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Abstract: This study examines a decentralized approach 
to implementing a service mesh for microservice-based 
systems designed for scalable data processing. Unlike 
traditional solutions dominated by the pipes-and-filters 
pattern and a centralized control plane, this approach 
utilizes the concept of Eblocks—unified modules that 
incorporate service discovery, authentication, 
monitoring, and load management components. This 
allows for the formation of various patterns (manager-
worker, divide-and-conquer, hybrid models) directly at 
the microservice level without strict dependence on 
centralized logic. It is demonstrated that such an 
architecture accelerates data processing through 
automatic scaling and parallel execution, simplifies 
configuration, and provides flexible security and 
observability mechanisms. The proposed results, 
supported by findings from other researchers, indicate 
a significant increase in system throughput when 
handling documents requiring pipeline, parallel, and 
distributed processing. The presented information is of 
interest to researchers and professionals in distributed 
systems, cloud computing, and microservice 
architecture, aiming for a deeper understanding and 
implementation of innovative service mesh 
architectures to enhance the scalability, reliability, and 
efficiency of modern IT applications. 

 

Keywords: cloud computing, microservices, service 
mesh, processing patterns, scalability, decentralized 
architecture, Eblocks. 

 

Introduction: Cloud computing provides flexible and 
dynamic access to computational resources with 
minimal management costs. The shift from monolithic 
applications to microservices enhances autonomy, 
elasticity, and accelerates the deployment cycle of new 
features. Microservice architecture promotes 
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modularity and simplifies the maintenance of large-
scale systems; however, it presents engineers with 
several challenges, including the complexity of 
managing interactions among independent services, 
ensuring observability, securing communication, and 
enabling automatic scaling. 

To address these challenges, service mesh platforms 
have emerged, handling traffic routing, load balancing, 
encryption, monitoring, and service management 
without modifying business logic. However, most 
modern service meshes are primarily designed around 
the pipeline processing pattern and lack built-in 
support for a broader range of processing patterns, 
such as manager-worker or divide-and-conquer. This 
limitation restricts developers and architects in 
designing complex, high-performance systems that 
require flexible management of parallel data streams 
and distributed task execution. 

A comprehensive review of contemporary research 
follows. Nicolas-Plata A., Gonzalez-Compean J. L., and 
Sosa-Sosa V. J. [1], along with Alboqmi R. and Gamble 
R. F. [4], propose an innovative approach based on 
service mesh integration to support processing 
patterns within microservice applications. Parallel to 
this, the evolutionary transformation of software 
systems from monolithic to microservice architectures 
is explored in the works of Akerele J. I. et al. [3], 
Newman S. [9], and Decimavilla-Alarcón D. C. and 
Marcillo-Franco P. F. [8]. These studies focus on 
enhancing scalability and flexibility through cloud 
technologies and containerization, allowing systems to 
adapt to specific requirements, such as healthcare or 
IoT environments. 

Another research direction involves developing tools 
for evaluating scalability and selecting optimal design 
patterns. Wrona Z. et al. [5] expand the capabilities of a 
cloud infrastructure simulator to model the dynamics 
of scalable systems, while Dhait S. et al. [6] conduct a 
comparative analysis of creational patterns in software 
development. 

Cybersecurity in cloud platforms is also a significant 
topic in modern literature, as examined in the study by 
Molnar V. and Sabodashko D. [2]. Their work aims to 
compare security standards based on NIST guidelines to 
identify vulnerabilities in leading cloud platforms. 

Additionally, scalability is explored in the context of 
serverless computing trends in the study by Li Y. et al. 
[7]. Their research summarizes the current state of the 

technology, identifies key challenges, and outlines 
future prospects for serverless approaches in cloud 
services. 

A notable gap in the existing research is the absence of 
a unified mechanism for combining multiple processing 
patterns, such as the sequential integration of 
manager-worker and divide-and-conquer models, 
within a service mesh. Creating such hybrid patterns 
still requires either manually configuring multiple tools 
or abandoning the advantages of a transparent service 
mesh in favor of low-level orchestration. This lack of a 
universal method for integrating diverse microservice 
processing patterns into a service mesh model defines 
the research gap that this study aims to address. 

The objective of this study is to examine the 
implementation features of service mesh architecture 
for scalable applications. 

