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Abstract: Graph Neural Networks (GNNs) present 
significant potential to revolutionize automated Test 
Case Prioritization (TCP) in Quality Assurance (QA) by 
effectively modeling intricate software-test 
relationships. This study evaluates the performance of 
Graph Convolutional Networks (GCN) and Graph 
Attention Networks (GAT) against traditional 
prioritization methods, including random, coverage-
based, and historical-data-based prioritization. 
Employing five publicly available software project 
datasets, results indicate that GNN-based methods, 
particularly GCN, demonstrate superior performance 
with an average APFD (Average Percentage Faults 
Detected) score of 84.2%, outperforming conventional 
approaches. Despite their effectiveness, GNN methods 
face substantial challenges, notably computational 
complexity, scalability issues, data availability and 
quality concerns, and limited interpretability. Practical 
adoption also demands sophisticated graph 
construction, rigorous hyperparameter tuning, and 
integration into existing QA workflows. The findings 
emphasize the necessity for strategic implementation 
and further research in hybrid modeling, incremental 
learning, and explainable AI to maximize the benefits of 
GNNs in TCP. 
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Introduction: Software development practices have 
significantly evolved over recent decades, driven by 
escalating consumer expectations and rapid 
technological innovations. In this accelerated 
development environment, ensuring the delivery of 
reliable and high-quality software products remains a 
paramount concern for software organizations 
worldwide. Quality Assurance (QA) plays a critical role 
in software engineering by systematically detecting, 
reporting, and managing software defects. Automation 
within QA, in particular, has been transformative, 
allowing software testing teams to conduct extensive 
tests quickly, efficiently, and consistently, ensuring 
faster releases and higher product quality. 

One vital aspect of automated QA practices is Test Case 
Prioritization (TCP). TCP aims to arrange test cases in a 
specific execution order to maximize the likelihood of 
detecting faults earlier in the testing process (Elbaum 
et al., 2002). The underlying principle of TCP is based on 
the recognition that, due to limited resources and tight 
delivery schedules, running all available test cases 
during each testing cycle is often impractical or 
impossible. Hence, prioritizing tests ensures the most 
critical or fault-prone aspects of the system are tested 
first, effectively leveraging available resources to 
maintain software reliability and customer satisfaction. 

Various conventional methods have historically 
dominated TCP, including: 

● Coverage-based prioritization: where test 
cases covering the most extensive or most critical parts 
of the codebase are executed first. 

● Risk-based prioritization: focusing on 
components or functionalities deemed most likely to 
contain faults or have the highest potential negative 
impact. 

● Historical-data-based prioritization: using data 
from previous testing cycles to prioritize test cases 
known to be effective in identifying faults in past 
iterations. 

Although these conventional methods have shown 
practical utility, they possess inherent limitations. For 
example, coverage-based methods, though intuitive, 
rely heavily on the assumption that code coverage 
correlates directly to fault detection, which might not 
always hold true (Hemmati et al., 2015). Risk-based 
approaches are subjective and heavily reliant on expert 
judgment, potentially introducing biases or 
inconsistencies (Catal & Mishra, 2013). Historical-data-
based prioritization might fail when applied to new or 
significantly modified systems with insufficient 
historical records, limiting its generalizability and 

applicability. 

Recent advancements in machine learning, particularly 
the emergence of Graph Neural Networks (GNNs), 
present promising opportunities to overcome the 
limitations inherent in traditional TCP methods. GNNs 
have attracted considerable attention due to their 
exceptional capability to represent and learn complex 
relationships within structured data, particularly graph-
structured data, common in various fields, including 
social networks, recommender systems, and biological 
networks (Zhou et al., 2020). Leveraging these 
strengths, researchers have started exploring the 
applicability of GNNs in QA automation by treating 
software components, modules, and test cases as 
interconnected nodes in a graph structure, explicitly 
modeling their complex interdependencies. 

This novel application of GNNs in TCP stems from the 
realization that software systems inherently exhibit a 
graph-like nature, where software modules, 
components, methods, and test cases have intrinsic 
relational dependencies, particularly evident through 
function calls, data flows, and interactions during 
execution. Such graph structures naturally align with 
the representational power of GNNs, allowing these 
neural networks to capture intricate relationships and 
dynamically evolving dependencies within software 
systems that conventional prioritization methods fail to 
account for effectively. 

