
The American Journal of Engineering and Technology 33 https://www.theamericanjournals.com/index.php/tajet

TYPE Original Research

PAGE NO. 33-59

OPEN ACCESS

SUBMITED 05 February 2024

ACCEPTED 15 March 2024

PUBLISHED 25 April 2024

VOLUME Vol.04 Issue 04 2024

CITATION

Pradeep Rao Vennamaneni. (2024). Optimizing Cloud-Native LLM Workloads

with Serverless GPU Orchestration and Token-Aware Scheduling. The

American Journal of Engineering and Technology, 4(04), 33–59. Retrieved

from https://theamericanjournals.com/index.php/tajet/article/view/6603

COPYRIGHT

© 2024 Original content from this work may be used under the terms

of the creative commons attributes 4.0 License.

Optimizing Cloud-Native

LLM Workloads with

Serverless GPU

Orchestration and Token-

Aware Scheduling

Pradeep Rao Vennamaneni
Senior Data Engineer - Lead, USA

Abstract: Cloud-native LLM inference has bursty and

size-variable demand that leads to head-of-line

blocking, cold-start overheads, and infinitely variable

tail latency. An end-to-end design that integrates

token-sensitive scheduling with serverless GPU

orchestration to achieve TTFT/TLET SLOs at reduced

cost is proposed through this study. Its architecture

combines a feasibility-sensitive admission controller,

prefill and decode sensitive micro-batching, KV-cache

paging with watermarks, warm pools to eliminate cold

starts, and autoscaling based upon queue- and token-

level cues; placement encompasses full-GPU, MIG, and

MPS modes using per-tenant policies. Deployed on

Kubernetes on 7B-70B decoder-only models using

vLLM/TensorRT-LLM/Triton backends, the system is

aimed at heterogeneous H100/A100/L4 fleets and

chat/RAG workloads with heavy-tailed token lengths.

In experimentation, the strategy advanced cluster

throughput 31.7 percent more than the finest

baseline, decreased P95 TTFT to 420 ms and P99 to 1.3

s, increased SM and memory-bandwidth utilization,

and lessened cost per one million output tokens by

26.8 percent, while offering a similar degree of per-tier

fairness on the same basis. This study provides

contributions, including a production-ready

control/data-plane design, SLO-aware admission tests,

degradation, and routing, token-aware batching, and

KV-cache usage/freezing to avoid memory-driven

stalls, an easily reproducible evaluation recipe with

KPIs (TTFT, P95/P99 latency, tokens/s, utilization, and

$/1M tokens). Such findings introduce a scalable

deployment avenue to foreseeable latency and

efficiency. The blueprint reflects the reality of the

The American Journal of Engineering and Technology 34 https://www.theamericanjournals.com/index.php/tajet

The American Journal of Engineering and Technology

operators today.

Keywords: Cloud-native LLM serving, Serverless GPU

orchestration, Token-aware scheduling, SLO-aware

admission control, KV-cache management

1. Introduction

Large language models offered today are consumed as a

service, demand for which is spiky and heterogeneous.

Arrival rate can be massively multiplied due to product

launch, seasonality, and social amplification, which

generates queue and tail latency. The requests range

widely due to the number of input prompts and

generated output both being given in tokens; heavy-

tailed distributions produce a lot of variation in compute

time and memory footprint. Inference is also a two-

stage prefill, which computes the prompt to initialize the

key-value cache, and decode, which spits out tokens

reusing such a cache. The prefill cost is superliner in the

length of the prompt owing to attention, but the decode

cost is approximately linear in the produced tokens.

High-cost GPUs have to be utilized effectively, and

numerous applications are multi-tenant, with various

SLOs, budgets, and responsive profiles. The solution has

to provide a low cost per million tokens as well as a low

time-to-first-token.

Head ratio bad blocking, with long prompts dominating

(short request) prefill, causing delays on short requests,

while bloating tails. Dynamic batching is beneficial for

throughput; however, TTFT may suffer as shorts are

waiting behind more extended sequences. Serverless

platforms now add cold start overheads: the container

pulls and loads to disk, model weights on the remote

object store to local NVMe and on GPU HBM, runtimes

are initialized, CUDA graphs are captured/kernels are

compiled. The end-to-end results are added tens of

seconds unless warm pools and snapshotting are used.

Heterogeneous accelerators make placement and

fairness complicated: A100, H100, and L4 have varying

memory size, capacity, and tensor-core throughput, so a

one-size-fits-all scheduler underperforms. NVIDIA Multi-

Instance GPU (MIG) offers the ability to carve out

predictable slices at a high level of isolation, but has the

risk of having stranded capacity. In contrast, CUDA MPS

allows fine‑grained sharing and increased concurrency

at the cost of weaker isolation and the possibility of

cross‑interference. The key cloud native serving

challenge is balancing such trade‑offs with multi‑tenant

SLOs.

This study claims that token-aware GPU scheduling,

combined with serverless GPU orchestration, can

achieve lower latency, greater utilization, and reduced

costs at scale. The author of this study present an

architecture where a token-aware router, a goal-aware

admission controller, and a micro-batching scheduler

with signal-based autoscaling are jointly configured.

Short and long requests are routed, the length of

context and output is capped per tier, and the size is

matched to the choice of GPU or MIG slices. The

contributions of the study include: (1) an end-to-end

sketch of Kubernetes infrastructure, including device

plugins, node pools, and model servers; (2) node

admission with SLO-awareness, computing per‑request

deadlines by summing TTFT and end-to-end budgets; (3)

KV-cache-taming scheduling and memory methods that

maintain throughput, and (4) a benchmark recipe with

KPIs: TTFT, TLET, P95/P99 latencies, utilization, and cost

per million tokens spent. The author also provides

repeatable configuration patterns that can be modified

promptly by operators.

The author’s focus was a decoder‑only LLM in inference

in the range of 7B to 70B parameters, single region,

single cloud, through the use of Kubernetes, providing a

control plane. The orchestration logic is implementation

agnostic, with models being served with commodity

engines like vLLM, TensorRT‑LLM, or Triton. Key

definitions: Time-to-first-token (TTFT) is the duration

between receiving the request and the first streamed

token; time-between-tokens (TBT) is the delay between

any two tokens when you decode; time to last emitted

token (TLET) counts completion. Throughput is

tokens/second/GPU or tokens/second/cluster.

Utilization is the ratio of the peak token‑generating

capacity utilized, with consideration to idle and cold

start times. Works consist of interactive chat, retrieval

enhanced generation (RAG) over long contexts, and

batched with bound outputs. The study leave training,

alignment, and multi-region routing out. It limit context

and output lengths to defend memory and SLOs where

needed.

Chapter 2 surveys prior art in cloud‑native inference

stacks, serverless GPU orchestration, scheduling deep

networks and LLMs, and KV‑cache memory techniques,

and points out these limitations, which motivate our

design. Chapter 3 describes methods and techniques:

the serverless GPU orchestrator, GPU provisioning and

placement, token-aware scheduling and micro-batching,

The American Journal of Engineering and Technology 35 https://www.theamericanjournals.com/index.php/tajet

The American Journal of Engineering and Technology

KV-cache and memory management, and streaming

networking. Chapter 4 advances the SLO-aware control

plane, as a set of traffic modeling, queueing analysis,

admission feasibility tests, autoscaling policies, and

warm-pool sizing as a playbook that can be executed.

Chapter 5 defines the experimentation facility,

baselines, and metrics, and provides the results in

bursty, multi‑tenant workloads. Chapter 6 deals with

trade‑offs, operational issues, security, and

observability; Chapter 7 covers future work; and

Chapter 8 concludes. The readers will be able to airlift

the configuration patterns, alerts, and offer a mirror of

the habits in owning clusters. There are also limitations

and assumptions.

2. Literature Review

2.1 Cloud Native Inference Stacks

It is most effective to engineer cloud-native large

language model (LLM) inference as a three-tier stack

composed of model servers, which are the numerical

kernels, and serving layers that use replicas to

coordinate traffic patterns, and edge gateways that

provide application programming interface (API) and

streaming semantics. The layering insulates issues so

that each of the tiers can scale and fail in isolation

(although end-to-end tracing is still supported). Tokens,

the execution of attention and MLPs, handling of

key-value (KV) cache by allocation and reuse, and

transmission of tokens across long-lived connections are

absorbed by model servers. They maintain budgets on

the length of the context they receive, place constraints

on the decoder, and the memory watermarks, to guard

against out-of-memory errors. One such important role

is throughput optimization across the user-visible

service-level objectives (SLOs), specifically time-to-first-

token (TTFT) and last-token. In that regard, modern

servers provide dynamic or adaptive batching and

token-level interleaving whereby multiple sequences

proceed in lockstep during decode. They also expose

tunables, maximum batch size, per-stage time budgets,

and sets of decoding parameters that work with others,

so that higher layers can affect the latency/throughput

trade-offs under bursty demand.

The cloud-native LLM inference is implemented as a

three-tier stack: the model servers run attention/MLP

kernels, maintain KV-cache with memory watermarks,

and export serving tunables to enable dynamic batching

and token-level interleaving; the serving layer directs

replicas and traffic; and the edge gateway provides APIs

and streaming semantics, as shown in the figure below.

This layering isolates failures, enables end-to-end

tracing, and allows operators to tune maximum batch

size, stage time budgets, and decoder constraints to

optimize trade-offs between time-to-first-token and

throughput in the face of bursty workloads as the

system scales elastically on the container-native

platform.

Figure 1: Cloud-native inference stack: model servers, serving layer, edge gateways

What can be safely merged is under the control of compatibility awareness batching. Requests on different

The American Journal of Engineering and Technology 36 https://www.theamericanjournals.com/index.php/tajet

The American Journal of Engineering and Technology

models or quantization modes cannot share a batch.

Tensor shapes even within a single model must match,

and the total KV cache space must be within device

memory, including runtime overheads. The

performance profile of prefill and decode is different,

and therefore, servers differentiate them. Prefill

consists mainly of large matrix multiplications, which

cost superlinearly in input length when factored by

quadratic attention; decode steps one token at a time

and are more or less linear in the number of tokens

generated, although again length affects attention cost.

Such systems thus have stage-sensitive batching

windows: a small time budget in prefill to defend TTFT,

and a wider window in decode to increase tokens-per-

second due to interleaving. Separation of stages forms

the basis of token-aware scheduling in higher layers

since it helps identify the stage where latency is most

sensitive to request size.

Layers above kernel execution serve as the multi-tenant

control plane. They redirect requests to model versions,

apply per-tenant quotas, and enact admission-decision

policies; these take into consideration backlog and

projected service time and SLO budgets. This is the

natural place of token-sensitive logic: limits on

maximum new tokens, ceilings on context length,

separate short queue and long queue, and ranges of

tokens in batch separands (batched as time budgets

rather than set limits). Traffic shaping, such as canary or

shadow rollouts, compatibility checks to help with batch

construction, exposing signals, like queue depth, wait-

time percentiles, and tokens in flight, can also be

orchestrated by the serving layer that can feed into

autoscalers. Central location of such decisions can then

be used to provide uniform policy within replicas, and a

pattern can be created of joint admission and

autoscaling that causes the cluster to respond to

imminent SLO violations as opposed to remedial action

on later graded utilization measures.

The client-to-cluster connection is made complete with

gateways. High-performance gateways accept TLS, and

apply HTTP/2 or HTTP/1.1, including server-sent events,

and translate public REST requests to internal gRPC

requests with flow control. They handle both

authentication and rate limits, request coalescing, and

streaming flush intervals, which also have a direct

impact on perceived interactivity (19). When

downstream queues increase, gateways will use

backpressure and then spread the cancellation so that

once requests have been abandoned, they do not still

consume GPU cycles. The semantics of transport cannot

be changed with one another. Server-sent events (SSE)

can be easily deployed behind commodity load

balancers and are well-suited for one-way token

streams. The multiplexing and flow control provided by

gRPC limit the level of head-of-line blocking in a

concurrent stream environment, but they frequently

need special proxies. WebSockets give a two-way

control channel appropriate for cancellation and

parameter updates. Cancellation is required to be first-

class in any case, or autoscalers and schedulers will

misinterpret work backlogs.

