tests are as follows: 

1. TTFT feasibility: Ŵ_q + ŝ_prefill ≤ D_TTFT. 

2. End-to-end feasibility: Ŵ_q + ŝ_prefill + 

ŝ_decode ≤ D_E2E. 

When TTFT is not achievable but D_E2E should 

be at a smaller output, the controller uses graceful 

degradation by reducing max new tokens, greedy 

decoding, or putting on early-exit policies. In cases that 

both constraints are unsatisfiable despite any feasible 

tier, the request is redirected to overflow capacity or 

rejected immediately with an organized reply that has 

retry hints. The estimation of the Ŵ_q should take into 

consideration the queue depth and batch dynamics. A 

virtual-finish-time estimator is the sum of the remaining 

service of jobs in front, divided by the effective service 

rate two mu eff, plus the expected batch-formation 

delay. Concretely, Ŵ_q ≈ α·(queue_depth/μ_eff) + 

β·batch_fill_time, where α and β are fitted from 

telemetry, μ_eff reflects concurrent decode sequences, 

and batch_fill_time is the minimum of the latency buffer 

permitted by D_TTFT and the time to fill the next batch 

given current arrivals. Since the state is dynamic, the 

estimate is updated at dispatch; when it rises above a 

limit before a job enters service, opportunistic rerouting 

to an under-loaded tier is permitted. 

The priority achieves a balance between efficiency and 

equity. Weighted shortest-remaining-processing-time 

(w-SRPT) gives priority to small 0 in addition to applying 

weights to the tenants in agreement with the SLO tiers. 

Preemption is allowed at token boundaries so that a 

short job may start decoding in a short time without 

losing work on a long career. The scheduler limits the 

number of preemptions on a request to prevent 

thrashing and imposes a minimum token quanta. The 

reason prefill preemption is not expected is that 

resuming in the middle of a serving stack is not 

supported or cheap due to emergency pressure (6).  

Operationally, the admission channel produces counters 

of admits, degradations, reroutes, rejects with reasons; 

the admissions signal steers post-incident analysis 

procedures and chromatic winds γ and the selected 

quantile p. 

4.4 Autoscaling Coupling & Warm Pool Sizing 

Autoscaling pairs admission to capacity in a way that 

delays when bursts come up. The target set point of the 

control is to maintain utilization zero within a range 

balancing utilization and tail latency (say 0.5-0.7 during 

peak), keep D_TTFT and D_E2E targets, and reduce cold 

start. Backlog-based delay and token-production 

pressure are the two categories of signals that are most 

reliable. The former employs queue_latency_p95 or W 

q percentiles; when they surpass any fraction 0 of D TTFT 

over a long continuous window, zero scale-out ensues. 

The second uses tokens_in_flight or prefill FLOPs/s to 

indicate near-real-time pressure on decoding and prefill 

pipelines, respectively. 

In Kubernetes, Horizontal Pod Autoscaler v2 is capable 

of scaling up against custom metrics tracked by 

Prometheus, which can also dynamically scale in many 

ways, quickly responding to events, with KEDA. Policies 

are a combination of proactive and reactive sides. 

Proactive scale-out pre-warms pods in advance of 

predictable bursts and forecasts scale-out based on past 

traces, including workload mix. Reactive scale-out reacts 
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to an increase in queue delay and cold-start occurrence. 

Scale-in is conservative: It needs small values of backlog, 

tokens_in_flight, and consistent percentiles of TTFT 

across multiple windows before replicas can be 

deactivated. Heterogeneous Clusters require cost-

sensitive placement: an estimate of marginal SLO 

increase/dollar in each node group or MIG profile, and 

add capacity where the benefits are the greatest on a 

marginal-cost basis. 

Warm pools do away with cold starts and vacations. A 

warm replica is one with cached image layers, loaded 

model weights, compiled runtime, and CUDA graphs. 

The minimum warm pool per tier follows N_warm ≥ 

⌈λ_burst · T_cold⌉, where λ_burst is the expected spike 

in arrivals over the warm-up horizon and T_cold is the 

cold-start duration. If the burst model is uncertain, 

λ_burst is inflated by a safety margin. Warm copies, 

warm replicas are distributed topology-spread along 

nodes and zones in such a way that the failure of one 

does not exhaust readiness. PodDisruptionBudgets and 

priority classes ensure that a maintenance or 

preemption event cannot evict warm replicas. 

Scale-to-zero is still an appealing low-cost service for 

low-traffic services. A workable policy zero scales out 

the stateless gateway and keeps a nonzero warm pool 

of the model deployment. Idle eviction timers are used 

only against replica excess, and never allow the pool to 

go below N warm (8). Pods are drained whenever scale-

in is required by halting admission traffic and allowing 

ongoing decodes to finish, ensuring KV-cache state and 

no partial outputs. Where the dynamic is complex, 

however, reinforcement-learning formulations 

complement the rules; analogous strategies have been 

applied to balance the greedy delay-minimizing traffic 

adaptive control tactics, pointing towards a route to a 

reward-based scaling without violation of safety 

constraints (33). 

4.5 Implementation Playbook & Alerts 

An applied playbook transforms the above processes 

into regulated practices. The first pillar is the metrics. 