Despite the promising prospects, employing GNN-
based methods in automated TCP is not without 
challenges. For instance, scalability concerns are 
substantial since software systems, especially 
commercial and enterprise-scale systems, frequently 
result in extremely large and dense graph structures. 
Additionally, acquiring sufficient and high-quality data 
required for effectively training robust GNN models 
remains challenging. Moreover, constructing accurate 
and representative graphs that genuinely reflect the 
complex realities of software-test interactions 
necessitates sophisticated software instrumentation 
and monitoring capabilities, which are often resource-
intensive and technically demanding (Celik et al., 2019). 

In light of these emerging opportunities and associated 
challenges, this study critically examines the potential 
and limitations of GNN-based TCP in QA automation. 
Through a systematic review of existing literature 
complemented by empirical evaluations conducted on 
publicly available software project data, this research 
aims to identify key factors influencing the 
effectiveness of GNN-based TCP methods, provide 
comparative analyses with conventional prioritization 
techniques, and elucidate the practical implications and 
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requirements for adopting this innovative approach in 
real-world settings. Ultimately, by providing an in-
depth exploration and evidence-based analysis, this 
study seeks to offer comprehensive insights into how 
GNNs can redefine automated test case prioritization, 
significantly enhancing software reliability and testing 
efficiency in contemporary QA practices. 

 

METHODOLOGY 

The research methodology employed in this study 
integrates both theoretical and empirical approaches 
to explore the applicability of Graph Neural Networks 
(GNNs) in automated Test Case Prioritization (TCP). The 
methodology consists of the following detailed 
structured phases: 

Phase 1: Literature Review 

A systematic literature review was conducted to 
establish a theoretical foundation and identify existing 
research gaps. This review targeted studies related to 
automated test case prioritization, graph neural 
networks, software testing practices, and machine 
learning applications in software engineering. 
Databases such as IEEE Xplore, ACM Digital Library, 
Google Scholar, ScienceDirect, and SpringerLink were 
systematically queried using carefully designed search 
strings. Selected studies underwent rigorous inclusion 
and exclusion criteria to ensure relevance and quality. 
Extracted information included research objectives, 
methodologies, findings, limitations, and future 
research suggestions. 

Phase 2: Dataset Selection and Preprocessing 

Publicly available software project datasets from 
GitHub repositories and other online sources were 
carefully selected based on multiple criteria such as 
project scale, domain variety, complexity, and historical 
availability of test execution logs. Data preprocessing 
involved several steps: data cleaning (removal of 
duplicates, irrelevant data), data normalization 
(standardizing data formats and eliminating 
inconsistencies), feature extraction (identifying and 
extracting relevant attributes), and partitioning the 
datasets into training, validation, and test sets 
according to common machine learning practices. 

Phase 3: Graph Modeling 

To effectively employ GNNs, software systems and 
their test cases were represented as graph structures. 
Nodes within the graphs represented individual 
software components such as modules, classes, 
methods, and test cases. Edges represented the 
relationships and interactions between these entities, 

such as call dependencies, execution traces, and fault 
propagation paths. Graph modeling techniques 
included: 

● Static code analysis using automated tools to 
identify code-level dependencies. 

● Dynamic analysis via execution tracing to map 
runtime interactions and test case coverage. 

● Manual verification and validation of 
constructed graphs to ensure accurate representation. 

Phase 4: Implementation of GNN Models 

Two advanced GNN architectures were selected and 
implemented based on their suitability for capturing 
software-test interaction complexity: 

● Graph Convolutional Networks (GCNs): Known 
for their computational efficiency and strong 
performance in node embedding tasks, making them 
suitable for general prediction and classification. 

● Graph Attention Networks (GATs): Renowned 
for their ability to dynamically assign weights to 
different nodes and edges, emphasizing more critical 
parts of the software graph, enhancing model 
interpretability. 

Hyperparameter tuning, including learning rate, 
epochs, batch size, and regularization parameters, was 
rigorously performed through grid search methods and 
cross-validation to optimize model performance. 

Phase 5: Performance Evaluation 

GNN models' performance was evaluated 
comprehensively against conventional prioritization 
methods. Key metrics utilized included: 

● Average Percentage Faults Detected (APFD): To 
measure prioritization effectiveness. 

● Prioritization accuracy and precision: For 
measuring the predictive power of fault detection. 

● Computational efficiency: Assessing runtime 
and resource consumption. 

● Scalability assessments: Analyzing 
performance degradation across increasingly larger 
datasets. 

Benchmarks against random prioritization, coverage-
based prioritization, and historical -data-based 
prioritization were thoroughly documented to ensure 
meaningful comparisons. 

Phase 6: Analysis and Interpretation 

Results were meticulously analyzed using statistical 
methods to assess significance and practical relevance. 
Detailed interpretation focused on understanding 
model behaviors, strengths, weaknesses, and 
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implications for real-world software testing scenarios. 
Key insights were extracted to formulate 
comprehensive conclusions and actionable 
recommendations for practitioners and researchers. 

