
The American Journal of Engineering and Technology

88 https://www.theamericanjournals.com/index.php/tajet

TYPE Original Research

PAGE NO. 88-95

DOI 10.37547/tajet/Volume07Issue07-10

OPEN ACCESS

SUBMITTED 09 June 2025

ACCEPTED 17 June 2025

PUBLISHED 22 July 2025

VOLUME Vol.07 Issue 07 2025

CITATION

Nikita Romm. (2025). Efficiency of Terraform and Kubernetes
Integration in DevOps Practices. The American Journal of Engineering
and Technology, 7(07), 88–95.
https://doi.org/10.37547/tajet/Volume07Issue07-10

COPYRIGHT

© 2025 Original content from this work may be used under the terms

of the creative commons attributes 4.0 License.

Efficiency of Terraform

and Kubernetes

Integration in DevOps

Practices

Nikita Romm
Senior Staff DevOps Engineer, Palo Alto Networks Tel Aviv, Israel

Abstract: This article examines the effectiveness of

combining Terraform and Kubernetes within DevOps

workflows. Against the backdrop of microservices

architectures and cloud-native environments, the

synergy between Infrastructure as Code (IaC) and

container orchestration has become increasingly

important. Our contribution lies in systematically

exploring how Terraform and Kubernetes can be used

together during provisioning, CI/CD pipelines, and

autoscaling. We compare their feature sets, review real-

world cluster-deployment case studies, and discuss

state-management strategies and self-healing

mechanisms. Key recommendations cover modular

infrastructure design, clear separation of

responsibilities, and adoption of GitOps principles.

Drawing on official documentation, English-language

vendor publications, and industry reports, our analysis

identifies the integration’s benefits for faster application

delivery, higher system stability, and repeatable

processes. We employ comparative documentation

review, content analysis of DevOps community

resources, and case-study methodology. Practical

guidance for optimizing Terraform–Kubernetes

collaboration concludes the paper. These insights will be

valuable to DevOps engineers, architects, and

deployment-automation specialists, reflecting current

industry trends and laying groundwork for future

research.

Keywords: Terraform, Kubernetes, DevOps,

Infrastructure as Code, container orchestration, CI/CD

automation, provisioning, autoscaling, GitOps, modular

infrastructure

https://doi.org/10.37547/tajet/Volume07Issue07-10
https://doi.org/10.37547/tajet/Volume07Issue07-10

The American Journal of Engineering and Technology

89 https://www.theamericanjournals.com/index.php/tajet

Introduction

Modern DevOps practices focus on automating and

accelerating application development, deployment, and

scaling. In this context, Infrastructure as Code (IaC) and

container orchestration have emerged as cornerstone

technologies. Terraform and Kubernetes are two widely

adopted open-source tools in the DevOps toolkit.

Terraform, developed by HashiCorp, enables teams to

declare and provision infrastructure resources—virtual

machines, networks, databases, and more—using a

declarative configuration language [3]. Kubernetes (K8s)

provides a robust orchestration platform for

containerized workloads, automating deployment,

scaling, and management of containers [1]. Both

projects launched in the mid-2010s and by 2025 had

become de-facto standards—Terraform for multi-cloud

infrastructure management and Kubernetes for

container platforms. Yet they address distinct layers of

the stack, raising the question: how effective is it to

combine Terraform with Kubernetes in DevOps

workflows?

The purpose of this article is to examine the benefits and

patterns of integrating Terraform and Kubernetes within

DevOps, particularly for infrastructure automation,

CI/CD pipeline implementation, and application

scalability. Specifically, we will explore:

● the respective roles and typical use

cases of Terraform and Kubernetes;

● real-world integration scenarios—from

provisioning Kubernetes clusters via Terraform to

deploying applications on those clusters;

● how this combined approach impacts

DevOps metrics (deployment velocity, system stability,

reproducibility, etc.);

● best practices and potential pitfalls.