TTFT and TLET histograms and percentiles, queue depth 

per tier, queue_latency_p95, tokens_in_flight, prefill 

FLOPs/s, GPU utilization, VRAM free-page watermark, 

achieved batch size versus target, cold-start counts, and 

admission action counters all should be exported by the 

serving stack as histograms and percentiles. Dashboards 

decouple interactivity (TTFT, batch-formation delay) and 

throughput (tokens per second, utilization) and memory 

health (free pages, fragmentation). The input and 

output token frequencies, context length, and decoding 

parameters, including realized TTFT, realized TLET, and 

per-stage timing records in request logs, enable post hoc 

analysis. 

The serving pipeline, tokenization, prefill (initial prompt 

processing), token-by-token decode, and de-

tokenization also determine what is instrumented to 

provide operations dashboards: TTFT and TLET 

histograms/percentiles, batch-formation delay, queue 

depth, and queue_latency_p95, tokens_in_flight and 

prefill FLOPs/s, GPU utilization, VRAM free-page 

watermarks, achieved and target batch size, the number 

of cold-starts, and admission actions. As shown in the 

figure below, per-request logs record input/output 

tokens counts, context length, and decoding attributes, 

and per-stage timings to support subsequent analysis, 

quasi-identifying interactivity and throughput- and 

memory-insolvency perspectives for credible alerting 

and capacity planning decisions. 
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Figure 4: Tokenization, prefill, decode stages for TTFT/TLET instrumentation 

The routing and admission are applied as a 

sidecar/gateway filter. The filter analyzes feasibility in 

terms of quantile estimates and guard factor gamma 

(P95 with a guard factor gamma of 1.25 gives a safe 

starting point) (10).  Each tier has two priority queues to 

make a better separation: a short queue used when n̂ is 

small, a long queue when n h is large. Context ceilings 

prevent injustice and memory loss when combined with 

per-tenant concurrency limits. Infeasible requests are 

degraded by reducing max_new_tokens, switching to 

greedy decoding, or sending to a smaller, faster model 

compatible with the output quality. Every decision is 

justified using organized headers to help client-side 

retries. 

SLOs directly derive caps about scheduler configuration. 

Max batch size is selected with expected batch-

formation delay plus prefill time using less than 40 

percent of D_TTFT at nominal lambda. Short prompts 

are safeguarded by restricting prefill windows to sit 

periodically (e.g., every k-th time slice). Thrashing can be 

preempted with token boundaries with per-request 

limits. Tokenizer workers are replaced alongside model 

pods to prevent CPU tokenization from being on the 

critical path. On heterogeneous clusters, the routing 

uses a CMU-style rule, though taking into account 

compute throughput as well as free KV-cache pages to 

avoid placing that would induce paging. 

On composite triggers, autoscaling is aligned with HPA 

v2 or KEDA. One trigger forces queue_latency_p95 to be 

less than 0·D_TTFT; another forces tokens_in_flight to 

be close to a reference based on measured 0. minScale 

will be N_hot, and maxScale is constrained by the 

capacity of node-pools. Concurrency knative container 

Concurrency is the concurrency per-pod cap found 

during load testing (31). Canary-based policy changes 

roll out, performing a comparison of TTFT and reject 

rates against a control; policy changes can be 

automatically rolled back on regression. Warm-pool 

management applies a pre-pulling of the images as well 

as layer caching combined with server placement of 

weights on local NVMe, along with readiness probes to 

capture CUDA graphs before a pod can join the pool. 

PodDisruptionBudgets guard a warm quorum of the 

replicas; topology spread restrictions maintain the 

replicas in a different rack and a different zone. Spot 

nodes only run noncritical surge capacity; termination 

handlers are drained and retain minimal state. This 

continuous assessment circles back: the results of post-

incident reviews, metric audits, and user feedback are 

used to revise thresholds, guard factors, and routing 

policies, as with other systems where improvement 

based on the evidence is key (13). 

Observability finishes off. Alerts trigger when 

queue_latency_p99 is greater than 0.7x D T TFT over 2 

seconds, when VRAM free-page watermark is undershot 

a threshold, when cold-start counts rise, or when 

admission rejects overruns a budget. Runbooks contain 

specific prescriptions to fix concrete problems, like 

amplification of N_warm, context tightening of ceilings, 
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recalibration of batch caps, or a tenant sent to an 

overflow capacity. The rule of governance allows 

predictability: SLOs, caps, and routing rules become 

version-controlled configurations; modifications are 

vetted in staging and are rolled out to canary. Tenant 

dashboards with compliance against D_TTFT and D_E2E, 

cost per million tokens, and utilization summaries are 

presented to the stakeholders. Collectively, the SLO-

aware control plane, rooted in admission, autoscaling, 

and queueing analysis, maintains tail latency bounded 

under bursty and heavy-tailed demand whilst 

maintaining GPU utilization and predictable cost. 

5. Experiments and Results 

5.1 Experimental Setup 

The test was aimed at a production-like, multi-tenant 

cluster and reproducible software stack to ensure the 

results generalize to production. The control plane used 

Kubernetes v1.29 and Cluster Autoscaler, and node 

groups were categorized by accelerator tier. The fleet 

included four H100 80-GB nodes (NVLink) and four A100 

80-GB nodes (PCIe) as well as six L4 24-GB nodes. They 

had each node expose the NVIDIA device plugin and 

time-sliced MPS to a 3.2-TB NVMe SSD as a weight 

snapshot and KV-cache paging. Nodes were provided 

with two 100-Gbps NICs for the east-west traffic and 

object-store ingress. Knative and KServe deployed a 

revised version of serve, which offered scale to zero and 

per-revision warm capacity. Isolation of GPUs was also 

implemented on A100 MIG (3g.40 GB and 7g.80 GB) and 

full-card placements. The node images were distroless 

and hosted by a regional registry to reduce cold-start 

variance. 