Observability links the tiers with each other. The request

metadata (tenant, model, context length, and decoding

parameters) is recorded in a structured log. Distributed

tracing associates gateway spans, serving-layer

decisions, and model-server stages to allow operators to

discriminate network wait, prefill compute, and decode

interleaving. Prompts are hashed and lengths bucketed,

except for logging verbatim to prevent excessive

cardinality. To a certain extent, the metrics are arranged

in four axes: traffic (arrival rate and mix), scheduling

(queue depth, batch composition, wait time), runtime

(TTFT and time between tokens, completion latency),

and resources (GPU utilization subscale, VRAM free

pages, spill bandwidth). Other latency-sensitive

communication systems offer practices that can be

applied wholesale in LLM gateways and serving layers

that need to prevent accelerator overload without

sacrificing interactive experience: fault-tolerant routing,

idempotent operations, durable queues, and disciplined

backpressure (28).

2.2 Serverless & GPU Orchestration Patterns

GPUs on Kubernetes are exposed through device

plugins, which help advertise accelerator properties

and, in supported cases, semi-permanent

fractionalization like NVIDIA Multi-Instance GPU (MIG).

Clusters are divided into a node pool by accelerator

family (H100, A100, L4) and by price class (on-demand

versus spot/preemptible). There are three typical

feedback loops in autoscaling. A Horizontal Pod

Autoscaler (HPA) scales replicas based on autoscaler-

specific metrics like queueing delay or predicted TTFT.

Kubernetes Event-Driven Autoscaler (KEDA) is an

automation tool that is used to scale on backlog in event

sources such as message queues that queue requests. A

serverless layer like Knative controls scale-to-zero and

The American Journal of Engineering and Technology 37 https://www.theamericanjournals.com/index.php/tajet

The American Journal of Engineering and Technology

activation. Every loop has a purpose: KEDA responds to

backlog, HPA keeps a steady state under latency

constraints, and Knative eliminates idle capacity without

jeopardizing readiness.

The main key practical issue in serverless GPU serving is

cold-start management. Image builds have to be

compact with the right CUDA stack and model-server

runtime situated in them. To prevent object-store re-

downloads, operators pre-stage the weights of their

models to local NVMe storage volumes, and startup

procedures cache CUDA graphs or construct kernels to

ensure that subsequent operator requests do not take

the time to compile their programs. A limited, warm

pool of pre-initialized pods decreases the occurrence

and impact of cold starts at the cost of uniform cost in

favor of tail predictability. Policy rules the creation,

refreshment, and eviction of warm pods, with standard

rules to maintain a base during peak times and reduce

the pool at night, and grace periods to avoid trash. The

determining policy of placement offsets usage with

interference (14). MIG partitions provide high levels of

isolation and predictable performance due to their

dedicated service to strict SLO tiers. However, fixed

slicing may leave capacity stranded with a change in

request mix. It uses CUDA Multi-Process Service (MPS)

to support fine-grained concurrency on full GPUs at the

cost of less stringent isolation, so it is comparable to

bronze or silver.

The use of autoscaling policies is advantageous, as there

are various signals beyond raw utilization. Latency in

queues and the forecasted TTFT respond immediately to

user experience, whereas tokens in aviation and the

forecasted prefill FLOPs act almost as a proxy of the

work backlog in the graphics processor. HPA can use

custom metrics over a Prometheus adapter and can

scale using queue depth with KEDA. Scaling task to zero

by Knative applies latency at the point of activation

when the first request comes; mitigations include

leaving a small number of pods running during high-

demand moments, and finally, reserving a warm pool to

store model weights in VRAM. There is additional

confusion over spot capacity. Node taints redirect vital

workloads to on-demand pools, and preemption hooks

grant termination inspection opportunities to ensure in-

flight batches complete cleanly. Where possible, drains

should checkpoint state to local NVMe, and, in such

cases, perform topology-aware rescheduling that

retains NVMe affinity and large bandwidth links. The

signals provided by health include error rates, ECC, and

PCIe retraining event trigger, which proactively cordons

off before regressions emerge. Last but not least is the

fact that pipeline hygiene is a must. By adding static and

dynamic security analysis to CI/CD, containers get

hardened, a dependency tree is validated, and

promotion gates to serve the images and model artifacts

are established to be auditable (15).

2.3 Scheduling for DNN/LLM Inference

Efficiency and tail latency are highly affected by the

scheduling policy. First-Come-First-Served (FCFS) is

simple, but has the head-of-line blocking problem with

long queues followed by short queues.

Shortest-Job-First (SJF) or preemptive

Shortest-Remaining-Processing-Time (SRPT) produces a

more negligible mean and tail latency by ordering

requests based on small predicted service time, where

the size is estimated as input tokens plus predicted

output tokens. Earliest-Deadline-First (EDF) requests are

ordered by deadlines based on SLOs, and admission

discards or degrades requests that cannot satisfy TTFT

or end-to-end budget. Interleaving at the token level

and dynamic micro-batching boost throughput, but the

delay imposed on the formation of a batch needs to be

limited so as not to jeopardize TTFT (1). Such evidence

can be considered in terms of related areas of

optimization practice: algorithm-based dispatching with

clear objectives and constraint management

outperforms heuristic rules in stochastic, bursty

demand, an analogy that speaks to principled size and

deadline-based scheduling of LLM inference (22).

2.4 Memory & KV Cache Management

Memory dictates the number of sequences that can

concurrently operate on a GPU and thus becomes a

limiting factor on throughput decoder-only models. KV

cache scales in size with layers, number of attention

heads, head dimension, as well as total tokens; it is also

common to hit the memory ceiling earlier in terms of

compute saturation. Page-based KV allocators split the

cache into fixed-size pages whose existence is managed

per sequence and layer, providing constant-time

allocation and reclamation and minimizing external

fragmentation. To avoid the pathological

overcommitment, telemetry reveals that the free-page-

based watermarks and admission throttles are

employed to ensure that a process cannot exceed the

capacity. Fragmentation management is not the

responsibility of the allocator. Since the lengths of

The American Journal of Engineering and Technology 38 https://www.theamericanjournals.com/index.php/tajet

The American Journal of Engineering and Technology

sequences can vary, padding is often necessary to match

the tensors in a batch; gathering requests that share

some length in common can minimize the amount of

wasted memory and computation. The frequent

compaction that results in a temporary halt undertaken

in low load windows allows a favorable contiguity and

the subsequent batch density. Multi-tenant serving

brings adapter management: popular adapters are

pinned, while others are loaded on demand to save

VRAM. Spill strategies impose flexibility upon the

memory breach. The cold KV pages are migrated to CPU

memory and, in extreme cases, to local NVMe through

batched DMA. Hot pages spilling cause prefill

performance to drop precipitously. Thus, systems select

conservative thresholds, retain early-layer pages as they

are visited at each decode level, and favor NUMA-local

spill destinations. Pseudo-environments, Such as

quantization policies, alter static footprint and dynamic

KV utilization. Quantization Weight only (8- or 4-bit)

decreases the representation size and allows for more

suitable batch sizes on memory-bound GPUs. KV

quantization also decreases per-token memory

consumption measurably, allowing more simultaneous

sequences to be active, but will require attention-

minimizing dequantization overhead to prevent adding

compute stalls in the kernels. Throughout memory

Robust accounting Memory is closely linked with

orchestration: placement takes into account base

weights and runtime overhead, as well as expected KV

growth based on batch size and percentile context

length; autoscalers monitor spill rates and watermarks

as leading indicators; and brownout policies can limit the

maximum tokens delivered or refuse long contexts to

conserve SLOs during crises.

Figure 2: Memory hierarchy and KV-cache paging for scalable LLM inference

The serving performance of LLM is determined by

attention performance and the hierarchy of memory.

GPU SRAM/HBM and CPU DRAM bandwidths constrain

the density of the batch, and FlashAttention minimizes

kernel time, as evident in Figure 2 above. KV-cache

pages are claimed and discarded promptly, and free-

page watermarks gate access to prevent overcommit.

Cold pages are subject to spill to host or NVMe through

batched DMA, hot early-layer pages remaining in HBM

to decode. Quantization decreases the weights and KV

and multiplies concurrent sequences. Orchestrators

monitor spill rates and enforce context/output rate

limits to keep TTFT SLOs on load.

2.5 Gaps & Opportunities

There is a gap across stacks and orchestration patterns.

A small number of deployments provide a single point of

identity for serverless-compatible deployments, a token

that is aware of the control plane based on SLOs (9).

Model servers are very efficient numerically, but are

unaware of cluster-level cold starts and delays in

provisioning. Serverless platforms offer elasticity, but

pods are seen as opaque boxes with little visibility into

the behavior of tokens. This leads to a split-brain system,

where autoscalers respond to trailing indicators and

where schedulers take local decisions without a global

view. Another opportunity comes in the form of

evaluation practice. Benchmarks tend to focus on

average throughput, and not the cost of achieving that

rate, the rate of cold starts, tail behavior under diurnal

The American Journal of Engineering and Technology 39 https://www.theamericanjournals.com/index.php/tajet

The American Journal of Engineering and Technology

bursts, and recovery on node drains. Realistic traffic

should be injected and tenants with divergent SLOs

should be mixed, timelines at the token level measured,

and (P50/P95/P99 reported on the network wait, prefill,

TTFT, inter-token wait times, and completion. Cost must

be brought into standard units of dollars per million

tokens and broken out into steady compute, warm-pool

overhead, and scaling waste. Microservices literature

also warns against the limitless scalability independent

of budget control that is not a strategy (37). Integrating

cost-sensitive control devices, cost-focused autoscaling

goals set in dollars per million tokens, SLO levels

allocated to price buckets, and feedback that leaves

marginal dollars per token revealed to service owners

and reduces wastage during bursty scale-outs (5).

3. Methods and Techniques

3.1 System Architecture: Serverless GPU

Orchestrator

The serving system is designed with a cloud-native

control plane and a high-throughput data plane. An API

gateway at the edge terminates TLS, authenticates a

caller, standardizes headers, and assigns a tenant

handle. A request classifier next takes low-cost features-

-the model identifier, input tokens observed, maximum

new tokens requested, decoding parameters, and

tenant class--and passes them to a token-sensitive

router, which calculates an approximate size estimate

and adds scheduling hints propagated by the request

end-to-end. The router hence does initial triage by

putting requests into short or long classes and makes a

candidate GPU tier decision that is based upon projected

VRAM pressure and time-to-first-token (TTFT). A

feasibility-checking admission controller assesses the

possibility that the request may satisfy its SLOs on the

selected tier; infeasible requests are degraded,

redirected to a higher tier, or rejected with a

recommended retry stance.

The control plane encompasses a policy engine, an

autoscaler, and a warm-pool manager. The policy engine

assembles per-tenant settings into the execution-time

rules context ceilings, output caps, maximum

concurrency, and priority mapping (30).The autoscaler

tracks queue-time percentiles, forecasted service load,

token throughput, GPU usage, and free-page

watermarks. When the backlog poses a threat to TTFT, it

can add capacity by activating prewarmed pods or

expanding the node group, and when demand drops, it

can consolidate load and drain excess pods. A warm-

pool manager maintains a desired number of pods per

model hot, with local NVMe with weights, pinned in the

device memory, CUDA graphs on-disk, and tokenizer

caches pre-warmed. Ready gates require that traffic can

only be accepted by warm pods when graph capture is

successful.

Data plane will consist of model pods that are connected

to a complete GPU or MIG slice through device plugins.

Every pod is configured to support a streaming model

server, a tokenizer library, and a lightweight sidecar that

exports custom metrics, like decode cadence, tokens per

second, free KV pages, admission decisions, and cold-

start events. Concurrency limits are visible to the

scheduler, so micro-batching is aware of TTFT budgets

and so avoids over-admission choices leading to

memory consumption of KVs. Expect pods to take

messages controlling draining, loading of an adapter,

and also compaction windows; draining happens at

token boundaries, so active sequences do not lose their

state. The weight of models is resident, and KV cache

pages are reserved only when needed.

The loop is completed with observability and operability.

The stack reveals TTFT, TLET, P95/P99 latency, GPU

usage, VRAM load, queueing depth, and rejection cause.

Distributed traces align gateway spans, control-plane

decisions, and pod execution such that each source can

be composited on a scheduling decision. There is a clean

bounded context between routing, admission,

scheduling, and autoscaling, which reduces coupling and

clean division of responsibility, which simplifies

evolution and prevents large blast radius; this is

identified as a separation of concerns in microservices

literature (4).