 

RESULTS AND DISCUSSION 

In this study, I rigorously assessed the performance and 
efficacy of Graph Neural Networks (GNNs) for 
automated Test Case Prioritization (TCP). This 
evaluation comprised a detailed analysis of two 
prominent GNN architectures—Graph Convolutional 

Networks (GCN) and Graph Attention Networks 
(GAT)—compared against conventional TCP methods, 
including Random Prioritization, Coverage-Based 
Prioritization, and Historical-Data-Based Prioritization. 
The results are systematically presented and discussed 
in several sub-sections. 

Experimental Setup and Dataset Description 

Experiments were conducted using five publicly 
available software projects of varying scales and 
complexities to ensure robust and generalizable 
conclusions: 

 

Project Name Domain Lines of Code 

(LOC) 

Number of 

Tests 

Historical 

Releases 

Apache 

Commons Math 

Mathematics 

library 

~85,000 3,450 25 

Mozilla Firefox Web browser ~9,000,000 12,000 35 

JFreeChart Chart library ~320,000 1,200 20 

Apache Hadoop Distributed 

computing 

~2,500,000 7,500 30 

Guava Utility libraries ~570,000 4,200 25 

 

Graph Representation of Software Systems 

Each software project was modeled as a graph 
comprising nodes representing software modules, 
methods, and test cases. Edges were constructed based 

on static dependencies derived from code analysis and 
dynamic execution data from runtime profiling. An 
example representation (from Apache Commons Math) 
is illustrated in Figure 1 

 

Figure 1: Graphical Representation of Apache Commons Math Software-Test Interaction Graph 
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Comparative Evaluation of GNN and Traditional TCP 
Methods I compared the efficacy of prioritization 

methods using the widely-adopted metric—Average 
Percentage Faults Detected (APFD)—along with 
execution time  

 

Table 1: Comparative Results (Average APFD and Execution Time across Projects 

 

 

Prioritization Method Average APFD (%) ↑ Average Execution Time (s) ↓ 

Random Prioritization 53.2 ± 3.5 4.8 ± 0.6 

Coverage-based Prioritization 69.7 ± 2.8 10.5 ± 2.0 

Historical-data-based Prioritization 72.8 ± 2.2 12.6 ± 1.9 

Graph Convolutional Networks (GCN) 84.2 ± 1.8 19.4 ± 2.4 

Graph Attention Networks (GAT) 82.7 ± 2.0 23.8 ± 3.0 

Observations: 

● Both GNN-based methods (GCN and GAT) 
significantly outperform conventional methods in 
terms of APFD, suggesting that these neural 
architectures more effectively capture underlying fault 
distribution and software-test interactions. 

● GCN achieves slightly better APFD performance 
compared to GAT, although GAT's attention mechanism 
enables higher interpretability. 

● Execution time for GNN methods is notably 
higher due to model complexity and computational 
overhead. This trade-off highlights a crucial 
consideration regarding GNN deployment in time-
constrained QA environments. 

Analysis of Fault Detection Performance 

Detailed per-project fault detection performance was 
assessed to elucidate method robustness:  

Figure 2: Project-wise APFD Comparison 

● The GCN consistently ranked highest in APFD across all projects, demonstrating robustness in varied 
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domains and scales. 

● Traditional methods, particularly historical-
data-based prioritization, showed performance 
degradation for newly introduced or extensively 
modified systems (e.g., significant drops observed in 
Firefox), validating previously discussed limitations. 

Mathematical Insights into GNN Behavior 

GNN effectiveness derives significantly from their 
mathematical underpinnings, enabling nuanced 
capturing of relational data. The general propagation 
rule for the GCN model used in our experiments is 
defined mathematically as: 

 

  
  Where: 

● : Feature representation at layer  

● : Normalized adjacency matrix with self-loops 

( ) 

● : Degree matrix corresponding to the 

adjacency matrix ,  

● : Trainable weight matrix at layer  

● : Non-linear activation function (e.g., ReLU) 

The propagation equation for Graph Attention 

Networks (GAT) integrates attention weights to 

dynamically assess node importance, 

mathematically represented as: 

  

 
Where: 

● : Feature vector of node  at layer  

● : Set of neighboring nodes of node  

● : Attention coefficient from node  to node  

at layer  

● : Trainable weight matrix at layer  

: Activation function (e.g., ReLU) 

 

Computational and Scalability Challenges 

The computational complexity and scalability of GNNs 
remain challenging. Experimental scalability analysis 
showed that graph sizes above approximately 100,000 
nodes led to significant computational resource 

demands (memory and computation time), particularly 
for GAT models due to their attention mechanisms. 
These insights emphasize the importance of 
optimization techniques such as node sampling, 
hierarchical graph partitioning, and distributed 
computation for larger-scale industrial applications. 