This topic is highly relevant because the

Terraform+Kubernetes pairing unifies infrastructure and

application management—an essential capability when

working with microservices architectures and cloud-

native, horizontally scalable systems.

Materials and Methods

This study draws on a range of sources: official

HashiCorp and CNCF documentation, technical

whitepapers, industry analyses, and hands-on case

studies from practicing engineers. Key references

include the HashiCorp guide to the Terraform

Kubernetes provider [6], comparative blog posts from

Spacelift, DuploCloud, and ControlPlane examining

Terraform vs. Kubernetes approaches [2], as well as

community-generated content (Medium articles, forum

discussions) [1, 3–5].

Methodologically, we conducted a comparative feature

analysis to map the strengths and constraints of both

tools. In parallel, we performed case-study analyses of

concrete integration patterns—such as spinning up an

EKS cluster with Terraform and then deploying

microservices on it via Kubernetes—to assess their

effects on CI/CD speed and reliability. The findings are

synthesized into high-level insights and actionable

recommendations, all substantiated by citations to

authoritative sources.

Results

Before examining their joint usage, it is essential to

clarify each tool’s individual role. Terraform excels at the

declarative provisioning and lifecycle management of

infrastructure “as code” across a variety of

environments—from public clouds (AWS, Azure, GCP) to

on-premises resources [2]. DevOps engineers use

Terraform to automate the creation of virtual machines,

network configurations, database clusters, and other

foundational components that applications depend on.

With support for hundreds of providers, Terraform can

stand up complex infrastructures in minutes, eliminating

manual setup. Its key strengths include multi-cloud

capability, a persistent state file, built-in plan/apply

workflows (e.g. terraform plan previews changes), and

automatic resource dependency management [6]. In

short, terraform answers: “What infrastructure must we

create, and how can we reproducibly build it?”

By contrast, Kubernetes tackles the question: “How do

we deploy and keep our containerized application

running reliably?” As a container orchestration layer,

Kubernetes ingests declarative YAML manifests

describing the desired state of an application—number

of replicas, container images, service endpoints, and so

on—and relentlessly works to maintain that state. It

schedules containers across cluster nodes, monitors

health (restarting failed pods), scales workloads in

response to demand, and provides built-in services like

load balancing, service discovery, configuration maps,

and secrets management [1]. Kubernetes shines in

microservices architectures, where dozens or hundreds

of containers must interoperate and scale seamlessly. In

modern CI/CD pipelines, Kubernetes enables rolling

The American Journal of Engineering and Technology

90 https://www.theamericanjournals.com/index.php/tajet

updates so new application versions can be deployed

without downtime.

Put simply, Terraform and Kubernetes operate at

different layers: Terraform manages external

infrastructure (for example, provisioning a Kubernetes

cluster in the cloud), while Kubernetes manages the

workloads running within that infrastructure—the

containers themselves. Though often compared as

“Terraform vs. Kubernetes,” they are in fact

complementary: Terraform is best suited for low-level

resource provisioning (VMs, networks, load balancers),

and Kubernetes for application lifecycle management

(container deployment, scaling, and health) [2].

Below is a concise side-by-side comparison of Terraform

and Kubernetes along their core dimensions.

Table 1. Comparing Terraform and Kubernetes by Key Characteristics [1]

Criterion Terraform (IaC) Kubernetes (Orchestration)

Primary Use

Case

Managing infrastructure—VMs, networks,

databases, load-balancers, etc.