3.2 GPU Provisioning & Placement

VRAM accounting is the initiation of provisioning. In

decoder-only inference, the resident set supports base

model weights, run-time workspaces, and the per-token

key-value (KV) cache. Weights are assigned per-model

fixedly and pinned once per-pod; KV cache can scale

linearly to the concurrency and the context length, and

hence is very dominant in its variability. Practical sizing

rule provides KV budget with the calculation as KV bytes

the approximate value of B, the number of active

sequences in the micro ⁠-batch, L, the effective context

length (prompt and the part of generated tokens that is

retained), H, the hidden size, dtype factor is the number

of bytes per element (2 FP16, 1 when INT8/FP8 is

supported), and layers is number of transformer blocks.

The American Journal of Engineering and Technology 40 https://www.theamericanjournals.com/index.php/tajet

The American Journal of Engineering and Technology

Heads factor reflects both key and value tensors and

head partitioning. Operators are stuck with a percentage

of headroom to cushion bursty arrivals, and capped L per

tenant to clear KV footprint, which is predictable. Since

paging between device memory and host is costly, pages

are allocated by the allocator using preallocated arenas

instead of utilizing general-purpose malloc.

Placement has to assign pods to accelerators so that no

SLOs are missed and capacity is not stranded. NVIDIA

Multi-Instance GPU (MIG) allows predictable slicing

(such as 1g.10 GB, 2g.20 GB, 3g.40 GB) into isolation

with deterministic VRAM ceilings on H100 nodes or an

A100 node. Larger slices can be scheduled to high-

priority tenants to reduce the chance of contention,

whereas the cost-sensitive tiers can share smaller slices.

MIG minimizes noisy-neighbor effects and can increase

internal fragmentation when workload shapes change,

so the scheduler monitors free pages and could

rebalance hot partitions. Another concurrency

mechanism is CUDA Multi-Process Service (MPS), which

can enable multiple processes to share a full GPU (20).

MPS may achieve greater throughput when mixed, short

requests are made, but has less isolation; as such, MPS

is conservative in its admission and denies memory

over-commitment.

The topology-aware placement lessens the variance of

latency. PCIe generation, NUMA domains, and NVLink

connectivity are labeled at the node; the scheduler

favors NVMe local to GPUs as weight snapshots and

does not replicate tensor-parallel shards with their GPUs

across NVLink islands. In case a model is sharded, the

orchestrator co-schedules sibling pods on GPUs with

direct NVLink to reduce inter-GPU traffic during prefill

and decode. The controller complies with

PodDisruptionBudgets and reserves spare capacity to

support rolling updates to ensure availability. When cost

optimization requires the use of spot instances, a drain

controller reacts to preemption notices by flagging pods

unschedulable, retries of requests still in-flight

upstream, and checkpointing warm-pool state to local

NVMe on the replacement node. Lastly, operators

publish longer-lived resources through device plugins,

Node Feature Discovery to annotate hardware

capabilities, and set anti-affinity to ensure that all the

replicas of an instance of the same model do not form a

single failover point on a common host.

Table 1: GPU provisioning & placement: VRAM, KV-cache, MIG/MPS, topology-aware scheduling

Component /

Decision Area

Key Purpose /

Challenges
Practical Rules / Calculations

Operational Actions / Scheduler

Behavior

VRAM

accounting

Ensure pods fit GPU

memory without SLO

misses or stranded

capacity

Resident set = base weights (pinned

per pod) + runtime workspaces + KV

cache

Track per-pod footprints; reserve

headroom for bursts; deny

overcommit

KV cache sizing

Dominant, variable

memory driver in

decoder-only inference

KV bytes ≈ B × L × H × dtype ×

layers × heads×2 (keys & values);

dtype: FP16≈2B, INT8/FP8≈1B

Cap L per tenant; forecast KV

growth from batch B and

percentile L

Memory

allocator

strategy

Avoid costly

device↔host paging

and fragmentation

Preallocated arenas; page-based KV

allocator with constant-time

alloc/free

Enforce free-page watermarks;

admission throttles when below

watermark

Headroom

policy

Cushion bursty arrivals;

keep latency stable

Maintain % free VRAM above

predicted peak KV; fixed weight

pinning

Reject or defer requests if

headroom breached

MIG slicing

Predictable isolation and

VRAM ceilings on

A100/H100

Slice profiles (e.g., 1g.10GB,

2g.20GB, 3g.40GB) mapped to SLO

tiers

Give larger slices to high-priority

tenants; monitor free pages;

rebalance hot partitions

MPS

concurrency
Higher throughput for

mixed short requests,

Share full GPU among processes; no

memory over-commit

Conservative admission; deny

when memory risk detected

The American Journal of Engineering and Technology 41 https://www.theamericanjournals.com/index.php/tajet

The American Journal of Engineering and Technology

Component /

Decision Area

Key Purpose /

Challenges
Practical Rules / Calculations

Operational Actions / Scheduler

Behavior

weaker isolation

Placement

objective

Avoid SLO violations and

stranded capacity

Match pod footprint + KV growth to

GPU/MIG capacity

Bin-pack by VRAM; route shapes

to suitable tiers (full GPU vs slice)

Topology

awareness

Reduce latency variance

and inter-GPU traffic

Use node labels: PCIe gen, NUMA,

NVLink topology, local NVMe

Favor NVMe local to GPUs for

weight snapshots; co-schedule

sharded pods on same NVLink

island

Sharded

models

Minimize cross-link

chatter during

prefill/decode

Keep tensor-parallel siblings

topologically close

Anti-affinity across hosts for

replicas; NVLink-aware co-

scheduling

Availability

during updates

Maintain capacity while

rolling

Respect PodDisruptionBudgets;

reserve spare nodes/slices

Staged rollouts; keep warm

capacity during updates

Spot instances
Control preemption risk

while cutting cost

Use spot for elastic capacity, on-

demand for critical

Drain on preemption notice;

mark pods unschedulable; retry

upstream; checkpoint warm-pool

state to local NVMe

Hardware

discovery

Publish capabilities for

accurate scheduling

Device plugins; Node Feature

Discovery annotations

Scheduler filters/affinity rules by

capability set

Anti-affinity /

blast radius

Avoid single-host failure

for a model’s replicas

Spread replicas across hosts/NUMA

domains

Enforce anti-affinity; maintain

spare capacity for failover

3.3 Token-Aware Scheduling & Micro Batching

Scheduling begins with an estimate of the size \hat{n} =

n_in + E[n_out], where n_in is the observed input length

and E[n_out] is the expected number of tokens

generated conditional on the prompt branch and stop

conditions and tenant defaults. This estimate is

consumed by a service-time model \hat{s} = a ·

nin^omega + b · nout · f(ctx). The first one approximates

prefill cost; 1 > /alpha/ reflects the fact that the benefit

of attention increases super-linearly with context size.

The second term is a model of decode, in which the

per-token latency grows as a factor of nout but also

grows with context by a factor of f(ctx). Coefficients a

and b will be trained based on offline profiling per

model, and per GPU tier, and should be periodically

refreshed, as with production telemetry.The router puts

requests on short or long queues and calculates priority

proportional to weight/\hat{s} under a weighted

shortest-remaining-processing-time (SRPT) policy. A

local scheduler running on each GPU slice or MIG slice

consumes several tokens out of these queues into a

token-aware micro-batcher. In prefill, the batcher

restricts the number of long prompts it will accept

simultaneously to keep TTFT within budget; during

decode, it interleaves as many short sequences as

possible to maximize tokens per second. A batch is

limited by two constraints: the estimated prefill time

cannot be greater than the TTFT budget of the median

request in the batch, and the expected KV reservation

after admission should be kept above a free-page

watermark. As the queue length increases, the

scheduler will reserve a portion of slots for the long jobs

to prevent starvation.

Time is closely linked to admission and

scheduling. Each queue keeps an estimated completion

time based on the current decode cadence and the

estimated prefill of running jobs. A request is accepted

when predicted waiting time + the prefill is below the

TTFT budget. A degradation ladder is used: lower

max_new_tokens on bronze tiers, prioritize gold, route

The American Journal of Engineering and Technology 42 https://www.theamericanjournals.com/index.php/tajet

The American Journal of Engineering and Technology

to faster GPU tier, or send a fast failure with retry hints.

Preemption is done on the boundaries of tokens to

prevent corruption of state; the batcher defers to

tenants with higher priorities when their TTFT would

have been lost. Deficit round-robin imposes fairness

across moving windows of the number of tokens

emitted per tenant, so allocation is based on GPU work

instead of the request counts (18).

Both memory and time prediction are used when

selecting the GPU tier. Suppose \hat{s} is known, and at

an instance the KV estimate is known, then the mapping

will choose the cheapest tier in which the TTFT and end-

to-end latency meet the SLO of the tenant, and its free

pages after the admission meet a low watermark. The

scheduler decouples batches when head-of-line

blocking is identified, and this action occurs when the

longest-to-median ratio of n in a pending batch is too

high relative to a configured parameter.

3.4 KV Cache & Memory Techniques

Consistency in throughput is determined by the well-

managed key-value (KV) cache. At startup, each pod

configures fixed-size page arenas of keys and values that

are aligned with kernel preferences and the memory

granularity (24). Per-layer free lists support constant-

time allocation, and this is combined with allocating on

uncertain bursts, which limits contention during bursts.

The allocator allocates pages during admission to

safeguard the prompt and an over-approximation of the

output tokens issued; during decode, to resolve spikes,

it can allocate more pages in small units. They reference

count pages based on the sequence of pages, so they

can be released quickly on cancel or completion.

There is early-warning control through watermarks.

Healthy headroom is a high watermark; a low

watermark causes admission throttles, or activates

reserve MIG slices, or causes the autoscaler to add warm

capacity. Absolute free pages and consumption slope

are exported to enable the control plane to know when

it is going to be depleted, so that stalls are avoided.

Eviction is event-based; background sweeps combine

small free runs into bigger ones. The windows are

bounded, and the compaction is synchronized with

human lulls in the decode cadence so as not to introduce

noticeable delays.

Memory is also taken up by multi-tenant adapter

management. Once tenants bind LoRA adapters,

popular adapters have the pin assigned on the GPU, and

less popular adapters are kept in page-locked host

memory that can quickly do DMA. A lightweight adapter

router favors pods that have the requested adapter in

them to reduce the penalty of carrying the extra load.

Quantization is capacity: Weight only 4-bit or 8-bit

schemes reduce the size of the static model, and KV-

cache quantization to 8-bit halves the cache size with a

negligible effect on the quality of many workloads; per

tenant operators can gate this.

This dynamic process is supported by dynamic memory

concepts of neural inference studies to the extent that

the pathways that choose what to keep in memory and

what to purge minimize interference and enhance an

adaptive memory capacity under different demands

(25). The serving allocator is not a trained entity, but the

principle is the same: manage memory as an allocation

in pages and track reservations as evidence is discovered

during decode. Admission throttles decline or postpone

requests that, once reserved, would violate a watermark

or a per-tenant memory budget. Drain endpoints freeze

new grants and wait until a series reaches a token limit,

and thereafter, compaction before restart.

3.5 Networking, I/O, and streaming

Networking has to conserve the token rhythm

generated by the scheduler. The serving layer exposes

gRPC over HTTP/2 with server-streaming RPCs to allow

tokens to be streamed immediately they are produced;

native flow control and per-stream deadlines give

backpressure and safeguard the cluster against

straggling clients. To consume via browsers, an edge

gateway translates gRPC stream to Server-Sent Events

(SSE) and maintains backpressure, including buffering

quotas and early cancellation. Keepalive pings and idle

timeouts halt resource waste, and idempotency keys

make retries seamless following network hiccups and

non-repetitive.

Tokenizer locality prevents a hidden hotspot of the CPU.

Pods preload vocabulary files, tokenizers, and a cache of

standard system prompts within the process. Requests

will include a tokenizer class hint so the router can direct

compatible prompts onto the same shard, thus

minimizing cache churn. With large documents,

zero-copy ingestion paths can transfer the data between

the NIC and the user space to the GPU staging buffers

without copying along the way.

Chunking and flush intervals are adjusted to the time

between tokens profile. Both too-frequent and too-

The American Journal of Engineering and Technology 43 https://www.theamericanjournals.com/index.php/tajet

The American Journal of Engineering and Technology

infrequent flushing add overhead; the former damages

perceived interactivity. One token per flush or 20 50 ms

cadence, whichever is longer, is targeted by a pragmatic

policy and coalescing of small chunks under bursts.