The scientific novelty lies in the systematic analysis and 
comparative evaluation of existing research on service 
mesh architectures for scalable applications, enabling 
the identification of problem areas and future research 
directions. 

The proposed hypothesis suggests that implementing a 
comprehensive service mesh, where each microservice 
is equipped with built-in discovery, authentication, and 
monitoring functions, will: 

● Reduce deployment and configuration time for 
distributed processing patterns. 

● Significantly increase architectural flexibility by 
supporting additional processing patterns. 

● Decrease reliance on traditional proxy-based 
approaches and centralized controllers while 
maintaining performance. 

The methodological framework of this study includes 
an analysis of existing research on microservice 
architecture and service meshes. 

1. Theoretical and technological foundations of service 
mesh 

Service mesh initially emerged as a methodology for 
abstracting network functions and transferring them to 
a separate layer, independent of the business logic of 
microservices. Traditionally, service mesh architecture 
consists of two planes: 
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● Data Plane: Comprises proxies (sidecars) that 
attach to each service. These sidecar proxies intercept 
traffic, route requests between services, and provide 
authentication, encryption, and tracing mechanisms. 

● Control Plane: Manages the configuration of 

sidecar proxies, monitors network state, balances load, 
and enforces security policies, such as mandatory 
traffic encryption and authorization. In some 
implementations, such as Istio, the control plane 
operates as a centralized component where 
microservices register to receive routing policies [1]. 

Below, Figure 1 illustrates the functions of a service mesh. 

 

Fig.1. Functions of the service mesh [1]. 

Despite the clear advantages of service meshes, their 
implementation requires consideration of several 
factors, including compatibility with cloud 
orchestrators (e.g., Kubernetes), configuration 
complexity, and the resource-intensive nature of 
proxies running alongside each microservice. 

The primary limitations of existing implementations 
stem from the fact that widely used service mesh 
platforms predominantly support the Pipes & Filters 
pattern, as it naturally aligns with the concept of 
sequential data flow through sidecar proxies. However, 
more complex patterns such as Manager–Worker or 
Divide & Conquer remain poorly automated in standard 
service meshes [7]. 

The root cause of this limitation lies in the fact that 
distributed load management (for instance, launching 

multiple instances of worker microservices) is 
traditionally delegated to external container 
orchestration systems such as Kubernetes or Docker 
Swarm. A service mesh primarily detects new services 
and, at best, routes traffic to them in a round-robin 
manner [3]. However, it often lacks a flexible 
mechanism for defining roles, distributing tasks, and 
automatically shutting down redundant worker 
services when load conditions change. 

Additional compatibility issues arise in practice when 
certain microservices require specific network policies, 
such as gRPC streaming or WebSocket connections, 
which may not be fully supported by the service mesh. 
Another challenge is the increased overhead associated 
with proxy operation, particularly in environments with 
a high density of microservices [7]. 

  

 
Service Discovery: automatic detection of addresses and metadata of 
new services. 

 

 
Load Balancing: Distributing requests across different instances of 
the same service. 

 

 
Monitoring and Tracing: collecting metrics and logs for further 
performance analysis. 

 

 
Security (Security): authentication of microservices in front of each 
other, traffic encryption, access rights control. 
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As a result, developers frequently face a dilemma: 
either limit themselves to the convenience of simple 
patterns and built-in service mesh mechanisms or 
manually implement complex scenarios such as 
Manager–Worker or parallel data partitioning, 
bypassing standard functionality. This issue 
underscores the need for new decentralized service 

mesh solutions that offer greater flexibility in 
integrating various microservice processing patterns [2, 
6]. 

Table 1 below presents a comparative analysis of 
microservice processing patterns. 

 

Table 1. Comparative characteristics of microservice processing patterns [1, 5, 9] 

Pattern Key features Typical applications Support in most 

service meshes 

Pipes & 

filters 

Sequential data transmission between 

"filters"; facilitates pipeline 

processing 

Simple ETL processes, 

log analysis, data 

transformation 

Full (native to 

service meshes) 

Manager–

worker 

A central "manager" distributes tasks 

to a pool of "workers"; scales by 

increasing the number of workers 

High-load processes 

requiring distributed 

parallel processing 

Partial (mainly 

through orchestrator 

functionality) 

Divide & 

conquer 

Task is divided into smaller parts, 

processed in parallel, and results are 

aggregated 

Large-scale 

computational tasks 

(ML models, big data 

analysis) 

Weak (usually 

requires manual 

configuration and 

coding) 

As shown in Table 1, service meshes fully support the 
classic pipeline-based approach (Pipes & Filters). 
However, Manager–Worker and Divide & Conquer 
patterns remain on the periphery of adoption and often 
require extensive customization at the Kubernetes 
manifest level and the integration of additional tools. 