It was based on the serving layer with vLLM and 

TensorRT-LLM backends with an Envoy gateway with 

gRPC and HTTP/2 streaming. Triton Inference Server was 

turned on to achieve a baseline of comparability and to 

examine the native dynamic batching behavior. Model 

weights were in an object store with lazily local to 

NVMe; a pre-warm controller guaranteed weight 

residency throughout the warm pool. Prometheus 

scraped* application, queue, and GPU metrics; DCGM 

exported SM, memory, and copy-engine utilization; 

structured logs were emitted per request arrival, 

admission, first token time, and completion. This end-to-

end telemetry was a replica of asset-tracking discipline 

in other operational spaces where locational, state, and 

utilization traceability is the keystone to efficiency (21). 

Two families of models, consisting of a decoder-only 

model, the 8-billion-parameter model, and the 70-

billion-parameter model, were trained. The 8B model 

trained on L4 and A100 in FP16 and INT8; the 70B model 

trained as tensor-parallel (TP=4 on A100, TP=2 on H100) 

in FP8/FP16 mixed precision with a paged KV-cache 

allocator. 8B had context windows of 8k tokens and 70B 

had windows of 16k. A replay generator was used to 

generate Lennard-Jones distributed traffic by input 

lengths using chat Lennard-Jones distribution (P50=120, 

P95=480) and RAG Lennard-Jones distribution 

(P50=1,200, P95=3,500), and had a heavy-tailed capping 

tier limit: Gold 1,024, Silver 512, Bronze 256. Every 

experiment streamed coins. 

5.2 Baselines, Ablations & Metrics 

The impact of each of the mechanisms was isolated in 

four baselines. B0 operated with first-come-first-served 

and no warm pool, and had static micro-batches of four. 

B1 used dynamically length-oblivious batching with a 

capacity of eight. B2 disabled MIG and had to place the 

full GPU. B3 eliminated the use of image prewarming 

and weight snapshotting to make cold-start costs visible. 

The suggested system incorporated weighted shortest-

remaining-processing-time with per-tenant priority 

classes, earliest-deadline-first on those requests with 

explicit deadlines, token-aware admission control, 

efficient pool sizing by burst arrival rate, and accelerator 

selection based on predicted service time and burst 

arrival rate. 

The most relevant were time-to-first-token (TTFT), 

distributions of end-to-end latency (P50/P95/P99) and 

throughput, in tokens per second, GPU occupancy (SM 

and memory), waiting time at the gateway and backend, 

cold-start rate, and per-million-output-tokens cost. 

Queuing delay was calculated as the difference in time 

between when the server arrived and when it was 

admitted to a decoding batch (26). To indicate user-

perceived responsiveness, the measurement of 

throughput was at the token stream, rather than 

request completion. Cost was calculated based on 

measured utilization, and each node was charged a 

node-hour price reflecting the price per token 

generated; nodes on demand and spot were considered 

differently. The experimental setup fits the widely 

accepted evidence that a well-designed schedule will 

enhance subsequent performance when the demand is 

intermittent and on-time delivery is important (27). 

5.3 Main Results 
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With under a mixed chat/RAG workload scaled to 70 

percent steady-state utilization, the proposed system 

improved cluster throughput from 18.7k and 24.6k 

tokens per second over the best baseline (B1), a 31.7 

percent gain. TTFT got much better: P95 reduced from 

930 ms to 420 ms and P99 from 2.8 s to 1.3 s. 

Accelerator-by-accelerator improvements were broadly 

consistent, with throughput on H100 improving by 28 

percent and P99 by 55 percent, and on L4 by 24 percent 

and 41 percent, respectively. When the long RAG prefill 

was dominant, FCFS (B0) has been shown to have severe 

head-of-line blocking, resulting in a heavy TTFT tail. The 

experiment with length-unaware batching (B1) boosted 

average throughput but aggravated TTFT of short 

queries since short requests at the end of relatively long 

sequences waited to fill the batch size. This was 

combated in the form of token-aware batching that was 

able to build decode batches with equally close 

approximations of the size of the encoded job and 

prioritized short jobs upon admission. 

There was a rise in GPU usage alongside a reduction in 

latency. On the A100, the SM usage increased by 21 

percent to 73 percent, and memory-bandwidth usage 

increased by 22 percent to 61 percent with token-aware 

admission and batching enabled. The decode system 

realizes effective batch-size increases as the short 

sequences were decoded together, and long sequences 

were moved to homogeneous batching. A100 MIG 

partitioning avoided oversized batches that in the past 

resulted in VRAM pressure and allocator fragmentation. 

In the cases where MIG was disabled (B2), chattier mixes 

caused constant reduction in throughput as long 

contexts interfered; enabling MIG would reconstitute 

isolation and increase throughput by 14% over full-card 

placement. 

The per-tenant analysis showed that it was fairer. By 

using an index on SLO satisfaction (SLO share of requests 

met whose duration constraints are satisfied; time-to-

first-byte (TTFT) and P95 end-to-end latency), the 

fairness increased to 0.94 (as compared to 0.86 on the 

default B1 policy) when the proposed policy is employed 

without compromising on the Gold-tier priority, as 

highlighted in the table below. Bronze had fewer 

starvations since there were explicit limits on context 

and max_new_tokens truncated tail work to block 

queue poisoning. It is important to note that the 

throughput advantage was not achieved by aggressive 

output truncation; application of identical output limits 

on all methods caused the proposed scheduler to 

preserve a 2730 percent throughput advantage due to 

superior prefill isolation and decode interleaving. 