Compression depends on the level of token rate and CPU

headroom; to avoid head-of-line blocking, raw frames

are desirable in high-throughput decode mode. At the

edge, request coalescing eliminates both the same

prompts at thundering-herd arrival times, and a

rendezvous batcher, a program to assemble compliant

arrivals in a brief interval. Per-route rate limits and

tenancy quotas constrained the best-case load. Worst-

case load, and transport security was enforced by

mutual TLS and scoped tokens with minimal overhead

on contemporary hardware (35). Network telemetry:

per-stream TTFT, inter-token histograms, retry counts,

and gRPC flow-control stalls provide backpressure

measured at the edge, which is translated to a safe,

token-aware scheduling decision at all levels of service

within a cluster.

4. SLO Aware Admission Control, Autoscaling, and

Queueing Analysis

4.1 SLO Definitions & Traffic Modeling

Cloud-native LLM serving has service-level objectives

encoding two qualities visible to the users,

responsiveness and completion. The time-to-first-token

budget DTTFT limits how long it takes between the

request arrival at the serving gateway and the first

streamed token. The end-to-end budget, D E 2 E, is an

upper bound of the delay between the same arrival

instant and the last emitted token, often referred to as

time-to-last-emitted token (TLET). As clients can begin

to render once the first token has been received, DTTFT

is the key factor affecting perceived quality; D E2E limits

total throughput and exposure to cost. Practical SLOs

give percentile targets (e.g., P95 TTFT <= 300 ms, P99

TTFT <= 600 ms; P95 TLET <= 4 s) with an error budget

that can eat rare outliers. These budgets dTTFT = arrival

+ DTTFT and dE2E = arrival + DE2E are used to give per-

request soft deadlines to the control plane: dTTFT and

dE2E. Soft deadlines at admission time should degrade,

redirect, or reject such requests early--either outright or

with informative hints--rather than letting them wait in

queues.

The SLO decision flow (Figure 3) instructs operators to

select request-based SLOs when signals of a service are

exposed at per-request granularity and the overall

performance must be controlled adequately on a per-

interaction basis (i.e., when deadlines apply, such as on

the TTFT/TLET proposal), and to select window-based

SLOs when signals are aggregated, traffic is low, and only

aggregate behavior is relevant. This mapping is the

admission control-soft deadlines mapping dTTFT and

dE2E: per-request control degrades, redirects, or drops

early; window control tracks percentile budgets over

time windows to guarantee consistent latency and cost.

Figure 3: Choosing request- or window-based SLOs for TTFT/TLET control

The American Journal of Engineering and Technology 44 https://www.theamericanjournals.com/index.php/tajet

The American Journal of Engineering and Technology

The nonstationary arrival process 00t is bursty. Daily

variations are interspersed by peaks at launches,

external linking, or incident diversion, and brief bursts of

5-20-fold are typical in production systems. Request

sizes are also not homogeneous since the cost of the

service consumed is proportional to the number of

prompt input tokens and the number of output tokens

produced. Prefill compute grows superlinearly in input

length (compute grows quadratically with sequence

length unless optimized), and decode grows linearly in

output tokens due to reuse of the key-value (KV) cache

over steps. As a result, two requests for the exact arrival

time may require vastly dissimilar GPU time and

memory; head-of-line blocking will occur if they are

handled in the same way.

SLOs should also reflect multi-tenancy. Tiers combine

budgets numerically, policy limitations, and classes of

resources. A gold tier could impose D_TTFT = 300 ms and

D_E2E = 4 s, limit the length of context to preserve

memory, limit the number of generated tokens, and tie

requests to high-powered accelerator slices with limited

per-pod concurrency. A bronze tier could enable D EE =

12 s, D EE = 1 s, support greater concurrency, and favour

more cost-effective slices. Tier metadata also controls

permitted decoding parameters, permitted model

families, and overflow destinations (7). The routing,

admission, and autoscaling access this metadata to

balance per-tenant fairness and achieve cluster-level

performance objectives.

The model has to have first-class memory pressure. The

footprint of KV-cache grows with batch size, number of

layers, hidden width, and precision; spills to CPU or

NVMe incur stalls contributing to overestimates of

service time and variance. The controller consequently

makes the condition based on context length,

anticipated output length, present batch size, and

obtainable cache page. When the free pages are left

unused past a watermark, admission will throttle long

context primitively, and output limits are rigidized on

the lower tiers. Such guidelines pair SLOs with resource

health, inhibiting the occurrence of pathological tail

behavior due to fragmentation or paging.

4.2 Queueing Models for Token-Aware Serving

Any accelerator or MIG slice could be modeled as a

general arrival station with general service times (i.e., a

queueing station). A multi-node station with a single

GPU is a reasonably close analogy to G/G/1, with

processor sharing (PS) during decode, and exclusive

service during prefill; a pool of homogeneous nodes is

G/G/k with bulk-service effects arising through the use

of dynamic micro-batching. General distributions are

intractable when it comes to exact analysis, although

good approximations inform design. The formula by

Kingman delivers an average queue in G/G/1 without

vacations:

W_q ≈ [ρ/(1 − ρ)] × [(c_a² + c_s²)/2] × E[S],

where ρ = λ·E[S] is utilization, c_a is the coefficient of

variation (CV) of interarrival times, and c_s is the CV of

service times. Three operational levers follow. First,

keep ρ bounded away from one; as ρ → 1, the prefactor

ρ/(1 − ρ) explodes and W_q grows superlinearly. Second,

minimize variation; heavy-tail service (c>>1) and burst

arrival-to-service (c a >1) compound waiting. Third,

minimise E[S] through batching and optimised kernels.

These levers provide an incentive to token-aware

routing (to lower the effective cs), short/long queues (to

reduce interference), and admission throttles (to

stabilize at ρ).

Serverless execution adds cold starts, similar to server

vacations, where no service is provisioned. Vacations

extend adequate service time and result in more

waiting, especially when the demand is high. Practically,

some cold-start components are image fetch,

initialization of device plug-in, transfer of weights to

local NVMe and HBM subsequently, and run-time

compilation in conjunction with CUDA graph grasp.

Warm pools eliminate vacations by maintaining a small

pool of hot replicas; snapshotting and layer caching

minimise the rest of the startup path (38). The objective

of the operations is to ensure that warm capacity is

provided to reduce the likelihood of dispatching to a

cold copy in bursts.

Micro-batching is provided by bulk service. The arrivals

are prefilled in a batch and are arbitrated under PS to

share the decode phase. Batch-formation time is the

amount of delay required to build up the requests to

achieve the target batch size B, with a timeout imposed

to defend TTFT. In the bursty λ(t) regime, batches fill

densely, and amortization will take over. Astake over. As

traffic becomes sparser, the aggressive batch targets

pay in terms of TTFT penalties. Practical heuristic: The

heuristic commits at most some fixed percentage of D

TTFT (40% is a familiar figure) to batch formation and

prefill. The rest is left to any possible queueing

The American Journal of Engineering and Technology 45 https://www.theamericanjournals.com/index.php/tajet

The American Journal of Engineering and Technology

uncertainty and the initial decode. This is a back-solve

on B at any traffic issue and model setup.

Basics of delay estimation are difficult in the decode-

phase PS. As the B_active sequences decode in parallel,

the effective service rate per sequence is the total

service rate, 1/B_active, so the completion of decode

time extends more or less proportionately with the

number of sequences in B_active. In contrast, prefill is

either not preemptive or loosely preemptive, since

writing to the KV-cache has to be contiguous. To avoid

head-of-line blocking, the scheduler interleaves very

brief prefill windows between small prompts or

distinguishes between jobs that prefill heavily and those

that do not (12). Heterogeneous clusters also take

advantage of cmu-style dispatch: use servers with

priority weight c times effective service rate mu, and

keep other things constant, 2U would be mu, which

incorporates not only compute but also memory

headroom (free KV pages) so that paging is avoided.

4.3 Admission Control Algorithms

Admission control also makes SLOs per request at the

router. The system will calculate a predicted wait time

on the target queue, Ŵ_q, and an expected service time

ŝ, for each arrival. The latter is decomposed into prefill

and decode components: ŝ = ŝ_prefill +

ŝ_decode(max_new_tokens). To guard against

overconfidence, predictions are not taken at their word

and treated as high-quantile estimates (e.g., P95), with

an uncertainty allowance in the form of a multiplicative

guard factor 0 < 1 injected after estimation. Two

feasibility tests are as follows:

1. TTFT feasibility: Ŵ_q + ŝ_prefill ≤ D_TTFT.

2. End-to-end feasibility: Ŵ_q + ŝ_prefill +

ŝ_decode ≤ D_E2E.

When TTFT is not achievable but D_E2E should

be at a smaller output, the controller uses graceful

degradation by reducing max new tokens, greedy

decoding, or putting on early-exit policies. In cases that

both constraints are unsatisfiable despite any feasible

tier, the request is redirected to overflow capacity or

rejected immediately with an organized reply that has

retry hints. The estimation of the Ŵ_q should take into

consideration the queue depth and batch dynamics. A

virtual-finish-time estimator is the sum of the remaining

service of jobs in front, divided by the effective service

rate two mu eff, plus the expected batch-formation

delay. Concretely, Ŵ_q ≈ α·(queue_depth/μ_eff) +

β·batch_fill_time, where α and β are fitted from

telemetry, μ_eff reflects concurrent decode sequences,

and batch_fill_time is the minimum of the latency buffer

permitted by D_TTFT and the time to fill the next batch

given current arrivals. Since the state is dynamic, the

estimate is updated at dispatch; when it rises above a

limit before a job enters service, opportunistic rerouting

to an under-loaded tier is permitted.

The priority achieves a balance between efficiency and

equity. Weighted shortest-remaining-processing-time

(w-SRPT) gives priority to small 0 in addition to applying

weights to the tenants in agreement with the SLO tiers.

Preemption is allowed at token boundaries so that a

short job may start decoding in a short time without

losing work on a long career. The scheduler limits the

number of preemptions on a request to prevent

thrashing and imposes a minimum token quanta. The

reason prefill preemption is not expected is that

resuming in the middle of a serving stack is not

supported or cheap due to emergency pressure (6).

Operationally, the admission channel produces counters

of admits, degradations, reroutes, rejects with reasons;

the admissions signal steers post-incident analysis

procedures and chromatic winds γ and the selected

quantile p.

4.4 Autoscaling Coupling & Warm Pool Sizing

Autoscaling pairs admission to capacity in a way that

delays when bursts come up. The target set point of the

control is to maintain utilization zero within a range

balancing utilization and tail latency (say 0.5-0.7 during

peak), keep D_TTFT and D_E2E targets, and reduce cold

start. Backlog-based delay and token-production

pressure are the two categories of signals that are most

reliable. The former employs queue_latency_p95 or W

q percentiles; when they surpass any fraction 0 of D TTFT

over a long continuous window, zero scale-out ensues.

The second uses tokens_in_flight or prefill FLOPs/s to

indicate near-real-time pressure on decoding and prefill

pipelines, respectively.

In Kubernetes, Horizontal Pod Autoscaler v2 is capable

of scaling up against custom metrics tracked by

Prometheus, which can also dynamically scale in many

ways, quickly responding to events, with KEDA. Policies

are a combination of proactive and reactive sides.

Proactive scale-out pre-warms pods in advance of

predictable bursts and forecasts scale-out based on past

traces, including workload mix. Reactive scale-out reacts

The American Journal of Engineering and Technology 46 https://www.theamericanjournals.com/index.php/tajet

The American Journal of Engineering and Technology

to an increase in queue delay and cold-start occurrence.

Scale-in is conservative: It needs small values of backlog,

tokens_in_flight, and consistent percentiles of TTFT

across multiple windows before replicas can be

deactivated. Heterogeneous Clusters require cost-

sensitive placement: an estimate of marginal SLO

increase/dollar in each node group or MIG profile, and

add capacity where the benefits are the greatest on a

marginal-cost basis.

Warm pools do away with cold starts and vacations. A

warm replica is one with cached image layers, loaded

model weights, compiled runtime, and CUDA graphs.