2. Proposed architectural approach for integrating 
multiple patterns 

This section explores a decentralized service mesh 
model designed to support flexible data processing 
scenarios that require the simultaneous use of multiple 
patterns, such as pipes and filters, manager–worker, 
and divide and conquer. The primary concept is based 
on Eblocks, which encapsulate the business logic of a 
microservice along with key service mesh mechanisms, 
including authentication, monitoring, service discovery, 
and, when necessary, automated load management [4, 
9]. 

Traditional service meshes, such as Istio and Linkerd, 
rely on a control plane and a data plane. However, this 

architecture centralizes most routing logic, making it 
difficult to dynamically expand functionality, such as 
quickly adding new processing patterns. In contrast, the 
Eblocks-based approach employs the following 
principles: 

1. Decentralized storage of service logic. Each 
Eblock consists of: 

○ Processing Microservice (PM): The core 
business application or function, such as an encryption 
service or risk analysis module. 

○ Workload Manager (WM): A local (within the 
Eblock) implementation of load distribution algorithms 
that activates predefined roles, including manager, 
worker, divider, conquer, and combine. 

○ Discovery: A self-registration and peer-to-peer 
lookup mechanism, implemented using a distributed 
hash table or similar technology. 

○ Authentication: Built-in authentication 
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mechanisms for issuing and verifying security tokens 
used for inter-Eblock communication. 

○ Monitoring: A local metrics collection service 
accessible via REST API or client libraries [7, 8]. 

2. Intercomponent communication interfaces. 
These are based on REST, gRPC, WebSocket protocols, 
and message buses to ensure reliable routing. 

3. Security and authentication mechanisms. 
These include in-transit and at-rest data encryption, 
digital certificate management, authentication, and 
tokenization. 

4. Anomaly detection and dynamic risk 

assessment. Implementation of intrusion detection 
systems, monitoring algorithms, and dynamic threat 
evaluation for real-time cybersecurity responses. 

5. Adaptive load balancing and scaling. Local and 
global resource allocation algorithms that analyze 
current workloads and forecast peak demands. 

To implement a specific pattern, groups of Eblocks can 
assume various roles, such as Filter, Manager, Worker, 
Divide, and Conquer. For example, in a manager–
worker pattern, one Eblock acts as the Manager, 
handling task segmentation and scheduling, while 
multiple Eblocks in the Worker role process the 
workload. Figure 2 illustrates how the Eblocks approach 
integrates multiple patterns.

 

 

Fig. 2. The scheme of the Eblocks approach in the process of integrating several patterns [1, 4]. 

For the Eblocks model to function effectively, a 
comprehensive orchestration strategy is required. This 
typically relies on Kubernetes or a similar orchestrator 
but does not duplicate its functions. To provide a 

clearer understanding, Table 2 compares key elements 
of the traditional service mesh model (using Istio as an 
example) and the proposed Eblocks architecture. 
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Table 2. Comparison of the classical service mesh model and Eblocks [1, 4] 

Characteristic Classical service mesh (e.g., Istio) Eblocks 

Interaction 

management 

Centralized control plane: Istio 

Control Plane (Pilot, Mixer, Citadel, 

etc.) 