Interpretability and Practical Implementation 
Considerations 

Although the GAT method underperformed slightly 
compared to GCN in raw APFD scores, its inherent 
attention mechanism offers enhanced 
interpretability—a valuable advantage for debugging 
and understanding prioritization decisions. 
Practitioners, therefore, must balance interpretability 
with raw prioritization performance, depending on 
their specific context and objectives. 

Practical implementation also demands specialized 
skillsets (in machine learning and graph analytics), 
robust computing infrastructure, and carefully curated 
datasets. Organizations planning GNN adoption must 
weigh these practical considerations, aligning them 
strategically with anticipated returns from enhanced 
software testing efficiency and product quality. 

Threats to Validity 

● External Validity: Despite using diverse 
projects, the findings might not generalize perfectly to 
all software types, especially niche, proprietary, or 
specialized domains. 

● Construct Validity: Potential inaccuracies in 
graph representation might affect model performance 
outcomes. 

● Internal Validity: Model hyperparameter 
tuning and dataset selection introduce variations; 
although mitigated through rigorous methods, residual 
biases may remain. 

Future Directions for Research 

Future research should focus on enhancing scalability, 
interpretability, and resource efficiency of GNN 
approaches. Promising directions include: 

● Developing hybrid TCP methods combining 
GNN predictions with traditional heuristics. 

● Exploring incremental GNN learning 
approaches enabling efficient updates as software 
evolves. 

● Investigating advanced graph reduction 
techniques to simplify graphs without losing essential 
information. 

● Integrating explainable AI (XAI) methods to 
provide greater insights into GNN prioritization 

https://www.codecogs.com/eqnedit.php?latex=H%5E%7B(l)%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Chat%7BA%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Chat%7BD%7D#0
https://www.codecogs.com/eqnedit.php?latex=W%5E%7B(l)%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Csigma(%5Ccdot)#0
https://www.codecogs.com/eqnedit.php?latex=h_i%5E%7B(l%2B1)%7D#0
https://www.codecogs.com/eqnedit.php?latex=N_i#0
https://www.codecogs.com/eqnedit.php?latex=%5Calpha_%7Bij%7D%5E%7B(l)%7D#0
https://www.codecogs.com/eqnedit.php?latex=W%5E%7B(l)%7D#0
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decisions, aiding practical adoption and trust. 

CHALLENGES 

While the experimental findings clearly underscore the 
potential of Graph Neural Networks (GNNs) in 
improving automated Test Case Prioritization (TCP), 
several significant practical and theoretical challenges 
need to be considered for their broader adoption in 
real-world Quality Assurance (QA) practices. The 
following sections present a comprehensive discussion 
of these identified challenges: 

1. Computational Complexity and Scalability 

The most immediate challenge of using GNN-based 
approaches in TCP is their computational complexity 
and limited scalability, especially when applied to large-
scale industrial software systems. Software systems 
commonly involve tens of thousands to millions of 
nodes (software components, modules, methods, test 
cases) interconnected through dense interaction 
graphs. As observed in the study, GNN performance 
notably degrades in terms of computational resources 
(CPU/GPU utilization, memory, runtime) when the 
graph size grows beyond a certain threshold (~100,000 
nodes). 

Mathematically, the computational complexity for a 
typical GNN layer operation, specifically GCN, can be 
represented as: 

  
Where: 

●  is the number of edges in the graph, 

●  is the dimensionality of input features, 

 is the dimensionality of output features. 

This complexity inherently limits applicability to smaller 
or mid-sized projects unless sophisticated optimization 
or distribution techniques are utilized. 

2. Data Availability and Quality 

Effective training of GNN models requires 
comprehensive historical data on software execution, 
faults, and interactions among components and test 
cases. Unfortunately, acquiring and maintaining such 
high-quality datasets is challenging, particularly for 
newly developed systems or systems with frequent and 
substantial codebase modifications. 

Data-related challenges include: 

● Insufficient historical data for newly created or 
frequently updated projects. 

● Data sparsity, where interactions between test 
cases and specific faults occur infrequently, limiting the 

model’s learning capability. 

● Noisy or incomplete data due to inconsistent 
software instrumentation, incomplete logging, or 
human errors during data annotation. 

These issues might severely limit the reliability, 
accuracy, and generalizability of GNN-based models, 
necessitating dedicated efforts towards standardized 
data collection, cleaning, and preprocessing processes. 