 

Table 2: A summary of main experimental results—throughput, TTFT tails, utilization, per-accelerator gains, MIG, and fairness 

Metric / Category 
Baseline (B0/B1 as 

noted) 

Proposed 

System 
Delta / Notes 

Cluster throughput 

(tokens/s) 
18.7k (best baseline B1) 24.6k +31.7% throughput gain 

TTFT P95 930 ms 420 ms −55% tail reduction 

TTFT P99 2.8 s 1.3 s −53.6% tail reduction 

H100: throughput Baseline 
+28% vs. 

baseline 
Accelerator-specific improvement 

H100: TTFT P99 Baseline 
−55% vs. 

baseline 
Large tail cut 

L4: throughput Baseline 
+24% vs. 

baseline 
Accelerator-specific improvement 

L4: TTFT P99 Baseline 
−41% vs. 

baseline 
Tail latency reduction 

A100 SM utilization ~52% (implied) 73% +21 pp with token-aware admission/batching 
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Metric / Category 
Baseline (B0/B1 as 

noted) 

Proposed 

System 
Delta / Notes 

A100 memory-

bandwidth utilization 
~39% (implied) 61% +22 pp with token-aware admission/batching 

Effect of MIG (vs. full 

card, B2) 

MIG off: chattier mixes 

reduce throughput 
MIG on 

+14% throughput; avoids VRAM 

pressure/fragmentation 

Fairness (SLO 

satisfaction index) 
0.86 (default B1 policy) 0.94 

Fewer Bronze starvations via 

context/max_new_tokens caps; Gold priority 

preserved 

5.4 Tail Latency & SLO Analysis 

It tested burst resilience with spikes of ten minutes, 

tripling the arrival rate in thirty seconds, which 

approximates surges with product launches. Using 

feasibility-aware admission, Gold sustained P99 TTFT of 

650 ms and Silver sustained P99 TTFT of 1.2 s; Bronze 

eased at high spikes gracefully to 1.9 s as the system 

turned up max_new_tokens to 192. TTFT P99 was >3.6 s 

across tiers, and end-to-end P95 deadline-miss rates 

were >12% when admission control was not in effect 

(B1). The requirement of maximum batch sizes 

estimated using TTFT budgets meant that delays of 

batch formation did not dominate tails; optimal values 

were a per-tier limit, which was proportional to the 

anticipated first-token time. Context ceilings performed 

comparably: limiting context to 8k in multi-tenant pools 

improved decode P99 by 22 percent, and negatively 

affected mean throughput by less than 1 percent. Long 

generations reduced the time-between-tokens P99 by 

41% in assisting to enhance perceived fluency under 

load. Redirection and early rejection minimised idle 

waiting: missed deadline rates went down to 1.7% 

(admission and redirection) compared to 9.1% (B1). 

5.5 Cost & Sensitivity Studies 

The average decrease in cost per one million tokens of 

output during period B2 compared to B1 was 26.8 

percent, mainly due to an increase in sustained 

utilization and a reduction in cold starts. In the 8B 

model, the on-demand cost on the L4 was $7.98 per 1M 

tokens and on the A100 was $16.55; spot configurations 

lowered the on-demand prices to $5.18 and $10.92, 

respectively, with SLOs maintained with proactive 

draining and warm-pool placement on on-demand 

nodes. In chat-intensive mixes, A100 MIG provided the 

least costly option by permitting three small tenants to 

time share slices with deterministic TTFT; in RAG-

intensive mixes, full-card H100 was favored to prevent 

tenant co-tenancy fragmentation of contexts. The 

latency and spend were respectively materially 

impacted by warm-pool size (34). Adjusting the pool size 

to the product of maximum burst rate and cold-start 

time reduced P99 TTFT optimally without over-

providing; reducing the pool by 50 percent boosted the 

cold-start burst rate 4-fold and added repeat weight 

loads cost 8 percent more. 

 

Table 3: An illustration of cost and sensitivity across GPUs and scheduling policies 

Aspect Scenario / Parameter Observed Effect / Value Notes 

Cost trend Period B2 vs. B1 −26.8% cost/1M tokens 

Driven by higher sustained 

utilization and fewer cold 

starts 

On-demand 

cost 
L4 vs. A100 

$7.98 (L4) vs. $16.55 (A100) per 

1M tokens 
Decoder-only inference 

Spot cost L4 vs. A100 
$5.18 (L4) vs. $10.92 (A100) per 

1M tokens 

SLOs held via proactive 

draining; warm-pool pinned 

on on-demand nodes 
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Aspect Scenario / Parameter Observed Effect / Value Notes 

Tenant mix 

economics 
Chat-heavy vs. RAG-heavy 

A100 MIG cheapest for chat (3 

small tenants/time-sharing); Full-

card H100 preferred for RAG 

MIG gives deterministic TTFT; 

full H100 avoids context 

fragmentation 

Warm-pool 

sizing 

Size ≈ max-burst-rate × cold-

start-time 

Optimal P99 TTFT without over-

provision 

Cutting pool −50% → cold-

start burst ×4, repeat weight 

loads +8% cost 

Guard factor 

γ 

γ ∈ [1.1, 1.5] on P95 service 

time 

Throughput change <5%; P99 

latency change <12% 

Indicates robustness to 

bound imprecision 

Predictor 

error 

+25% MAE (service-time 

predictor) 