Decentralized model: Each Eblock 

contains Discovery, Auth, and 

Monitoring components 

Pattern 

implementation 

Default support for pipes and filters; 

other patterns require complex 

configuration or external logic 

Support for multiple roles (manager, 

worker, filter, etc.) with local task 

distribution 

Load balancing 

mechanism 

Sidecar proxy (Envoy) surrounds the 

microservice, handling routing and 

load balancing 

Workload Manager inside each 

Eblock with pseudo-random or 

custom algorithms 

Monitoring and 

tracing 

Centralized Mixer (pre-Istio v2) or 

Telemetry input in later versions; 

requires consistent configuration 

Local Monitoring in Eblock with 

REST API, ensuring uniform metrics 

within the container 

Security and 

authentication 

mTLS between proxies, certification 

through Citadel, granular RBAC 

policy 

Built-in Auth component for 

distributed token verification, 

eliminating unnecessary nodes 

Extensibility 

and 

customization 

High, but requires deep knowledge of 

Istio CRD and Kubernetes integration 

Flexible pattern combinations since 

roles are defined at the Eblock level 

Overhead Additional sidecar proxies, 

centralized configuration storage, 

control plane load 

Higher resource consumption within 

each Eblock than a standalone 

service, but no central bottleneck 

 

The classical service mesh model offers high 
configurability for pipelines but complicates load 
management and parallel execution. In contrast, the 
Eblocks approach inherently supports these patterns 
through a local Workload Manager, reducing reliance 
on a centralized service mesh. 

A key distinction of Eblocks is the reduced need for 
constant interaction with a central controller. The 
combination of service discovery and authentication 
within each block removes some network constraints 
but imposes additional requirements on the self-
sufficiency of each Eblock. Nevertheless, the proposed 
model provides broader capabilities for integrating new 
pattern combinations. 

3. Practical implementation and performance 

evaluation 

An analysis was conducted on the methodology for 
validating the functionality and efficiency of the 
approach based on decentralized Eblock components, 
as proposed by Nicolas-Plata A., Gonzalez-Compean J. 
L., and Sosa-Sosa V. J. [1]. This method enables the 
transformation of traditional application sets into 
modern microservice-based systems by integrating 
hybrid data processing patterns, optimizing pipeline 
analysis, encryption, and result storage. The core idea 
is to create a system capable of dynamically combining 
the manager–worker and pipeline (pipes and filters) 
patterns while also incorporating the divide-and-
conquer strategy for processing large-scale data 
workloads. 
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The primary objective of the system is to ensure 
efficient pipeline processing and detailed analysis of 
large text document datasets, followed by mandatory 
encryption and storage in a centralized repository. To 
achieve this, a set of specialized microservices was 
developed, each performing specific functions within 
the overall architecture. The system includes a 
semantic analysis module for extracting keywords and 
thematic attributes from documents, a risk assessment 
component for evaluating data sensitivity levels, 
symmetric encryption and decryption services to 
ensure data security, a database for storing metadata 
and processing results, a user interface for end-user 
access, and a routing and request parameterization 
service, which, in the experimental phase, operates as 
an independent microservice despite its potential 
integration into a unified Eblock. 

Key system requirements include the ability to create 
multiple instances of worker modules for parallel 
document processing, minimizing manual configuration 
through a declarative architectural approach, and 
ensuring transparency in monitoring and security 
processes via built-in service authorization. A 
comparative analysis of approaches before and after 
integrating decentralized Eblock components 
demonstrates significant improvements. The 
traditional method, where microservices were 
manually interconnected via REST interfaces and 
required additional scaling scripts, was outperformed 
by the new approach, in which each component is 
packaged into an Eblock with preconfigured Discovery, 
Authentication, Monitoring, and Workload Manager 
modules. This allows for seamless activation of 
manager–worker roles or the implementation of 
sequential pipeline schemes at the configuration level. 

To validate the developed system, a modern hardware 
and software infrastructure was utilized. The 
containerization environment was based on 
Kubernetes version 1.23 (or later), deployed on two 
worker nodes and a single master node. The server 
hardware included Intel Xeon processors with 12–16 
logical cores and RAM ranging from 64 GB to 128 GB, 
providing the required computational capacity. The 
network environment was structured within an internal 
10 Gbps network, and user interface access was 
secured through port 443 (HTTPS). Data storage relied 
on the distributed SkyCDS system, integrated with a 
local file system for handling temporary data, ensuring 
high reliability and fast data access. 

The system deployment process consists of multiple 

sequential stages. First, Docker images were built for 
each microservice, embedding the necessary Eblock 
components such as Discovery, Authentication, 
Monitoring, and, when required, Workload Manager 
for Manager or Worker roles. The next step involved 
generating YAML configurations where a DevOps 
engineer defined functional roles and interactions 
between system components. A dedicated generator 
processed these descriptions to create Kubernetes 
manifests (Deployments, Services, ConfigMaps), 
specifying container launch parameters and internal 
component initialization. The final stage involved the 
step-by-step deployment and initialization of Eblock 
components while considering dependencies: the 
Discovery module identified other instances through a 
distributed hash table, Authentication components 
exchanged tokens, and Monitoring aggregated metrics 
for subsequent analysis. 