(Infrastructure as Code)

Managing containerized

applications—their deployment,

scaling and rolling updates

Configuration Declarative HCL templates; maintains a

persistent state file of infrastructure

changes

Declarative YAML manifests;

continuously reconciles desired vs.

actual cluster state

Core Focus Creating, modifying or destroying

resources according to plan (multi-cloud

provisioning)

Orchestrating containers within the

cluster (self-healing, autoscaling)

Scaling Scales infrastructure (e.g. adds nodes/VMs)

by updating configuration

Automatically scales application

replicas based on runtime metrics

Self-Healing No built-in recovery—relies on redundancy

(Terraform won’t restart a failed VM)

Yes—restarts crashed containers,

recreates failed pods

Multi-Platform Yes—supports any cloud or on-premises

provider via plugins

Yes—can run on any cloud or on-

premises environment

State

Management

Requires a state file to track infrastructure

across runs

Stores cluster state in etcd and

continually reconciles desired vs.

current state

Scope Entire infrastructure stack—from network

policies to Kubernetes clusters

Containers and their associated

resources within an existing cluster

From this comparison, it’s clear that Terraform and

Kubernetes address different layers of the stack—even

while overlapping at the cluster boundary. Terraform

handles broad, multi-cloud infrastructure concerns,

whereas Kubernetes dives deep into application-level

orchestration. Used together, they cover the full

lifecycle: Terraform provisions the cluster—and

Kubernetes runs your workloads on it.

In modern DevOps, it’s increasingly common to pair

Terraform and Kubernetes so that each tool

complements the other. Below are the primary

integration scenarios and their benefits.

One of the most straightforward patterns is to use

Terraform to provision the Kubernetes cluster itself.

The American Journal of Engineering and Technology

91 https://www.theamericanjournals.com/index.php/tajet

Virtually every major cloud provider offers a managed

Kubernetes service—EKS on AWS, AKS on Azure, GKE on

GCP—and Terraform provides a dedicated provider for

each. In practice, a few Terraform blocks can describe

how many control-plane and worker nodes you need,

their instance types and networking settings—and in

minutes stand up a full cluster. Once the cluster exists,

the same Terraform code can invoke its Kubernetes

provider to configure in-cluster resources (namespaces,

RBAC roles, initial Deployments) via the Kubernetes API.

According to HashiCorp’s documentation, the Terraform

Kubernetes provider serves as a bridge that allows

Terraform to manage Kubernetes objects alongside

other infrastructure [5]. This unified approach lets you

describe your entire stack—from VMs to Pods—in a

single declarative language (HCL). For example, a

Terraform run can sequentially: create EC2 instances,

provision an EKS cluster on them, and then deploy your

application into that cluster exactly as if you had run

kubectl apply, but all driven by Terraform [6]. DevOps

teams love this workflow because they never have to

switch contexts or maintain separate manifests—

everything lives in one version-controlled codebase.

That consistency pays off in repeatable, drift-free

environments. Running the identical Terraform

configuration against dev, staging and prod yields the

same infrastructure and cluster setup every time [3],

drastically reducing “works on my machine” issues and

human error. In a CI/CD pipeline, you can automatically

run terraform plan and terraform apply whenever infra

code changes, moving closer to a GitOps-style workflow.

Researchers have found that managing Kubernetes

resources with Terraform not only minimizes ad-hoc

YAML edits, but also brings Terraforms stateful

dependency graph into the Kubernetes world—

ensuring, for instance, that a Namespace is created

before its associated Deployment is ever applied [5]. As

a result, configuration mistakes drop significantly, since

Terraform inherently understands and orders resource

dependencies rather than relying on manual

orchestration [6].

However, there are also limitations. Experts advise using

Terraform judiciously for managing dynamic in-cluster

resources. When applications change frequently (for

example, daily deployments), running Terraform for

every update becomes cumbersome; in such cases, it’s

more practical to leverage Kubernetes’s native tooling—

Helm charts or GitOps tools like Argo CD. Guides

typically recommend reserving Terraform for relatively

static or infrastructure-level components (cluster

provisioning, network policies, ingress controllers),

while treating business-logic workloads with CI/CD

pipelines and Helm releases [3]. In other words,

Terraform excels at creating the cluster itself and its

foundational configuration, but orchestrating dozens of

microservices through one monolithic .tf file is unwieldy.