The minimum warm pool per tier follows N_warm ≥

⌈λ_burst · T_cold⌉, where λ_burst is the expected spike

in arrivals over the warm-up horizon and T_cold is the

cold-start duration. If the burst model is uncertain,

λ_burst is inflated by a safety margin. Warm copies,

warm replicas are distributed topology-spread along

nodes and zones in such a way that the failure of one

does not exhaust readiness. PodDisruptionBudgets and

priority classes ensure that a maintenance or

preemption event cannot evict warm replicas.

Scale-to-zero is still an appealing low-cost service for

low-traffic services. A workable policy zero scales out

the stateless gateway and keeps a nonzero warm pool

of the model deployment. Idle eviction timers are used

only against replica excess, and never allow the pool to

go below N warm (8). Pods are drained whenever scale-

in is required by halting admission traffic and allowing

ongoing decodes to finish, ensuring KV-cache state and

no partial outputs. Where the dynamic is complex,

however, reinforcement-learning formulations

complement the rules; analogous strategies have been

applied to balance the greedy delay-minimizing traffic

adaptive control tactics, pointing towards a route to a

reward-based scaling without violation of safety

constraints (33).

4.5 Implementation Playbook & Alerts

An applied playbook transforms the above processes

into regulated practices. The first pillar is the metrics.

TTFT and TLET histograms and percentiles, queue depth

per tier, queue_latency_p95, tokens_in_flight, prefill

FLOPs/s, GPU utilization, VRAM free-page watermark,

achieved batch size versus target, cold-start counts, and

admission action counters all should be exported by the

serving stack as histograms and percentiles. Dashboards

decouple interactivity (TTFT, batch-formation delay) and

throughput (tokens per second, utilization) and memory

health (free pages, fragmentation). The input and

output token frequencies, context length, and decoding

parameters, including realized TTFT, realized TLET, and

per-stage timing records in request logs, enable post hoc

analysis.

The serving pipeline, tokenization, prefill (initial prompt

processing), token-by-token decode, and de-

tokenization also determine what is instrumented to

provide operations dashboards: TTFT and TLET

histograms/percentiles, batch-formation delay, queue

depth, and queue_latency_p95, tokens_in_flight and

prefill FLOPs/s, GPU utilization, VRAM free-page

watermarks, achieved and target batch size, the number

of cold-starts, and admission actions. As shown in the

figure below, per-request logs record input/output

tokens counts, context length, and decoding attributes,

and per-stage timings to support subsequent analysis,

quasi-identifying interactivity and throughput- and

memory-insolvency perspectives for credible alerting

and capacity planning decisions.

The American Journal of Engineering and Technology 47 https://www.theamericanjournals.com/index.php/tajet

The American Journal of Engineering and Technology

Figure 4: Tokenization, prefill, decode stages for TTFT/TLET instrumentation

The routing and admission are applied as a

sidecar/gateway filter. The filter analyzes feasibility in

terms of quantile estimates and guard factor gamma

(P95 with a guard factor gamma of 1.25 gives a safe

starting point) (10). Each tier has two priority queues to

make a better separation: a short queue used when n̂ is

small, a long queue when n h is large. Context ceilings

prevent injustice and memory loss when combined with

per-tenant concurrency limits. Infeasible requests are

degraded by reducing max_new_tokens, switching to

greedy decoding, or sending to a smaller, faster model

compatible with the output quality. Every decision is

justified using organized headers to help client-side

retries.

SLOs directly derive caps about scheduler configuration.

Max batch size is selected with expected batch-

formation delay plus prefill time using less than 40

percent of D_TTFT at nominal lambda. Short prompts

are safeguarded by restricting prefill windows to sit

periodically (e.g., every k-th time slice). Thrashing can be

preempted with token boundaries with per-request

limits. Tokenizer workers are replaced alongside model

pods to prevent CPU tokenization from being on the

critical path. On heterogeneous clusters, the routing

uses a CMU-style rule, though taking into account

compute throughput as well as free KV-cache pages to

avoid placing that would induce paging.

On composite triggers, autoscaling is aligned with HPA

v2 or KEDA. One trigger forces queue_latency_p95 to be

less than 0·D_TTFT; another forces tokens_in_flight to

be close to a reference based on measured 0. minScale

will be N_hot, and maxScale is constrained by the

capacity of node-pools. Concurrency knative container

Concurrency is the concurrency per-pod cap found

during load testing (31). Canary-based policy changes

roll out, performing a comparison of TTFT and reject

rates against a control; policy changes can be

automatically rolled back on regression. Warm-pool

management applies a pre-pulling of the images as well

as layer caching combined with server placement of

weights on local NVMe, along with readiness probes to

capture CUDA graphs before a pod can join the pool.

PodDisruptionBudgets guard a warm quorum of the

replicas; topology spread restrictions maintain the

replicas in a different rack and a different zone. Spot

nodes only run noncritical surge capacity; termination

handlers are drained and retain minimal state. This

continuous assessment circles back: the results of post-

incident reviews, metric audits, and user feedback are

used to revise thresholds, guard factors, and routing

policies, as with other systems where improvement

based on the evidence is key (13).

Observability finishes off. Alerts trigger when

queue_latency_p99 is greater than 0.7x D T TFT over 2

seconds, when VRAM free-page watermark is undershot

a threshold, when cold-start counts rise, or when

admission rejects overruns a budget. Runbooks contain

specific prescriptions to fix concrete problems, like

amplification of N_warm, context tightening of ceilings,

The American Journal of Engineering and Technology 48 https://www.theamericanjournals.com/index.php/tajet

The American Journal of Engineering and Technology

recalibration of batch caps, or a tenant sent to an

overflow capacity. The rule of governance allows

predictability: SLOs, caps, and routing rules become

version-controlled configurations; modifications are

vetted in staging and are rolled out to canary. Tenant

dashboards with compliance against D_TTFT and D_E2E,

cost per million tokens, and utilization summaries are

presented to the stakeholders. Collectively, the SLO-

aware control plane, rooted in admission, autoscaling,

and queueing analysis, maintains tail latency bounded

under bursty and heavy-tailed demand whilst

maintaining GPU utilization and predictable cost.

5. Experiments and Results

5.1 Experimental Setup

The test was aimed at a production-like, multi-tenant

cluster and reproducible software stack to ensure the

results generalize to production. The control plane used

Kubernetes v1.29 and Cluster Autoscaler, and node

groups were categorized by accelerator tier. The fleet

included four H100 80-GB nodes (NVLink) and four A100

80-GB nodes (PCIe) as well as six L4 24-GB nodes. They

had each node expose the NVIDIA device plugin and

time-sliced MPS to a 3.2-TB NVMe SSD as a weight

snapshot and KV-cache paging. Nodes were provided

with two 100-Gbps NICs for the east-west traffic and

object-store ingress. Knative and KServe deployed a

revised version of serve, which offered scale to zero and

per-revision warm capacity. Isolation of GPUs was also

implemented on A100 MIG (3g.40 GB and 7g.80 GB) and

full-card placements. The node images were distroless

and hosted by a regional registry to reduce cold-start

variance.

It was based on the serving layer with vLLM and

TensorRT-LLM backends with an Envoy gateway with

gRPC and HTTP/2 streaming. Triton Inference Server was

turned on to achieve a baseline of comparability and to

examine the native dynamic batching behavior. Model

weights were in an object store with lazily local to

NVMe; a pre-warm controller guaranteed weight

residency throughout the warm pool. Prometheus

scraped* application, queue, and GPU metrics; DCGM

exported SM, memory, and copy-engine utilization;

structured logs were emitted per request arrival,

admission, first token time, and completion. This end-to-

end telemetry was a replica of asset-tracking discipline

in other operational spaces where locational, state, and

utilization traceability is the keystone to efficiency (21).

Two families of models, consisting of a decoder-only

model, the 8-billion-parameter model, and the 70-

billion-parameter model, were trained. The 8B model

trained on L4 and A100 in FP16 and INT8; the 70B model

trained as tensor-parallel (TP=4 on A100, TP=2 on H100)

in FP8/FP16 mixed precision with a paged KV-cache

allocator. 8B had context windows of 8k tokens and 70B

had windows of 16k. A replay generator was used to

generate Lennard-Jones distributed traffic by input

lengths using chat Lennard-Jones distribution (P50=120,

P95=480) and RAG Lennard-Jones distribution

(P50=1,200, P95=3,500), and had a heavy-tailed capping

tier limit: Gold 1,024, Silver 512, Bronze 256. Every

experiment streamed coins.

5.2 Baselines, Ablations & Metrics

The impact of each of the mechanisms was isolated in

four baselines. B0 operated with first-come-first-served

and no warm pool, and had static micro-batches of four.

B1 used dynamically length-oblivious batching with a

capacity of eight. B2 disabled MIG and had to place the

full GPU. B3 eliminated the use of image prewarming

and weight snapshotting to make cold-start costs visible.

The suggested system incorporated weighted shortest-

remaining-processing-time with per-tenant priority

classes, earliest-deadline-first on those requests with

explicit deadlines, token-aware admission control,

efficient pool sizing by burst arrival rate, and accelerator

selection based on predicted service time and burst

arrival rate.

The most relevant were time-to-first-token (TTFT),

distributions of end-to-end latency (P50/P95/P99) and

throughput, in tokens per second, GPU occupancy (SM

and memory), waiting time at the gateway and backend,

cold-start rate, and per-million-output-tokens cost.

Queuing delay was calculated as the difference in time

between when the server arrived and when it was

admitted to a decoding batch (26). To indicate user-

perceived responsiveness, the measurement of

throughput was at the token stream, rather than

request completion. Cost was calculated based on

measured utilization, and each node was charged a

node-hour price reflecting the price per token

generated; nodes on demand and spot were considered

differently. The experimental setup fits the widely

accepted evidence that a well-designed schedule will

enhance subsequent performance when the demand is

intermittent and on-time delivery is important (27).

5.3 Main Results

The American Journal of Engineering and Technology 49 https://www.theamericanjournals.com/index.php/tajet

The American Journal of Engineering and Technology

With under a mixed chat/RAG workload scaled to 70

percent steady-state utilization, the proposed system

improved cluster throughput from 18.7k and 24.6k

tokens per second over the best baseline (B1), a 31.7

percent gain. TTFT got much better: P95 reduced from

930 ms to 420 ms and P99 from 2.8 s to 1.3 s.

Accelerator-by-accelerator improvements were broadly

consistent, with throughput on H100 improving by 28

percent and P99 by 55 percent, and on L4 by 24 percent

and 41 percent, respectively. When the long RAG prefill

was dominant, FCFS (B0) has been shown to have severe

head-of-line blocking, resulting in a heavy TTFT tail. The

experiment with length-unaware batching (B1) boosted

average throughput but aggravated TTFT of short

queries since short requests at the end of relatively long

sequences waited to fill the batch size. This was

combated in the form of token-aware batching that was

able to build decode batches with equally close

approximations of the size of the encoded job and

prioritized short jobs upon admission.

There was a rise in GPU usage alongside a reduction in

latency. On the A100, the SM usage increased by 21

percent to 73 percent, and memory-bandwidth usage

increased by 22 percent to 61 percent with token-aware

admission and batching enabled. The decode system

realizes effective batch-size increases as the short

sequences were decoded together, and long sequences

were moved to homogeneous batching. A100 MIG

partitioning avoided oversized batches that in the past

resulted in VRAM pressure and allocator fragmentation.

In the cases where MIG was disabled (B2), chattier mixes

caused constant reduction in throughput as long

contexts interfered; enabling MIG would reconstitute

isolation and increase throughput by 14% over full-card

placement.

The per-tenant analysis showed that it was fairer. By

using an index on SLO satisfaction (SLO share of requests

met whose duration constraints are satisfied; time-to-

first-byte (TTFT) and P95 end-to-end latency), the

fairness increased to 0.94 (as compared to 0.86 on the

default B1 policy) when the proposed policy is employed

without compromising on the Gold-tier priority, as

highlighted in the table below. Bronze had fewer

starvations since there were explicit limits on context

and max_new_tokens truncated tail work to block

queue poisoning. It is important to note that the

throughput advantage was not achieved by aggressive

output truncation; application of identical output limits

on all methods caused the proposed scheduler to

preserve a 2730 percent throughput advantage due to

superior prefill isolation and decode interleaving.