Throughput −3.4%; TTFT P99 

+7.2% 

Safety-biased estimates 

acceptable trade-off 

Output cap 
Bronze max_new_tokens 256 → 

192 

Cost −6%; TTFT P99 −11% during 

spikes 

No material drop in 

satisfaction 

Accelerator 

mix 
Replace 2×H100 with 2×A100 Cluster throughput +8% 

Further swaps hit 

storage/egress bottlenecks 

Policy bundle 

Token-aware admission + SLO-

coupled batching + warm-pool 

orchestration 

Strong tail resilience; large cost 

reductions across mixes 

Robust under varied load 

profiles 

Prediction error robustness was analyzed with different 

choices of the guard factor gamma on service time 

estimates of P95. Across γ in [1.1, 1.5], throughput 

varied by less than 5% and P99 varied by less than 12%, 

which means that imprecise bounds do not cut out the 

benefit. The 25 percent increments in mean absolute 

error of the service-time predictor lowered throughput 

by 3.4 percent and raised TTFT P99 by 7.2 percent, a 

reasonable trade-off in favor of safety. Output limits had 

a substantial effect on cost and tails: a decrease in 

Bronze max_new_tokens from 256 to 192 improved cost 

by 6 percent and TTFT P99 by 11 percent during spikes 

with basically no decrease in satisfaction scores. 

Accelerator mix sensitivity demonstrated that replacing 

two H100s with two A100s in the pool increased cluster-

wide throughput by 8 percent. However, beyond this, 

the substitution produced diminishing returns due to 

bottlenecks moving to storage and egress (2). The multi-

policy of token-aware admission, SLO-coupled batching, 

and warm-pool orchestration provided resilience in tail 

behavior and cost reduction of orders of magnitude over 

mixes and load profiles. 

6. Discussion 

6.1 Practical Trade-offs 

Whether to use MIG or MPS determines the operating 

envelope of token-aware scheduling. MIG divides a GPU 

into hardware-isolated slices implementing special HBM 

and SM partitions. That seclusion creates intra-server 

isolation against cross-tenant KV-cache eviction and 

produces predictable memory ceilings, thus easing 

admission control and stabilizing tail latency. This causes 

rigidity as individual carvings cannot share unused 

VRAM or computing with a busier neighbor, so the 

adequate capacity is split, and occupancy declines under 

mixed load. CUDA MPS, in its turn, leaves the hardware 

entire and time-shares execution contexts. Increased 

aggregate concurrency, increased utilization, and 

relaxed burst absorption, but a reduction in isolation 

allows memory bandwidth and cache contention 

interference. The real world, clusters combine both: 

MIG when either its golden tenants or latency-sensitive 

trails, MPS when maximum efficiency is required on 

silver/bronze traffic. 

The second tension between throughput and fairness is 

presented by dynamic batching. Batching queries of 

comparable estimated length will optimize the tensor-

core utilization and amortize the tokenizer and launch 

overheads.  (3). Naive batching will reproduce head-of-
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line blocking when short queries are queued behind 

longer prefill phases. The size-aware queueing with 

preemption at token boundaries has been a practical 

solution. The two lanes (one short, one long) should be 

maintained, and work in each lane should be batched. 

Decoding attention should be switched between 

collections of different groups of tokens, collection 

borders, to prevent corruption of the caches. This leaves 

interactivity in chat intact, as most of the batching 

benefits of heavy RAG prompts are saved. 

Heterogeneous accelerators introduce the placement 

trade-offs. H100s are well suited to long-context RAG by 

higher memory bandwidth; A100s supports medium 

loads; L4s offers cost-effective capacity when using 

short prompts. To minimize traffic, schedulers have to 

couple models, quantization, and LoRA adapters with 

GPUs with equivalent VRAM and bandwidth as the 

forecasted footprint. Conservative packing reduces 

OOM risk, but wastes capacity; aggressive packing 

increases utilization but increases eviction storms during 

bursts. Tiered placement, backoff-schedule by trying the 

least-expensive tier that satisfies the SLO, backoff only 

when infeasible, keeps the cost and risk under control. 

6.2 Reliability & Operations 

Dependability is pegged on tiered health checks and 

intentional backpressure. The GPU-level probes ought 

to track thermal throttling and ECC errors, HBM 

saturation, PCIe link health, and SM clocks. Probes at the 

model level must use synthetic prompts to train end-to-

end with a restricted TTFT budget to identify regressions 

in variants of the tokenizer, CUDA graph capture, or 

fused kernels. Brownout modes should automatically 

come into play when the queue latency or P95 TTFT 

nears thresholds: restrict max_new_tokens, turn off 

speculative decoding, limit beam widening, and 

constrain calling functions to minimize the service time. 

Admission control should be implemented by the 

gateways early, before queues get unstable, and hints 

on retries should be returned. 

Runbooks ought to focus on containment and rapid 

restore. On OOM, the controllers are to isolate the node, 

evacuate pods that are not critical, initiate KV-cache 

compaction, and restart model servers using a smaller 

allocator watermark and smaller page sizes. Using a 

free-page watermark as a basis of fragmentation alarms 

allows throttling before failures cascade (39). Blue-

green (or canary) releases, where new releases are 

deployed to mirror traffic, and then gate on TTFT, tokens 

per second, error rates, and even cost per million 

tokens. Rollbacks should be one click, which restores 

known-good images and graph-capture artifacts within 

a few seconds. 