The best practice is a hybrid approach: use Terraform for

the “platform layer” and underlying infrastructure, and

let Kubernetes-centric pipelines handle application

deployments. This pattern preserves the benefits of a

single workflow for infrastructure management without

sacrificing Kubernetes’s agility. Overall, embedding

Kubernetes resource management into an existing

Terraform workflow feels natural—and becomes the

logical next step when your entire infrastructure is

already declared as code [5].

The synergy of Terraform and Kubernetes is

most evident in CI/CD pipelines, where they automate

the full Continuous Integration/Continuous Deployment

cycle. A typical microservices deployment pipeline might

look like: build container image → run tests → deploy to

staging → terraform apply to prepare production

infrastructure → kubectl apply to roll out the application

in production. In this sequence, Terraform and

Kubernetes act in concert. Many teams streamline

further by unifying both tools within a single pipeline. As

one medium article observes, “By integrating Terraform

and Kubernetes into a CI/CD pipeline, teams can

automate provisioning infrastructure, configuring K8s

clusters, and deploying containerized apps—delivering

value faster, more consistently and with fewer errors”

[4]. Indeed, with the right configuration, deploying a

new service can be as simple as triggering one CI/CD job

that spins up everything from the bare VM to the

running application.

For example, when you push to the main branch of your

infrastructure-as-code repository, GitLab CI can

automatically invoke a terraform apply against the

production workspace—provisioning or updating

everything from the Kubernetes cluster itself to all

supporting resources. Immediately afterwards, that

same pipeline can call Argo CD or Helm to deploy your

application into the freshly configured cluster. The result

is a fully launched, scalable deployment with virtually no

manual intervention. For DevOps teams, this drastically

shortens time-to-market: infrastructure provisioning

and application rollout happen automatically and in

parallel, yielding more frequent, predictable releases

The American Journal of Engineering and Technology

92 https://www.theamericanjournals.com/index.php/tajet

and minimizing configuration errors. Because both

infrastructure and application manifests live in Git, any

version of the system (infrastructure + code) is fully

reproducible, simplifying debugging and rollbacks.

HashiCorp highlights Terraform’s “full lifecycle

management”—not only creating but also updating or

destroying resources as needed—which integrates

seamlessly into CI/CD workflows [6]. Kubernetes, in

turn, guarantees zero-downtime deployments via rolling

updates and readiness probes. Together, they fulfill

DevOps objectives of fast, reliable updates with minimal

effort.

Of course, building such a pipeline demands expertise.

The learning curve for Kubernetes and Terraform is

steep [1]: engineers must master cloud infrastructure

concepts, container orchestration, and both HCL and

YAML configurations. Yet pioneers—particularly in

fintech—report cutting release cycles from weeks to

hours by adopting IaC and Kubernetes orchestration.

Reliability also climbs, as identical infrastructure

definitions eliminate human drift and automated tests

can even validate Terraform plans.

Another critical efficiency gain comes from autoscaling.

Kubernetes was designed for horizontal pod autoscaling

(HPA), while Terraform—though not inherently

dynamic—lets you adjust infrastructure parameters

(e.g., node count) by changing a single line in your

configuration. In production environments, two-stage

scaling is employed: the Horizontal Pod Autoscaler

adjusts pod counts in response to CPU and memory

metrics; the Kubernetes Cluster Autoscaler evaluates

node utilization and dynamically provisions or

decommissions nodes to preserve designated cluster

capacity. Although many rely on native cloud

autoscaling groups, Terraform can manage those too.

This declarative approach ensures performance targets

are met either at the container layer (via Kubernetes) or

the infrastructure layer (via Terraform). The system

handles abrupt traffic surges autonomously, ensuring

efficient resource usage: the Kubernetes Cluster

Autoscaler provisions additional nodes as demand

increases, the Horizontal Pod Autoscaler adjusts pod

replicas, and the scheduler balances workloads across

available capacity. Such deployment remains robust

under heavy load in large-scale cloud infrastructures.

Additionally, Terraform enables precise cost control. By

defining resources in code, teams can right-size VMs,

storage, and other components for each application,

revisiting those definitions as requirements evolve.