Table 2: A summary of main experimental results—throughput, TTFT tails, utilization, per-accelerator gains, MIG, and fairness

Metric / Category
Baseline (B0/B1 as

noted)

Proposed

System
Delta / Notes

Cluster throughput

(tokens/s)
18.7k (best baseline B1) 24.6k +31.7% throughput gain

TTFT P95 930 ms 420 ms −55% tail reduction

TTFT P99 2.8 s 1.3 s −53.6% tail reduction

H100: throughput Baseline
+28% vs.

baseline
Accelerator-specific improvement

H100: TTFT P99 Baseline
−55% vs.

baseline
Large tail cut

L4: throughput Baseline
+24% vs.

baseline
Accelerator-specific improvement

L4: TTFT P99 Baseline
−41% vs.

baseline
Tail latency reduction

A100 SM utilization ~52% (implied) 73% +21 pp with token-aware admission/batching

The American Journal of Engineering and Technology 50 https://www.theamericanjournals.com/index.php/tajet

The American Journal of Engineering and Technology

Metric / Category
Baseline (B0/B1 as

noted)

Proposed

System
Delta / Notes

A100 memory-

bandwidth utilization
~39% (implied) 61% +22 pp with token-aware admission/batching

Effect of MIG (vs. full

card, B2)

MIG off: chattier mixes

reduce throughput
MIG on

+14% throughput; avoids VRAM

pressure/fragmentation

Fairness (SLO

satisfaction index)
0.86 (default B1 policy) 0.94

Fewer Bronze starvations via

context/max_new_tokens caps; Gold priority

preserved

5.4 Tail Latency & SLO Analysis

It tested burst resilience with spikes of ten minutes,

tripling the arrival rate in thirty seconds, which

approximates surges with product launches. Using

feasibility-aware admission, Gold sustained P99 TTFT of

650 ms and Silver sustained P99 TTFT of 1.2 s; Bronze

eased at high spikes gracefully to 1.9 s as the system

turned up max_new_tokens to 192. TTFT P99 was >3.6 s

across tiers, and end-to-end P95 deadline-miss rates

were >12% when admission control was not in effect

(B1). The requirement of maximum batch sizes

estimated using TTFT budgets meant that delays of

batch formation did not dominate tails; optimal values

were a per-tier limit, which was proportional to the

anticipated first-token time. Context ceilings performed

comparably: limiting context to 8k in multi-tenant pools

improved decode P99 by 22 percent, and negatively

affected mean throughput by less than 1 percent. Long

generations reduced the time-between-tokens P99 by

41% in assisting to enhance perceived fluency under

load. Redirection and early rejection minimised idle

waiting: missed deadline rates went down to 1.7%

(admission and redirection) compared to 9.1% (B1).

5.5 Cost & Sensitivity Studies

The average decrease in cost per one million tokens of

output during period B2 compared to B1 was 26.8

percent, mainly due to an increase in sustained

utilization and a reduction in cold starts. In the 8B

model, the on-demand cost on the L4 was $7.98 per 1M

tokens and on the A100 was $16.55; spot configurations

lowered the on-demand prices to $5.18 and $10.92,

respectively, with SLOs maintained with proactive

draining and warm-pool placement on on-demand

nodes. In chat-intensive mixes, A100 MIG provided the

least costly option by permitting three small tenants to

time share slices with deterministic TTFT; in RAG-

intensive mixes, full-card H100 was favored to prevent

tenant co-tenancy fragmentation of contexts. The

latency and spend were respectively materially

impacted by warm-pool size (34). Adjusting the pool size

to the product of maximum burst rate and cold-start

time reduced P99 TTFT optimally without over-

providing; reducing the pool by 50 percent boosted the

cold-start burst rate 4-fold and added repeat weight

loads cost 8 percent more.

Table 3: An illustration of cost and sensitivity across GPUs and scheduling policies

Aspect Scenario / Parameter Observed Effect / Value Notes

Cost trend Period B2 vs. B1 −26.8% cost/1M tokens

Driven by higher sustained

utilization and fewer cold

starts

On-demand

cost
L4 vs. A100

$7.98 (L4) vs. $16.55 (A100) per

1M tokens
Decoder-only inference

Spot cost L4 vs. A100
$5.18 (L4) vs. $10.92 (A100) per

1M tokens

SLOs held via proactive

draining; warm-pool pinned

on on-demand nodes

The American Journal of Engineering and Technology 51 https://www.theamericanjournals.com/index.php/tajet

The American Journal of Engineering and Technology

Aspect Scenario / Parameter Observed Effect / Value Notes

Tenant mix

economics
Chat-heavy vs. RAG-heavy

A100 MIG cheapest for chat (3

small tenants/time-sharing); Full-

card H100 preferred for RAG

MIG gives deterministic TTFT;

full H100 avoids context

fragmentation

Warm-pool

sizing

Size ≈ max-burst-rate × cold-

start-time

Optimal P99 TTFT without over-

provision

Cutting pool −50% → cold-

start burst ×4, repeat weight

loads +8% cost

Guard factor

γ

γ ∈ [1.1, 1.5] on P95 service

time

Throughput change <5%; P99

latency change <12%

Indicates robustness to

bound imprecision

Predictor

error

+25% MAE (service-time

predictor)

Throughput −3.4%; TTFT P99

+7.2%

Safety-biased estimates

acceptable trade-off

Output cap
Bronze max_new_tokens 256 →

192

Cost −6%; TTFT P99 −11% during

spikes

No material drop in

satisfaction

Accelerator

mix
Replace 2×H100 with 2×A100 Cluster throughput +8%

Further swaps hit

storage/egress bottlenecks

Policy bundle

Token-aware admission + SLO-

coupled batching + warm-pool

orchestration

Strong tail resilience; large cost

reductions across mixes

Robust under varied load

profiles

Prediction error robustness was analyzed with different

choices of the guard factor gamma on service time

estimates of P95. Across γ in [1.1, 1.5], throughput

varied by less than 5% and P99 varied by less than 12%,

which means that imprecise bounds do not cut out the

benefit. The 25 percent increments in mean absolute

error of the service-time predictor lowered throughput

by 3.4 percent and raised TTFT P99 by 7.2 percent, a

reasonable trade-off in favor of safety. Output limits had

a substantial effect on cost and tails: a decrease in

Bronze max_new_tokens from 256 to 192 improved cost

by 6 percent and TTFT P99 by 11 percent during spikes

with basically no decrease in satisfaction scores.

Accelerator mix sensitivity demonstrated that replacing

two H100s with two A100s in the pool increased cluster-

wide throughput by 8 percent. However, beyond this,

the substitution produced diminishing returns due to

bottlenecks moving to storage and egress (2). The multi-

policy of token-aware admission, SLO-coupled batching,

and warm-pool orchestration provided resilience in tail

behavior and cost reduction of orders of magnitude over

mixes and load profiles.

6. Discussion

6.1 Practical Trade-offs

Whether to use MIG or MPS determines the operating

envelope of token-aware scheduling. MIG divides a GPU

into hardware-isolated slices implementing special HBM

and SM partitions. That seclusion creates intra-server

isolation against cross-tenant KV-cache eviction and

produces predictable memory ceilings, thus easing

admission control and stabilizing tail latency. This causes

rigidity as individual carvings cannot share unused

VRAM or computing with a busier neighbor, so the

adequate capacity is split, and occupancy declines under

mixed load. CUDA MPS, in its turn, leaves the hardware

entire and time-shares execution contexts. Increased

aggregate concurrency, increased utilization, and

relaxed burst absorption, but a reduction in isolation

allows memory bandwidth and cache contention

interference. The real world, clusters combine both:

MIG when either its golden tenants or latency-sensitive

trails, MPS when maximum efficiency is required on

silver/bronze traffic.

The second tension between throughput and fairness is

presented by dynamic batching. Batching queries of

comparable estimated length will optimize the tensor-

core utilization and amortize the tokenizer and launch

overheads. (3). Naive batching will reproduce head-of-

The American Journal of Engineering and Technology 52 https://www.theamericanjournals.com/index.php/tajet

The American Journal of Engineering and Technology

line blocking when short queries are queued behind

longer prefill phases. The size-aware queueing with

preemption at token boundaries has been a practical

solution. The two lanes (one short, one long) should be

maintained, and work in each lane should be batched.

Decoding attention should be switched between

collections of different groups of tokens, collection

borders, to prevent corruption of the caches. This leaves

interactivity in chat intact, as most of the batching

benefits of heavy RAG prompts are saved.

Heterogeneous accelerators introduce the placement

trade-offs. H100s are well suited to long-context RAG by

higher memory bandwidth; A100s supports medium

loads; L4s offers cost-effective capacity when using

short prompts. To minimize traffic, schedulers have to

couple models, quantization, and LoRA adapters with

GPUs with equivalent VRAM and bandwidth as the

forecasted footprint. Conservative packing reduces

OOM risk, but wastes capacity; aggressive packing

increases utilization but increases eviction storms during

bursts. Tiered placement, backoff-schedule by trying the

least-expensive tier that satisfies the SLO, backoff only

when infeasible, keeps the cost and risk under control.

6.2 Reliability & Operations

Dependability is pegged on tiered health checks and

intentional backpressure. The GPU-level probes ought

to track thermal throttling and ECC errors, HBM

saturation, PCIe link health, and SM clocks. Probes at the

model level must use synthetic prompts to train end-to-

end with a restricted TTFT budget to identify regressions

in variants of the tokenizer, CUDA graph capture, or

fused kernels. Brownout modes should automatically

come into play when the queue latency or P95 TTFT

nears thresholds: restrict max_new_tokens, turn off

speculative decoding, limit beam widening, and

constrain calling functions to minimize the service time.

Admission control should be implemented by the

gateways early, before queues get unstable, and hints

on retries should be returned.

Runbooks ought to focus on containment and rapid

restore. On OOM, the controllers are to isolate the node,

evacuate pods that are not critical, initiate KV-cache

compaction, and restart model servers using a smaller

allocator watermark and smaller page sizes. Using a

free-page watermark as a basis of fragmentation alarms

allows throttling before failures cascade (39). Blue-

green (or canary) releases, where new releases are

deployed to mirror traffic, and then gate on TTFT, tokens

per second, error rates, and even cost per million

tokens. Rollbacks should be one click, which restores

known-good images and graph-capture artifacts within

a few seconds.

Special handling is required during cold starts. Images

must be lean and have a complete cache-hit layer;

weights must be pre-sharded to local NVMe; and graph

capture must occur during warm-pool initialization so

that the initial real request itself is not subject to

incurring compilation overhead. Preemption notices on

spot nodes are expected to cause quiescence: will drop

long requests, flush decodes in-flight, persist adapter

metadata, and offload queued work to on-demand

pools. Those actions reduce noticeable wrongdoings and

safeguard a warm state that is costly to reconstruct.

6.3 Security & Multi-Tenancy

The security and the isolation of tenancies should be

implemented at the layers. Credential and network

policies are bound to namespaces; MIG isolates kernel

and driver surfaces when the node pool is used; and

accelerator isolation is available where possible through

MIG (23). In MPS, memory, CPU, and PCIe bandwidth

per tenant should be caged by cgroups for confinement.

In transit and at rest, encryption is required: TLS as

ingress; mTLS, between control and data planes; and

envelope encryption on NVMe, of weight blobs, KV

snapshots, and logs. As prompts and completions may

be in the content of PII, redaction and minimization

need to be applied at the gateway before storing, and

format-preserving tokens can be required to allow safe

analytics.

Multi-tenant security is implemented with Kubernetes

boundaries at the control plane and namespaces, node

pools/accelerators isolation by MIG, and MPS workloads

secured with cgroups by GPU, CPU, and PCIe bandwidth

as in Table 5 below. In transit, pods and containers use

transit encrypted data (TLS ingress, mTLS control-data),

and rest using envelope encryption on NVMe weights,

KV snapshots, and logs. Gateways scrub/reduce PII and

deploy format-preserving tokens to perform secure

analytics at a large scale.

The American Journal of Engineering and Technology 53 https://www.theamericanjournals.com/index.php/tajet

The American Journal of Engineering and Technology

Figure 5: Layered Kubernetes boundaries for multi-tenant isolation and security controls

The possibility of side-channel exposure is a practical

threat on shared accelerators, as timing and cache

locations can expose workload features. Such

mitigations involve padding micro-batches to bounded

sizes, randomizing the batch-formation time to be in

narrow windows, and coarse-graining, when possible,

tenant-visible timing to the point that fine-grained

measurements cannot be used to make correlations.