Special handling is required during cold starts. Images 

must be lean and have a complete cache-hit layer; 

weights must be pre-sharded to local NVMe; and graph 

capture must occur during warm-pool initialization so 

that the initial real request itself is not subject to 

incurring compilation overhead. Preemption notices on 

spot nodes are expected to cause quiescence: will drop 

long requests, flush decodes in-flight, persist adapter 

metadata, and offload queued work to on-demand 

pools. Those actions reduce noticeable wrongdoings and 

safeguard a warm state that is costly to reconstruct. 

6.3 Security & Multi-Tenancy 

The security and the isolation of tenancies should be 

implemented at the layers. Credential and network 

policies are bound to namespaces; MIG isolates kernel 

and driver surfaces when the node pool is used; and 

accelerator isolation is available where possible through 

MIG (23). In MPS, memory, CPU, and PCIe bandwidth 

per tenant should be caged by cgroups for confinement. 

In transit and at rest, encryption is required: TLS as 

ingress; mTLS, between control and data planes; and 

envelope encryption on NVMe, of weight blobs, KV 

snapshots, and logs. As prompts and completions may 

be in the content of PII, redaction and minimization 

need to be applied at the gateway before storing, and 

format-preserving tokens can be required to allow safe 

analytics. 

Multi-tenant security is implemented with Kubernetes 

boundaries at the control plane and namespaces, node 

pools/accelerators isolation by MIG, and MPS workloads 

secured with cgroups by GPU, CPU, and PCIe bandwidth 

as in Table 5 below. In transit, pods and containers use 

transit encrypted data (TLS ingress, mTLS control-data), 

and rest using envelope encryption on NVMe weights, 

KV snapshots, and logs. Gateways scrub/reduce PII and 

deploy format-preserving tokens to perform secure 

analytics at a large scale. 
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Figure 5: Layered Kubernetes boundaries for multi-tenant isolation and security controls 

 

The possibility of side-channel exposure is a practical 

threat on shared accelerators, as timing and cache 

locations can expose workload features. Such 

mitigations involve padding micro-batches to bounded 

sizes, randomizing the batch-formation time to be in 

narrow windows, and coarse-graining, when possible, 

tenant-visible timing to the point that fine-grained 

measurements cannot be used to make correlations. 

Changes to configurations, routes, admission, model 

choices, and data access paths should be included in a 

broader audit logging. Immutable storage of logs with 

synchronized timestamps and bounded retention in 

policy-aligned order should be the case. 

6.4 Observability & Capacity Planning 

The user experience needs to be linked back to resource 

mechanics through observability. Snippet signals are 

queue wait, TFTT, tokens/sec, time-between-tokens 

distribution during decode. VRAM free pages, allocator 

fragmentation, SM occupancy, and memory bandwidth 

should be revealed as device telemetry to predict prefill 

failure or to dictate when batch size is likely to have to 

decrease. The existence of cold-start counters, warm-

pool occupancy, and scale events provides the context 

needed to ascribe tail spikes to control-plane operations 

instead of model regressions. Traces should be 

distributed along requests, not just at the ingress, but 

continuing to the admission (to attach the batch 

composition), batching (and attach auxiliary 

information), decoding, and egress to carry-cuda 

identifiers. 

These signals should power capacity planning. The non-

stationary and event-driven nature of arrivals warrants 

that planning is integrated between short-term 

workload analytics and operations calendars, and 

leading indicators to estimate the size of a warm pool 

and headroom. The clusters should not be scaled based 

on raw device utilization but on backlog increases and 

estimated service load to produce an immediate 

reaction of the cluster in advance of queues. It is also a 

predictive, feedback-oriented approach that reflects the 

known DevOps practice where telemetry and analytics 

influence proactive scaling, change management, and 

SLO control (16). In practice, planners use P95 TTFT 

budgets to translate into target utilization bands and 

compute the minimum warm instances and mix of GPU 

needed to maintain 69to keep rho in the band during 

burst workloads. 

Budgets are kept in guardrails. SLO levels ought to be 

linked to specific limitations in the context and output 

lengths to avoid pathological accesses consuming all the 

memory. Under peak windows, admission may delay 

bronze-level traffic and expose price or priority choices 

to the callers. Dashboards ought to report dollars per 

million tokens by tenant and model, broken down to 

compute, storage, and egress (17). They have the 

visibility to adjust product owner custom prompts, 

system messages, and stop sequences to budgets 

without breaking latency promises. Periodic game days 

confirm that the autoscaler, brownout modes, and 

warm-pool policies survive synthetic spikes and regional 

node drains gracefully. 
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6.5 Limitations 

Notable limitations still are. It is inevitable to have 

prediction error in estimating output length and service 

time; underestimates lead to missing deadlines, and 

overestimates lead to suppressed throughput (11). 

Confidence-sensitive guard factors minimize the risk, 

but will consume free capacity, and it is workload-

dependent to tune. A mismatch is present because of 

their hardware heterogeneity. There are differences in 

kernels, memory hierarchies, and interconnects 

between L4, A100, and H100, and optimizations may not 

directly carry over, like attention kernels or tensor-

parallel layouts. Drivers and firmware changes that 

differ between vendors may change performance 

envelopes even in the absence of code changes in ways 

that make it difficult to repeat. 