Practitioners note that Terraform-driven provisioning

avoids both under- and over-provisioning, trimming

infrastructure spend [3]. Kubernetes complements this

by efficiently scheduling workloads across available

capacity, boosting server utilization. In combination,

Terraform and Kubernetes deliver both scalable

performance and cost-effective infrastructure.

Below is a concise summary of the key advantages and

drawbacks of integrating Terraform with Kubernetes in

DevOps workflows.

Table 2. Pros and Cons of Terraform + Kubernetes in DevOps Practices

Advantages of Joint Use Drawbacks of Joint Use

Consistency & Reproducibility. A unified

declarative approach to both infrastructure and

application ensures identical environments,

minimizing configuration errors and human‐

induced drift. All changes go through version

control and CI/CD pipelines.

High Complexity & Skill Requirements.

Combining two powerful platforms increases

stack complexity and demands engineers versed

in both Terraform and Kubernetes, raising the

entry barrier for smaller teams.

Faster Delivery & CI/CD Agility. Automated

provisioning and deployment accelerate

development cycles and time-to-market, allowing

pipelines to adapt rapidly to evolving business

needs.

Overkill for Simple Projects. For small or

straightforward infrastructures, running both

Terraform and Kubernetes can be unnecessarily

heavy and cost-inefficient compared to lighter

alternatives.

Simplified Management of Complex Systems.

Terraform orchestrates resource dependencies

Potential Resource-Management Conflicts. Clear

boundaries must be drawn between Terraform’s

The American Journal of Engineering and Technology

93 https://www.theamericanjournals.com/index.php/tajet

Advantages of Joint Use Drawbacks of Joint Use

automatically, while Kubernetes provides self-

healing and workload monitoring—reducing

manual ops work and letting teams focus on

features.

infrastructure role and Kubernetes’s in-cluster

management; otherwise, concurrent changes can

desynchronize state and cause conflicts.

Scalability & Reliability. Together they deliver

autoscaling at two layers—Kubernetes for pods

(HPA) and Terraform for nodes—while

Kubernetes’s healing features and Terraform’s

resource provisioning minimize downtime.

Longer CI/CD Runtime. Running terraform apply

followed by Kubernetes deployments can

lengthen pipeline execution time; while

parallelization helps, overall processes may still

take noticeably longer.

Multi-Cloud Portability. Terraform’s provider-

agnostic IaC enables identical stacks across clouds

or on-premises, and Kubernetes ensures

container portability between those

environments.

Despite these clear benefits—consistency, agility,

manageability, scalability, and portability—the added

complexity and learning curve mean teams should

carefully assess their project’s size and criticality before

adopting both tools in tandem. In practice, Terraform +

Kubernetes integration shines in medium to large

efforts, where the automation payoff justifies the

investment in training and operational overhead.

Discussion

The findings reaffirm that pairing Terraform with

Kubernetes elevates DevOps effectiveness—especially

in large‐scale, fast‐moving projects. By treating both

infrastructure and applications as code, teams achieve

deeper automation and uniform management in line

with GitOps principles. Crucially, the integration process

must respect each tool’s strengths.

Practitioners concur that Terraform and Kubernetes

don’t compete but complement one another [2].

Terraform handles external resources—VMs, networks,

databases, object storage, CDNs—that Kubernetes isn’t

designed for. Kubernetes, in turn, manages

containerized workloads, ensuring self-healing and

desired-state enforcement. Together, they span the full

stack from hardware provisioning to application

runtime.

Below are actionable recommendations to optimize

Terraform + Kubernetes workflows, covering modular

design, responsibility boundaries, state management,

and GitOps adoption.

Table 3. Recommended Practices for Terraform + Kubernetes Integration

Practice Description & Benefits Risks & Caveats

Adopt a modular

Terraform layout

Encapsulate infrastructure components into reusable

modules, standardizing configuration and reducing

error rates.