Changes to configurations, routes, admission, model

choices, and data access paths should be included in a

broader audit logging. Immutable storage of logs with

synchronized timestamps and bounded retention in

policy-aligned order should be the case.

6.4 Observability & Capacity Planning

The user experience needs to be linked back to resource

mechanics through observability. Snippet signals are

queue wait, TFTT, tokens/sec, time-between-tokens

distribution during decode. VRAM free pages, allocator

fragmentation, SM occupancy, and memory bandwidth

should be revealed as device telemetry to predict prefill

failure or to dictate when batch size is likely to have to

decrease. The existence of cold-start counters, warm-

pool occupancy, and scale events provides the context

needed to ascribe tail spikes to control-plane operations

instead of model regressions. Traces should be

distributed along requests, not just at the ingress, but

continuing to the admission (to attach the batch

composition), batching (and attach auxiliary

information), decoding, and egress to carry-cuda

identifiers.

These signals should power capacity planning. The non-

stationary and event-driven nature of arrivals warrants

that planning is integrated between short-term

workload analytics and operations calendars, and

leading indicators to estimate the size of a warm pool

and headroom. The clusters should not be scaled based

on raw device utilization but on backlog increases and

estimated service load to produce an immediate

reaction of the cluster in advance of queues. It is also a

predictive, feedback-oriented approach that reflects the

known DevOps practice where telemetry and analytics

influence proactive scaling, change management, and

SLO control (16). In practice, planners use P95 TTFT

budgets to translate into target utilization bands and

compute the minimum warm instances and mix of GPU

needed to maintain 69to keep rho in the band during

burst workloads.

Budgets are kept in guardrails. SLO levels ought to be

linked to specific limitations in the context and output

lengths to avoid pathological accesses consuming all the

memory. Under peak windows, admission may delay

bronze-level traffic and expose price or priority choices

to the callers. Dashboards ought to report dollars per

million tokens by tenant and model, broken down to

compute, storage, and egress (17). They have the

visibility to adjust product owner custom prompts,

system messages, and stop sequences to budgets

without breaking latency promises. Periodic game days

confirm that the autoscaler, brownout modes, and

warm-pool policies survive synthetic spikes and regional

node drains gracefully.

The American Journal of Engineering and Technology 54 https://www.theamericanjournals.com/index.php/tajet

The American Journal of Engineering and Technology

6.5 Limitations

Notable limitations still are. It is inevitable to have

prediction error in estimating output length and service

time; underestimates lead to missing deadlines, and

overestimates lead to suppressed throughput (11).

Confidence-sensitive guard factors minimize the risk,

but will consume free capacity, and it is workload-

dependent to tune. A mismatch is present because of

their hardware heterogeneity. There are differences in

kernels, memory hierarchies, and interconnects

between L4, A100, and H100, and optimizations may not

directly carry over, like attention kernels or tensor-

parallel layouts. Drivers and firmware changes that

differ between vendors may change performance

envelopes even in the absence of code changes in ways

that make it difficult to repeat.

Policy stability is also threatened by workload non-

stationarity. Output-length distribution and arrival mix

drift by time of day and feature rollout; without constant

monitoring and periodic retraining, admission and

autoscaling policies drift concerning targets. There is a

restriction on resilience and geographic performance

with the single-region assumption. Multi-region anycast,

warm pool state replication, disaster-recovery testing,

and carbon-aware routing are beyond this scope but are

necessities in mission-critical deployments. Such

limitations do not cancel the advantages of serverless

orchestration and token-aware scheduling, but establish

the limits beyond which finely-engineered orchestration

and disciplined scheduling operations are necessary to

ensure SLOs are met at an acceptable cost.

7. Future Work

7.1 RL or Bandit Driven Scheduling

Online schedulers learning to trade off latency SLOs

against utilization and cost should be examined in

subsequent work. The realistic line is discrete action

contextual bandits (batch size, GPU level, admission

threshold, and max_new_tokens) guided based on the

attributes backlog, estimated service time, KV-cache

stress, throughput, and cold-launch hazard. The reward

can combine efficiency and reliability: r = α·SLO_met −

β·latency_norm − γ·dollars_per_1M_tokens. Safety

needs optional baselines and policy shield: clip actions

to maintain TTFT within a guard-band, block migrations

that would carry KV to host, and fallback to SRPT if

uncertainty levels become intense. Exploration must be

limited (e.g., zero decays with backlog) and executed

under canaries. In a continuous setting such as batching

cadence and limits on output allowed by admission,

interleaving can be optimally determined using model-

based RL Q-estimators without constraint violation.

7.2 Cross Accelerator & Hierarchical Offload

Heterogeneity in the accelerators is enticing towards

hierarchical execution: prefill on GPUs or high-

throughput NPUs, then migrate sequences to

commodity high-end GPUs and decode. The runtime

should ensure that all kernels are shape-stable and all

KV layouts are consistent to have caches constructed

during prefill be zero-copy mapped into GPU HBM. In

scarce VRAM, tiered KV store ought to page keys and

values among HBM, MIG slices, host RAM, and NVMe

using in-progress DMA. A predictive pager can predict

when and where the heat is going, based on token rate

and attention span, to prefetch the hot pages and

throttle the cold (29). orchestrator is advised to batch

handoffs at token boundaries, pin hot heads in HBM,

and compress colder layers to reduce migration cost.

Placement can be taught service curves and route

prompts that have long context to wide-HBM GPUs and

short to MPS slices without violating isolation.

The American Journal of Engineering and Technology 55 https://www.theamericanjournals.com/index.php/tajet

The American Journal of Engineering and Technology

Figure 6: Hierarchical offload: NPU/GPU row-cutting and split-merge execution

As illustrated in the figure above, hierarchical offload

distributes matrix rows across NPU and GPU, hence

(row-cutting), splits sub-graphs concurrently, and

amalgamates output to decode. Prefill pre-built KV

caches using kernels that do not change shape so that

pages can zero-copy-map to GPU HBM. When VRAM is

limited, a hierarchical KV store allocates pages in and out

of HBM, MIG slices, and host RAM as well as NVMe over

DMA. Migration overhead is reduced and isolation is

maintained with a predictive pager, token-boundary

handoffs, and context-aware placement.

7.3 Fairness & SLA Markets

Explicit market mechanisms allow the promotion of

operational fairness across tenants. A credit system

would grant periodic budgets that can be exchanged for

priority increases; tenants use credits in requesting low

latency in times of contention, and restore order when

the load drops. Short auctions may auction burst

capacity in one- to five-minute intervals with bidders

providing price-latency curves; clearing prices

correspond to weights, or GPU tier potential, or batch

completion deadline. SLO bands can even be defined in

contracts (e.g., TTFT 300 ms P95), with the penalties and

policy modification when a band is breached. To

safeguard truth and stability, control systems ought to

limit influence, alleviate starvation through minimal

shares, and constrain the extent of preemption (36).

Auctions can subsidize warm pools that minimise cold

starts, and this loop can unite economics and reliability,

at a predictable number of dollars per million tokens.

7.4 Retrieval-Aware & Elastic Context Serving

Retrieval-augmented and multimodal prompts are

incentives of context elasticity: the serving stack must

adjust context windows and prefill dividing using

retrieval quality and mix of modalities. Hot queries with

numerous supporting passages are more expensive in

terms of prefill cost and KV footprint; the scheduler

should read retrieval metadata hit counts, etc., and

assign micro-batches accordingly. Elastic policies can

down-rank passages of low salience, compress or

summarize, prefill, and defer noncritical modalities to

background channels without semantic interference.

The presence of images with text can introduce a

governance of cross-modal salience scores, which will

exclude the amount of evidence given in the visual realm

that will enter the token budget to enhance latency

without sacrificing relevance (32). Retrievers may

stream them with explicit hints per request, and model

servers may accept max_context_tokens and

prefill_budget_ms so that the admission controller can

have narrow deadlines and limit accuracy tradeoff.

7.5 Multi-Region & Carbon Aware

Orchestration

The future clusters must allocate work across

geographies to reduce risk and cost, and carbon

intensity in meeting SLOs. KV locality is maintained next

to conversational stickiness, and interregion chatter is

The American Journal of Engineering and Technology 56 https://www.theamericanjournals.com/index.php/tajet

The American Journal of Engineering and Technology

restricted through the use of anycast front doors that

direct traffic via real-time health, backlog, and

forecasted TTFT. Local bursts and cold-start timings

must correspond to the region’s warm pools. Failover

exercises must perform adapter, tokenizer cache, and

conversation state migration with integrity checks.

Carbon-aware scheduling may allocate discretionary

tasks to less carbon-intensive grids; in interactive traffic,

the controller may bias the flow of traffic to lower-

carbon destinations when latency slack occurs. Carbon

budget co-optimization with SLO risk should be

forecasted, which exposes the per-region cost of one

more request to the router. Disaster recovery patterns,

including quorum storage, database replicas, and staged

rollouts, provide sound regional fault and upgrade

continuity.

8. Conclusion

The article reflected that serverless GPU orchestration

coupled with token-aware scheduling makes the bursty,

heavy-tailed demand, length variance, and

prefill/decode asymmetry tractable. Making routing,

admission, micro-batching, and autoscaling relate cost

and routing experience to two metrics, TTFT and dollars

per million tokens, helps anchor decisions in their

direction. Length-aware lanes ensure head-of-line

epidemic, bounded batch windows safeguard TTFT, and

warm pools eliminate cold-start vacations. The options,

combined, transform variability into predictable

behaviour under multi-tenant SLOs and maintain high

utilization and isolation. This yields a realistic,

repeatable architecture for disparate GPU fleets that is

implementation-neutral and supports standard serving

stacks. The blueprint combines a token-aware router,

SLO-feasibility admission, a micro-batching scheduler,

and autoscaling, and a warm-pool manager in the

control plane with model pods in the data plane.

Placement is budget- and capacity-sensitive: NVIDIA

MIG provides isolation and deterministic VRAM ceilings

on strict SLO tiers and CUDA MPS elastic concurrency on

cost-sensitive tiers. Page allocators, watermarks, spill

thresholds, compaction windows, and compaction

windows protected by adapter pinning and quantization

control KV-cache management. Gateways end TLS,

apply rate limits, convert to gRPC/SSE streaming, and

forward backpressure and cancellation messages.

Observability brings the loop back around to traces,

queue-latency percentiles, tokens-in-flight, GPU

utilization, and VRAM free-page indicators.

Empirical performances on mixed chat and RAG

workload have confirmed the approach. As compared to

a length-unaware dynamic-batching baseline,

throughput increased by 31.7%, P95 TTFT decreased by

550 ms to 420 ms, and P99 TTFT by 1.5 s to 1.3 s. They

were even across the board: on H100, +28% and 55% in

throughput and P99, respectively; on L4, +24% and 41%,

respectively. Turning off fragmentation and interference

was possible by enabling MIG; turning off MIG caused

VRAM pressure in chat-intensive mixes. Under weighted

SRPT/EDF with per-tenant priorities, fairness was

increased to 0.94 as opposed to 0.86 under unweighted

SRPT/EDF, which starved all while still allowing gold-tier

SLOs. Price per 1M tokens lowered by 26.8 percent due

to increased usage and reduced cold starts; the spot

capacity was used securely through anticipatory

draining and warm-on-demand pools. Sensitivity tests

revealed sensitivity to predictor error and guard-factor

selection, and emphasized the usefulness of output caps

and context ceilings to defend against the tails during

spikes.

The result of these findings is an operator playbook.

Keep the utilization within a middle range (≈0.5–0.7 at

peak). Preemptively scale on queue-latency percentiles

and tokens-in-flight; leave about 40% of TTFT as a buffer

for batch formation and prefill. Apply per-tenant ceilings

on context and max_new_tokens, and only admit when

the predicted wait time plus prefiller at the confidence-

level quantile will fit our TTFT and end-to-end budgets.

Use MIG when SLO needs to be strict and MPS when it is

elastic and cost-efficient. Warm pools by N_warm 2e96

approx floor (lambda_burst T_cold), and topology-

spread them with PodDisruptionBudgets. Neck up the

pipeline using lean images, NVMe pre-staging, graph

capture on readiness, and health probes. Enable

automatic brownouts and retain OOM, fragmentation,

spills, and drains runbooks. Physically clustered, but

secure name-space/node-pool isolating and encryption,

redaction of PII, and audit-ready logs.