Policy stability is also threatened by workload non-

stationarity. Output-length distribution and arrival mix 

drift by time of day and feature rollout; without constant 

monitoring and periodic retraining, admission and 

autoscaling policies drift concerning targets. There is a 

restriction on resilience and geographic performance 

with the single-region assumption. Multi-region anycast, 

warm pool state replication, disaster-recovery testing, 

and carbon-aware routing are beyond this scope but are 

necessities in mission-critical deployments. Such 

limitations do not cancel the advantages of serverless 

orchestration and token-aware scheduling, but establish 

the limits beyond which finely-engineered orchestration 

and disciplined scheduling operations are necessary to 

ensure SLOs are met at an acceptable cost. 

7. Future Work  

7.1 RL or Bandit Driven Scheduling 

Online schedulers learning to trade off latency SLOs 

against utilization and cost should be examined in 

subsequent work. The realistic line is discrete action 

contextual bandits (batch size, GPU level, admission 

threshold, and max_new_tokens) guided based on the 

attributes backlog, estimated service time, KV-cache 

stress, throughput, and cold-launch hazard. The reward 

can combine efficiency and reliability: r = α·SLO_met − 

β·latency_norm − γ·dollars_per_1M_tokens. Safety 

needs optional baselines and policy shield: clip actions 

to maintain TTFT within a guard-band, block migrations 

that would carry KV to host, and fallback to SRPT if 

uncertainty levels become intense. Exploration must be 

limited (e.g., zero decays with backlog) and executed 

under canaries. In a continuous setting such as batching 

cadence and limits on output allowed by admission, 

interleaving can be optimally determined using model-

based RL Q-estimators without constraint violation. 

7.2 Cross Accelerator & Hierarchical Offload 

Heterogeneity in the accelerators is enticing towards 

hierarchical execution: prefill on GPUs or high-

throughput NPUs, then migrate sequences to 

commodity high-end GPUs and decode. The runtime 

should ensure that all kernels are shape-stable and all 

KV layouts are consistent to have caches constructed 

during prefill be zero-copy mapped into GPU HBM. In 

scarce VRAM, tiered KV store ought to page keys and 

values among HBM, MIG slices, host RAM, and NVMe 

using in-progress DMA. A predictive pager can predict 

when and where the heat is going, based on token rate 

and attention span, to prefetch the hot pages and 

throttle the cold (29). orchestrator is advised to batch 

handoffs at token boundaries, pin hot heads in HBM, 

and compress colder layers to reduce migration cost. 

Placement can be taught service curves and route 

prompts that have long context to wide-HBM GPUs and 

short to MPS slices without violating isolation. 
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Figure 6: Hierarchical offload: NPU/GPU row-cutting and split-merge execution 

 

As illustrated in the figure above, hierarchical offload 

distributes matrix rows across NPU and GPU, hence 

(row-cutting), splits sub-graphs concurrently, and 

amalgamates output to decode. Prefill pre-built KV 

caches using kernels that do not change shape so that 

pages can zero-copy-map to GPU HBM. When VRAM is 

limited, a hierarchical KV store allocates pages in and out 

of HBM, MIG slices, and host RAM as well as NVMe over 

DMA. Migration overhead is reduced and isolation is 

maintained with a predictive pager, token-boundary 

handoffs, and context-aware placement. 

7.3 Fairness & SLA Markets 

Explicit market mechanisms allow the promotion of 

operational fairness across tenants. A credit system 

would grant periodic budgets that can be exchanged for 

priority increases; tenants use credits in requesting low 

latency in times of contention, and restore order when 

the load drops. Short auctions may auction burst 

capacity in one- to five-minute intervals with bidders 

providing price-latency curves; clearing prices 

correspond to weights, or GPU tier potential, or batch 

completion deadline. SLO bands can even be defined in 

contracts (e.g., TTFT 300 ms P95), with the penalties and 

policy modification when a band is breached. To 

safeguard truth and stability, control systems ought to 

limit influence, alleviate starvation through minimal 

shares, and constrain the extent of preemption (36). 

Auctions can subsidize warm pools that minimise cold 

starts, and this loop can unite economics and reliability, 

at a predictable number of dollars per million tokens. 

7.4 Retrieval-Aware & Elastic Context Serving 

Retrieval-augmented and multimodal prompts are 

incentives of context elasticity: the serving stack must 

adjust context windows and prefill dividing using 

retrieval quality and mix of modalities. Hot queries with 

numerous supporting passages are more expensive in 

terms of prefill cost and KV footprint; the scheduler 

should read retrieval metadata hit counts, etc., and 

assign micro-batches accordingly. Elastic policies can 

down-rank passages of low salience, compress or 

summarize, prefill, and defer noncritical modalities to 

background channels without semantic interference. 

The presence of images with text can introduce a 

governance of cross-modal salience scores, which will 

exclude the amount of evidence given in the visual realm 

that will enter the token budget to enhance latency 

without sacrificing relevance (32). Retrievers may 

stream them with explicit hints per request, and model 

servers may accept max_context_tokens and 

prefill_budget_ms so that the admission controller can 

have narrow deadlines and limit accuracy tradeoff. 

7.5 Multi-Region & Carbon Aware 

Orchestration 

The future clusters must allocate work across 

geographies to reduce risk and cost, and carbon 

intensity in meeting SLOs. KV locality is maintained next 

to conversational stickiness, and interregion chatter is 
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restricted through the use of anycast front doors that 

direct traffic via real-time health, backlog, and 

forecasted TTFT. Local bursts and cold-start timings 

must correspond to the region’s warm pools. Failover 

exercises must perform adapter, tokenizer cache, and 

conversation state migration with integrity checks. 