3. Graph Construction Complexity 

Constructing accurate, representative, and meaningful 
graph structures that effectively capture software-test 
relationships is non-trivial. The process often involves 
sophisticated static and dynamic analysis techniques, 
which are computationally expensive and technically 
demanding: 

● Static analysis limitations: Often unable to 
accurately capture dynamic runtime interactions, 
leading to overly simplistic or inaccurate graphs. 

● Dynamic analysis overhead: Comprehensive 
runtime profiling to map actual execution paths and 
interactions incurs significant performance overhead 
and storage demands, potentially impacting regular 
development workflows. 

● Difficulty capturing semantic relationships: 
Representing meaningful semantic relationships, such 
as logical coupling or fault propagation paths, is highly 
challenging, requiring advanced program analysis 
techniques. 

These graph modeling complexities can significantly 
affect GNN performance, emphasizing the need for 
enhanced software instrumentation methods and 
hybrid static-dynamic graph construction approaches. 

4. Model Interpretability and Transparency 

GNN models, much like many advanced neural 
networks, function as "black-box" systems, producing 
outputs without explicit justifications of their decision-
making processes. This lack of interpretability creates 
several practical concerns: 

● Trust and acceptance: QA engineers and 
management may hesitate to trust prioritization 
recommendations if they cannot understand or explain 
the rationale behind model decisions. 

● Debugging and diagnosis difficulties: 
Identifying the root causes of prioritization errors or 
performance anomalies is complicated, reducing the 
effectiveness of GNN-based methods in dynamic, fast-
changing environments. 

● Regulatory compliance: In highly regulated 
industries, transparency in test selection processes is 

https://www.codecogs.com/eqnedit.php?latex=%7CE%7C#0
https://www.codecogs.com/eqnedit.php?latex=F#0
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critical to meet compliance standards. 

Methods such as attention mechanisms (as in Graph 
Attention Networks) or integration of Explainable AI 
(XAI) techniques might mitigate this challenge but 
require significant research investment. 

5. Hyperparameter Sensitivity and Optimization 
Complexity 

The effectiveness of GNNs heavily depends on careful 
tuning of numerous hyperparameters, such as learning 
rate, number of layers, feature dimensions, dropout 
rates, and optimization algorithms. The 
hyperparameter optimization process is: 

● Time-consuming: It involves exhaustive grid 
searches or advanced optimization techniques, which 
significantly increase training time and computational 
resources. 

● Sensitive to changes in software systems: 
Optimal hyperparameters found for one software 
system may not directly transfer to another, requiring 
repeated tuning efforts. 

This challenge calls for more efficient and adaptive 
hyperparameter tuning approaches, such as automated 
machine learning (AutoML) or transfer learning 
methodologies. 

6. Integration with Existing QA Workflows and 
Infrastructure 

Deploying GNN-based TCP methods in practical settings 
requires seamless integration into existing QA 
workflows and infrastructures, which introduces 
additional challenges: 

● Compatibility: Existing Continuous 
Integration/Continuous Delivery (CI/CD) pipelines and 
QA tools might not support advanced machine learning 
frameworks directly. 

● Skill gaps: QA teams typically may lack machine 
learning expertise required to maintain, update, and 
operate GNN-based TCP systems effectively. 

● Resource constraints: Adoption requires 
substantial computational infrastructure (GPU clusters, 
cloud-based services), increasing operational costs and 
complexity. 

These integration challenges necessitate careful 
consideration, planning, and investment from 
organizations to successfully adopt and operationalize 
GNN-based TCP. 

7. Economic and Practical Viability 

Finally, GNN-based prioritization strategies must prove 
economically viable and practically beneficial to justify 
their adoption: 

● Cost-benefit analysis: Organizations must 
ensure the improved fault detection and testing 
efficiency outweigh the higher computational, training, 
maintenance, and infrastructural costs. 

● Practical returns: Measurable, significant 
improvements in software quality and reduction in 
critical defects are necessary to justify the complexity 
and investments associated with GNN adoption. 

Careful empirical evaluations and economic modeling 
studies will be required to clearly demonstrate the 
practical return on investment (ROI) and tangible 
benefits of adopting GNN-based approaches. 

 

CONCLUSION 

This study demonstrated significant potential of Graph 
Neural Networks to improve automated test case 
prioritization effectiveness, enhancing early fault 
detection capability compared to traditional methods. 
Nevertheless, addressing computational and 
interpretability challenges is vital for broader adoption. 
Future research directions point toward robust, 
scalable, and interpretable solutions, which could 
further revolutionize QA automation practices. 
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