Over-modularization can

complicate maintenance and

debugging.

Clearly separate

responsibilities

Assign Terraform to manage external infra (VMs,

networks, clusters) and Kubernetes to handle in-

cluster resources (Deployments, Services,

ConfigMaps).

Unclear boundaries may lead to

state conflicts and make

troubleshooting harder.

The American Journal of Engineering and Technology

94 https://www.theamericanjournals.com/index.php/tajet

Practice Description & Benefits Risks & Caveats

Store Terraform

state in a remote

backend

Use remote backends (e.g., Terraform Cloud, S3 +

DynamoDB, Azure Storage) for secure, shared state

and locking.

Backend outages can block

deployments; implement

backups and DR procedures.

Limit Terraform’s

Kubernetes

provider to static

objects

Restrict Terraform’s in-cluster management to stable

resources (Namespaces, RBAC policies,

NetworkPolicies), avoiding frequent updates to

dynamic workloads.

Managing dynamic resources

via Terraform can slow CI/CD

pipelines and introduce drift.

Embed Terraform +

Kubernetes in a

GitOps workflow

Store all infra and application manifests in Git, driving

deployments via automated pipelines for full

traceability and auditability.

Requires strict change-

management discipline and PR

governance to prevent out-of-

band edits.

Implementing these practices builds a robust, scalable

DevOps platform: modular Terraform code streamlines

reuse; defined responsibility zones prevent resource

conflicts; remote state backends bolster reliability; and

a unified GitOps approach ensures transparency, version

control, and audit trails for every change.

It’s worth noting that the introduction of the Kubernetes

provider for Terraform has blurred the lines between

infrastructure provisioning and orchestration. By

speaking directly to the Kubernetes API, Terraform lets

DevOps engineers define in-cluster resources using

familiar HCL modules—in many cases eliminating the

need to hand-write dozens of YAML manifests.

However, as Spacelift’s documentation cautions, this

isn’t a silver bullet: “avoid using Terraform to manage in-

cluster K8s resources that change frequently; use Helm

or Kustomize for that” [3]. In other words, adopting a

hybrid approach doesn’t render Kubernetes-native tools

obsolete—Helm charts, Operators, and CI/CD pipelines

remain essential. Terraform excels at unifying and

automating across layers, but you shouldn’t overload it

with tasks better suited to Kubernetes itself. Sticking to

these best practices helps teams reap the benefits

without introducing unnecessary complexity.

Security and secrets management deserve special

attention when combining Terraform and Kubernetes.

Store access credentials—such as kubeconfig files for

the Terraform provider or cloud API keys—in a

dedicated secret store (Vault, KMS), and grant

Terraform only the minimum required privileges.

Remember, Terraform state can contain sensitive

information, so keep it in an encrypted remote backend

with strict access controls. On the Kubernetes side,

you’ll still need to manage RBAC policies—Terraform

can automate those too, but plan your workflows so that

you first provision the cluster, then apply role and

permission changes, ensuring your state remains

consistent and secure.

Looking ahead, we’re already seeing even deeper

integrations: Kubernetes operators that trigger

Terraform runs in response to cluster events, effectively

turning Kubernetes into an infrastructure controller

(though these remain niche). The rise of Platform

Engineering is another trend: teams are building internal

developer platforms on top of Kubernetes, with

Terraform acting as the backend for “infrastructure on

demand.” All signs point to Terraform and Kubernetes

continuing to coexist and evolve together. HashiCorp

actively maintains the Kubernetes provider, and the

DevOps community is refining patterns for when to lean

on each tool.

Ultimately, both theoretical analyses and real-world

case studies confirm the effectiveness of the

Terraform + Kubernetes combination. Organizations

benefit from faster, more consistent deployments,

flexible scaling, and built-in resilience. By following

sound architectural guidance, teams can create truly

scalable DevOps workflows—from commit to

production—that are fully automated, transparent, and

under version control. That, at its core, is the essence of

DevOps as both a culture and a practice.