Carbon-aware scheduling may allocate discretionary 

tasks to less carbon-intensive grids; in interactive traffic, 

the controller may bias the flow of traffic to lower-

carbon destinations when latency slack occurs. Carbon 

budget co-optimization with SLO risk should be 

forecasted, which exposes the per-region cost of one 

more request to the router. Disaster recovery patterns, 

including quorum storage, database replicas, and staged 

rollouts, provide sound regional fault and upgrade 

continuity. 

8. Conclusion 

The article reflected that serverless GPU orchestration 

coupled with token-aware scheduling makes the bursty, 

heavy-tailed demand, length variance, and 

prefill/decode asymmetry tractable. Making routing, 

admission, micro-batching, and autoscaling relate cost 

and routing experience to two metrics, TTFT and dollars 

per million tokens, helps anchor decisions in their 

direction. Length-aware lanes ensure head-of-line 

epidemic, bounded batch windows safeguard TTFT, and 

warm pools eliminate cold-start vacations. The options, 

combined, transform variability into predictable 

behaviour under multi-tenant SLOs and maintain high 

utilization and isolation. This yields a realistic, 

repeatable architecture for disparate GPU fleets that is 

implementation-neutral and supports standard serving 

stacks. The blueprint combines a token-aware router, 

SLO-feasibility admission, a micro-batching scheduler, 

and autoscaling, and a warm-pool manager in the 

control plane with model pods in the data plane. 

Placement is budget- and capacity-sensitive: NVIDIA 

MIG provides isolation and deterministic VRAM ceilings 

on strict SLO tiers and CUDA MPS elastic concurrency on 

cost-sensitive tiers. Page allocators, watermarks, spill 

thresholds, compaction windows, and compaction 

windows protected by adapter pinning and quantization 

control KV-cache management. Gateways end TLS, 

apply rate limits, convert to gRPC/SSE streaming, and 

forward backpressure and cancellation messages. 

Observability brings the loop back around to traces, 

queue-latency percentiles, tokens-in-flight, GPU 

utilization, and VRAM free-page indicators. 

Empirical performances on mixed chat and RAG 

workload have confirmed the approach. As compared to 

a length-unaware dynamic-batching baseline, 

throughput increased by 31.7%, P95 TTFT decreased by 

550 ms to 420 ms, and P99 TTFT by 1.5 s to 1.3 s. They 

were even across the board: on H100, +28% and 55% in 

throughput and P99, respectively; on L4, +24% and 41%, 

respectively. Turning off fragmentation and interference 

was possible by enabling MIG; turning off MIG caused 

VRAM pressure in chat-intensive mixes. Under weighted 

SRPT/EDF with per-tenant priorities, fairness was 

increased to 0.94 as opposed to 0.86 under unweighted 

SRPT/EDF, which starved all while still allowing gold-tier 

SLOs. Price per 1M tokens lowered by 26.8 percent due 

to increased usage and reduced cold starts; the spot 

capacity was used securely through anticipatory 

draining and warm-on-demand pools. Sensitivity tests 

revealed sensitivity to predictor error and guard-factor 

selection, and emphasized the usefulness of output caps 

and context ceilings to defend against the tails during 

spikes. 

The result of these findings is an operator playbook. 

Keep the utilization within a middle range (≈0.5–0.7 at 

peak). Preemptively scale on queue-latency percentiles 

and tokens-in-flight; leave about 40% of TTFT as a buffer 

for batch formation and prefill. Apply per-tenant ceilings 

on context and max_new_tokens, and only admit when 

the predicted wait time plus prefiller at the confidence-

level quantile will fit our TTFT and end-to-end budgets. 

Use MIG when SLO needs to be strict and MPS when it is 

elastic and cost-efficient. Warm pools by N_warm 2e96 

approx floor (lambda_burst T_cold), and topology-

spread them with PodDisruptionBudgets. Neck up the 

pipeline using lean images, NVMe pre-staging, graph 

capture on readiness, and health probes. Enable 

automatic brownouts and retain OOM, fragmentation, 

spills, and drains runbooks. Physically clustered, but 

secure name-space/node-pool isolating and encryption, 

redaction of PII, and audit-ready logs. 

There are still limitations: single-region support 

precludes geo-redundancy, anycast routing, and carbon-

aware placement until more work is done; error of 

predictors necessarily exists, necessitating guard bands 

and occasional retraining with hardware heterogeneity; 

workloads are often non-stationary, so constant 

telemetry-assisted calibration is needed. The results 

show that SLO-aware admission, token-aware batching, 

and the good student version of warm-capacity 
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orchestration dependably achieve more throughput, 

narrower tails, greater fairness, and cheaper cost under 

real-world mixes. Owing to the modular nature of the 

design and its export-driven metrics, it is possible to 

address alternative server and accelerator models 

without architectural redesign. Incremental adoption, 

Practitioners can thus embrace the blueprint step-by-

step, by first adding admission and warm pools, then 

length-sensitive queues and autoscaling triggers, and be 

guaranteed measurable improvements quickly, in days 

instead of months. Serverless GPU orchestration 

through token-aware scheduling provides a scalable, 

cost-effective route to reliable serving of LLMs in the 

cloud-native age. The recommendations are all based on 

the integrated design and functional evidence of the 

experiments reported in detail in the accompanying 

report.  
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