System performance was assessed using a set of 
metrics characterizing the overall architecture’s 
efficiency and reliability. Key measurements included: 

● Response Time (RT): The time interval from 
sending an HTTP request to receiving a response. 

● Pattern Response Time (PRT): The total 
response time of all microservices involved, including 
additional coupling time (CT) required for result 
aggregation. 

● Throughput (TPS or docs/sec): The number of 
documents processed per unit of time. 

● Infrastructure overhead: Evaluated in terms of 
memory consumption, CPU load, and dynamic scaling 
time for worker nodes. 

Load tests were conducted using a dataset of 2,745 text 
documents, with an average size of approximately 4 KB. 
Some documents required computationally intensive 
operations, such as semantic analysis and encryption 
using long keys dependent on risk level. The experiment 
involved three data processing scenarios: 

1. Linear pipeline processing: Each document 
sequentially passed through semantic analysis, risk 
assessment, encryption, and was finally stored in a 
database. 

2. Manager–worker decryption: One Eblock acted 
as the Manager, dynamically launching between one 
and four worker nodes for parallel processing, while 
other components functioned in filtering mode. 
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3. Hybrid processing: A combination of sequential 
pipeline processing and dynamic scaling at the 
decryption stage using a worker Eblock pool. 

Table 3 presents a comparison of the average 
throughput (docs/sec) across different pattern 
integration scenarios. 

Table 3. Throughput (TPS) in different scenarios of pattern integration [1] 

Scenario Number of worker 

nodes 

Average TPS 

(docs/sec) 

Increase from 

baseline (A) 

A (Pipeline) — 12.4 — 

B (Manager–Worker) 2 15.8 +27% 

B (Manager–Worker) 4 17.5 +41% 

C (Hybrid) 2 (Decipher) 16.3 +31% 

C (Hybrid) 4 (Decipher) 18.1 +46% 

(Data averaged over multiple test runs, margin of error within ±2%.) 

 

The analysis demonstrated a significant reduction in 
overall system response time when transitioning from 
a traditional linear pipeline to a hybrid solution 
incorporating the manager–worker pattern. On 
average, response times decreased by 23–27%, 
primarily due to efficient parallelization of 
computational processes, particularly in decrypting 
large files. Additionally, dynamic scaling of worker 
nodes increased system throughput by approximately 
35% compared to the baseline configuration. 

The results indicate the strong potential of the 
proposed approach for building scalable and resilient 
microservice architectures. The combination of 
multiple patterns and automated worker node 
deployment accelerates data processing by up to 46% 
compared to a linear pipeline without parallelization. 

CONCLUSION 

The study examined the limitations of existing service 
meshes, which are primarily designed around the 
pipeline processing pattern. It has been shown that this 
approach is not always suitable for scenarios requiring 
dynamic scaling and the combination of multiple 
patterns, such as manager–worker and divide-and-
conquer. A decentralized service mesh implementation 
has been proposed, where key tasks such as service 
discovery, authentication, monitoring, and load 
distribution are handled by the microservices 
themselves in the form of Eblock structures. 

Experimental results confirm that the described 
architecture reduces configuration overhead, simplifies 
the addition of new patterns, and significantly 
accelerates data processing for large workloads. 
Furthermore, the system has demonstrated 
adaptability to varying load conditions through the 
automatic deployment of additional worker instances. 
It is important to note that decentralization imposes 
specific resource requirements but effectively balances 
the load, eliminating the bottleneck associated with a 
centralized controller. 

Future research directions include the development of 
tools for the automatic selection of the optimal pattern 
or their combination based on workload profiles, as 
well as the expansion of the service mesh with 
intelligent scaling and load forecasting capabilities. 
Additionally, further integration of the Eblocks 
mechanism with standard orchestration systems such 
as Kubernetes and Docker Swarm is planned, along with 
an in-depth evaluation of efficiency in real-world 
industrial use cases. 
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