Conclusion

The American Journal of Engineering and Technology

95 https://www.theamericanjournals.com/index.php/tajet

Our analysis demonstrates that combining Terraform

and Kubernetes in DevOps workflows offers a powerful

solution for automating infrastructure and CI/CD

pipelines in modern cloud-native applications.

Terraform lays down an “infrastructure as code”

foundation—provisioning all required resources,

including the Kubernetes cluster itself, in a consistent

manner across development, staging, and production

environments. Kubernetes then takes over container

orchestration, ensuring application reliability and on-

demand scaling.

Together, these tools deliver key benefits:

● Rapid, reliable deployments: Unified,

declarative configurations eliminate manual steps and

reduce deployment errors.

● Elastic scalability: Kubernetes’ pod

autoscaling and Terraform-driven infrastructure scaling

adapt capacity to real-time demand.

● Predictable, repeatable environments:

Infrastructure-as-code plus containerized workloads

guarantee identical behavior from local dev machines

through production.

● Multi-cloud portability: Terraform

configurations and Kubernetes manifests can be applied

to any cloud or on-premise platform.

In practice, adopting Terraform + Kubernetes requires

initial investment in pipeline design and team training,

but pays dividends in faster release cycles, fewer

incidents, and more efficient resource utilization.

Organizations embracing these technologies report

significant reductions in deployment lead time and

operational toil—benefits that far outweigh the

onboarding cost for medium and large projects with

dynamic requirements.

DevOps engineers and architects can leverage our

findings when selecting tools for continuous delivery. It

is recommended:

1. Terraform for provisioning

infrastructure (VMs, networking, managed Kubernetes

clusters).

2. Kubernetes for deploying, scaling, and

self-healing containerized applications.

3. CI/CD integration that invokes

Terraform for infra changes and Kubernetes tools (Helm,

kubectl, ArgoCD) for app rollouts.

4. Best practices such as remote state

storage, clear separation of responsibilities between

Terraform and Kubernetes, modular Terraform code,

and dedicated workspaces per environment.

Together, Terraform and Kubernetes embody the

“everything as code” principle—turning complex

deployments into automated, auditable processes. By

eliminating repetitive manual tasks, speeding feedback

loops, and raising reliability, this pairing has emerged as

one of the most effective DevOps toolchains available

today—and industry experience suggests it will remain a

cornerstone of cloud-native delivery for years to come.

References

1. Fahim, Marium. Terraform Vs Kubernetes –

Selecting The Right Tool For Your System. – URL:

https://cyberpanel.net/blog/terraform-vs-

kubernetes (Accessed: 02.05.2025). – Text :

electronic.

2. Gaydos, Bob. Terraform vs. Kubernetes: Choosing

the Right Tool for Platform Engineering. – URL:

https://duplocloud.com/blog/terraform-vs-

kubernetes-choosing-the-right-tool-for-platform-

engineering/ (Accessed: 07.05.2025). – Text :

electronic.

3. Hashem, Faisal. How to Deploy Kubernetes

Resources with Terraform. – 2024. – URL:

https://spacelift.io/blog/terraform-kubernetes-

deployment (Accessed: 28.04.2025). – Text :

electronic.

4. How to use Terraform and Kubernetes in DevOps. –

2024. – URL:

https://medium.com/@alexeusgr/terraform-and-

kubernetes-in-devops-3a3db6ec0db1 (date of

access: 02.05.2025). – Text : electronic.

5. Katz, Eyal. Orchestrating Kubernetes with

Terraform: A Step-by-Step Guide to Building Your

Container Empire. – 2023. – URL:

https://controlplane.com/community-

blog/post/orchestrating-kubernetes-with-

terraform (date of access: 25.04.2025). – Text :

electronic.

6. Manage Kubernetes resources via Terraform. – URL:

https://developer.hashicorp.com/terraform/tutoria

ls/kubernetes/kubernetes-provider (accessed:

30.04.2025). – Text: electronic.