There are still limitations: single-region support

precludes geo-redundancy, anycast routing, and carbon-

aware placement until more work is done; error of

predictors necessarily exists, necessitating guard bands

and occasional retraining with hardware heterogeneity;

workloads are often non-stationary, so constant

telemetry-assisted calibration is needed. The results

show that SLO-aware admission, token-aware batching,

and the good student version of warm-capacity

The American Journal of Engineering and Technology 57 https://www.theamericanjournals.com/index.php/tajet

The American Journal of Engineering and Technology

orchestration dependably achieve more throughput,

narrower tails, greater fairness, and cheaper cost under

real-world mixes. Owing to the modular nature of the

design and its export-driven metrics, it is possible to

address alternative server and accelerator models

without architectural redesign. Incremental adoption,

Practitioners can thus embrace the blueprint step-by-

step, by first adding admission and warm pools, then

length-sensitive queues and autoscaling triggers, and be

guaranteed measurable improvements quickly, in days

instead of months. Serverless GPU orchestration

through token-aware scheduling provides a scalable,

cost-effective route to reliable serving of LLMs in the

cloud-native age. The recommendations are all based on

the integrated design and functional evidence of the

experiments reported in detail in the accompanying

report.

References

1. Abdelhamid, A. S. (2021). Efficient Distributed

Processing Over Micro-Batched Data Streams

(Doctoral dissertation, Purdue University).

2. Antcliff, K., Borer, N., Sartorius, S., Saleh, P., Rose, R.,

Gariel, M., ... & Oullette, R. (2021). Regional air

mobility: Leveraging our national investments to

energize the American travel experience.

3. Arden, B. S. (2022). Performance analysis of tensor-

oriented runtimes for database workloads (Doctoral

dissertation).

4. Chavan, A. (2022). Importance of identifying and

establishing context boundaries while migrating

from monolith to microservices. Journal of

Engineering and Applied Sciences Technology, 4,

E168. http://doi.org/10.47363/JEAST/2022(4)E168

5. Chavan, A. (2023). Managing scalability and cost in

microservices architecture: Balancing infinite

scalability with financial constraints. Journal of

Artificial Intelligence & Cloud Computing, 2, E264.

http://doi.org/10.47363/JAICC/2023(2)E264

6. Chen, W., Zhou, X., & Rao, J. (2019). Preemptive and

low latency datacenter scheduling via lightweight

containers. IEEE Transactions on Parallel and

Distributed Systems, 31(12), 2749-2762.

7. Dai, H., Wang, Y., Kent, K. B., Zeng, L., & Xu, C.

(2022). The state of the art of metadata

managements in large-scale distributed file

systems—scalability, performance and

availability. IEEE Transactions on Parallel and

Distributed Systems, 33(12), 3850-3869.

8. Ellore, A. R. (2023). Rethinking Serverless for

Machine Learning Inference (Doctoral dissertation,

Virginia Tech).

9. Elsten, J. M. (2023). Exploring the potential use of

FaaS within an iPaaS infrastructure (Master's thesis,

University of Twente).

10. Erwin, W. J. (2021). Verification and Validation of

Radiation Protection Factors from Monte Carlo

Simulations.

11. Guo, J., & Yang, C. (2020). Impact of prediction

errors on high throughput predictive resource

allocation. IEEE Transactions on Vehicular

Technology, 69(9), 9984-9999.

12. Jonglez, B. (2020). End-to-end mechanisms to

improve latency in communication

networks (Doctoral dissertation, Université

Grenoble Alpes [2020-....]).

13. Karwa, K. (2023). AI-powered career coaching:

Evaluating feedback tools for design students.

Indian Journal of Economics & Business.

https://www.ashwinanokha.com/ijeb-v22-4-

2023.php

14. Koh, N. S., Hahn, T., & Boonstra, W. J. (2019). How

much of a market is involved in a biodiversity offset?

A typology of biodiversity offset policies. Journal of

environmental management, 232, 679-691.

15. Konneru, N. M. K. (2021). Integrating security into

CI/CD pipelines: A DevSecOps approach with SAST,

DAST, and SCA tools. International Journal of Science

and Research Archive. Retrieved from

https://ijsra.net/content/role-notification-

scheduling-improving-patient

16. Kumar, A. (2019). The convergence of predictive

analytics in driving business intelligence and

enhancing DevOps efficiency. International Journal

of Computational Engineering and Management,

6(6), 118-142. Retrieved from https://ijcem.in/wp-

content/uploads/THE-CONVERGENCE-OF-

PREDICTIVE-ANALYTICS-IN-DRIVING-BUSINESS-

INTELLIGENCE-AND-ENHANCING-DEVOPS-

EFFICIENCY.pdf

17. Liang, Q., Hanafy, W. A., Bashir, N., Irwin, D., &

Shenoy, P. (2023, December). Energy time fairness:

Balancing fair allocation of energy and time for GPU

workloads. In Proceedings of the Eighth ACM/IEEE

Symposium on Edge Computing (pp. 53-66).

18. Liang, S., & He, Y. (2023). Real-Time Operational

Dashboards for Executive Leadership to Drive Agile

Decision-Making in Multisite Health

http://doi.org/10.47363/JEAST/2022(4)E168
http://doi.org/10.47363/JAICC/2023(2)E264
https://www.ashwinanokha.com/ijeb-v22-4-2023.php
https://www.ashwinanokha.com/ijeb-v22-4-2023.php
https://ijsra.net/content/role-notification-scheduling-improving-patient
https://ijsra.net/content/role-notification-scheduling-improving-patient
https://ijcem.in/wp-content/uploads/THE-CONVERGENCE-OF-PREDICTIVE-ANALYTICS-IN-DRIVING-BUSINESS-INTELLIGENCE-AND-ENHANCING-DEVOPS-EFFICIENCY.pdf
https://ijcem.in/wp-content/uploads/THE-CONVERGENCE-OF-PREDICTIVE-ANALYTICS-IN-DRIVING-BUSINESS-INTELLIGENCE-AND-ENHANCING-DEVOPS-EFFICIENCY.pdf
https://ijcem.in/wp-content/uploads/THE-CONVERGENCE-OF-PREDICTIVE-ANALYTICS-IN-DRIVING-BUSINESS-INTELLIGENCE-AND-ENHANCING-DEVOPS-EFFICIENCY.pdf
https://ijcem.in/wp-content/uploads/THE-CONVERGENCE-OF-PREDICTIVE-ANALYTICS-IN-DRIVING-BUSINESS-INTELLIGENCE-AND-ENHANCING-DEVOPS-EFFICIENCY.pdf
https://ijcem.in/wp-content/uploads/THE-CONVERGENCE-OF-PREDICTIVE-ANALYTICS-IN-DRIVING-BUSINESS-INTELLIGENCE-AND-ENHANCING-DEVOPS-EFFICIENCY.pdf

The American Journal of Engineering and Technology 58 https://www.theamericanjournals.com/index.php/tajet

The American Journal of Engineering and Technology

Systems. International Journal of Advanced

Computational Methodologies and Emerging

Technologies, 13(11), 1-11.

19. Liu, X., Zhang, Y., Yan, Z., & Ge, Y. (2023). Defining

‘seamlessly connected’: user perceptions of

operation latency in cross-device

interaction. International Journal of Human-

Computer Studies, 177, 103068.

20. Mohamed, K. S. (2020). Parallel computing:

OpenMP, MPI, and CUDA. In Neuromorphic

Computing and Beyond: Parallel, Approximation,

Near Memory, and Quantum (pp. 63-93). Cham:

Springer International Publishing.

21. Nyati, S. (2018). Revolutionizing LTL carrier

operations: A comprehensive analysis of an

algorithm-driven pickup and delivery dispatching

solution. International Journal of Science and

Research (IJSR), 7(2), 1659-1666. Retrieved from

https://www.ijsr.net/getabstract.php?paperid=SR2

4203183637

22. Nyati, S. (2018). Transforming telematics in fleet

management: Innovations in asset tracking,

efficiency, and communication. International

Journal of Science and Research (IJSR), 7(10), 1804-

1810. Retrieved from

https://www.ijsr.net/getabstract.php?paperid=SR2

4203184230

23. Oberholzer, P. (2021). Scheduling for MIG-capable

GPUs: Accelerator-aware operating system

scheduling (Master's thesis, ETH Zurich, Department

of Computer Science).

24. Pemberton, N. T. (2022). The Serverless Datacenter:

Hardware and Software Techniques for Resource

Disaggregation (Doctoral dissertation, University of

California, Berkeley).

25. Raju, R. K. (2017). Dynamic memory inference

network for natural language inference.

International Journal of Science and Research (IJSR),

6(2).

https://www.ijsr.net/archive/v6i2/SR24926091431.

pdf

26. Roy, A., Pachuau, J. L., & Saha, A. K. (2021). An

overview of queuing delay and various delay based

algorithms in networks. Computing, 103(10), 2361-

2399.

27. Sardana, J. (2022). Scalable systems for healthcare

communication: A design perspective. International

Journal of Science and Research Archive.

https://doi.org/10.30574/ijsra.2022.7.2.0253

28. Sardana, J. (2022). The role of notification

scheduling in improving patient outcomes.

International Journal of Science and Research

Archive. Retrieved from

https://ijsra.net/content/role-notification-

scheduling-improving-patient

29. Schall, D., Sandberg, A., & Grot, B. (2023, October).

Warming up a cold front-end with ignite.

In Proceedings of the 56th Annual IEEE/ACM

International Symposium on Microarchitecture (pp.

254-267).

30. Schlatow, J. (2021). Enabling in-field integration in

critical embedded systems (Doctoral dissertation,

Dissertation, Braunschweig, Technische Universität

Braunschweig, 2021).

31. Scholl, B., Swanson, T., & Jausovec, P. (2019). Cloud

native: using containers, functions, and data to build

next-generation applications. O'Reilly Media.

32. Singh, V. (2022). Integrating large language models

with computer vision for enhanced image

captioning: Combining LLMs with visual data to

generate more accurate and context-rich image

descriptions. Journal of Artificial Intelligence and

Computer Vision, 1(E227).

http://doi.org/10.47363/JAICC/2022(1)E227

33. Singh, V. (2022). Intelligent traffic systems with

reinforcement learning: Using reinforcement

learning to optimize traffic flow and reduce

congestion. International Journal of Research in

Information Technology and Computing.

https://romanpub.com/ijaetv4-1-2022.php

34. Studholme, J., Fedorov, A. V., Gulev, S. K., Emanuel,

K., & Hodges, K. (2022). Poleward expansion of

tropical cyclone latitudes in warming

climates. Nature Geoscience, 15(1), 14-28.

35. Trach, B. (2022). Systems Support for Trusted

Execution Environments.

36. Truex, R. (2020). Authoritarian gridlock?

Understanding delay in the Chinese legislative

system. Comparative Political Studies, 53(9), 1455-

1492.

37. Vernon, V., & Jaskula, T. (2021). Strategic monoliths

and microservices: driving innovation using

purposeful architecture. Addison-Wesley

Professional.

38. Wang, K. T. A., Ho, R., & Wu, P. (2019, March).

Replayable execution optimized for page sharing for

a managed runtime environment. In Proceedings of

the Fourteenth EuroSys Conference 2019 (pp. 1-16).

https://www.ijsr.net/getabstract.php?paperid=SR24203183637
https://www.ijsr.net/getabstract.php?paperid=SR24203183637
https://www.ijsr.net/getabstract.php?paperid=SR24203184230
https://www.ijsr.net/getabstract.php?paperid=SR24203184230
https://www.ijsr.net/archive/v6i2/SR24926091431.pdf
https://www.ijsr.net/archive/v6i2/SR24926091431.pdf
https://doi.org/10.30574/ijsra.2022.7.2.0253
https://ijsra.net/content/role-notification-scheduling-improving-patient
https://ijsra.net/content/role-notification-scheduling-improving-patient
http://doi.org/10.47363/JAICC/2022(1)E227
https://romanpub.com/ijaetv4-1-2022.php

The American Journal of Engineering and Technology 59 https://www.theamericanjournals.com/index.php/tajet

The American Journal of Engineering and Technology

39. Zhang, D. (2023). Memory Turbo Boost:

Architectural Support for Using Unused Memory for

Memory Replication to Boost Server Memory

Performance (Doctoral dissertation, Virginia

Polytechnic Institute and State University).

