
The American Journal of Engineering and Technology 230 https://www.theamericanjournals.com/index.php/tajet

TYPE Original Research

PAGE NO. 230-236

DOI 10.37547/tajet/Volume07Issue03-20

OPEN ACCESS

SUBMITED 26 January 2025

ACCEPTED 27 February 2025

PUBLISHED 27 March 2025

VOLUME Vol.07 Issue03 2025

CITATION

Volodymyr Kozub. (2025). Problems and Solutions in Building Highly
Loaded Software. The American Journal of Engineering and Technology,
230–236. https://doi.org/10.37547/tajet/Volume07Issue03-20

COPYRIGHT

© 2025 Original content from this work may be used under the terms

of the creative commons attributes 4.0 License.

Problems and Solutions in

Building Highly Loaded

Software

Volodymyr Kozub

Senior Software Engineer at Korn Ferry Houston, Texas, USA

Abstract: High-load software systems are pivotal in
today’s digital landscape, where organizations must
handle ever-growing user volumes, data transactions,
and real-time interactions. This article explores the core
challenges and corresponding solutions in designing,
deploying, and maintaining high-load software
applications. Emphasis is placed on architectural
scalability through microservices, optimal database
management (including sharding and replication), and
effective use of caching and load balancing techniques.
In addition, the study outlines asynchronous processing
methods that enhance system responsiveness by
offloading resource-intensive tasks to background
queues. A dedicated focus is also given to monitoring,
logging, and fault tolerance approaches, showcasing
how a combination of redundancy, automated failover,
and chaos testing procedures can ensure uninterrupted
service delivery. The conclusions are drawn from both
the author’s previously published concepts and recent
academic insights. By integrating these proven
practices—from containerized deployment to
distributed tracing—software engineers can more
effectively address performance bottlenecks,
guarantee high availability, and support real-time
scalability. The primary contribution of this article is a
consolidated framework, illustrating how modern load
handling strategies and robust monitoring pipelines can
optimize throughput, lower latency, and reduce
operational risks in high-load environments. The
solutions proposed are adaptable to diverse technology
stacks, with special attention to NoSQL options,
microservices orchestration, and automated
testing/verification protocols. This consolidated
perspective underscores the necessity of proactive
design choices, continuous testing, and rigorous
observability practices to achieve resilient, scalable
software systems in the face of volatile market
demands.

https://doi.org/10.37547/tajet/Volume07Issue03-20
https://doi.org/10.37547/tajet/Volume07Issue03-20

The American Journal of Engineering and Technology 231 https://www.theamericanjournals.com/index.php/tajet

The American Journal of Engineering and Technology

Keywords: high-load software, microservices, sharding,
caching, load balancing, fault tolerance, asynchronous
processing.

Introduction:

The evolution of the modern digital society is
accompanied by a rapid increase in processed data
volumes, a growing number of users and transactions,
and the rising complexity of business logic [1]. High-
load software has become an integral component of
online services, e-commerce systems, social platforms,
and financial applications, wherein even a brief outage
or malfunction can lead to considerable financial losses
and reputational harm.

Intensifying market competition imposes stricter
requirements on scalability and availability: it is no
longer sufficient merely to “add more” server
resources—it is necessary to implement a
comprehensive strategy encompassing microservice
architecture, distributed databases, and fault-tolerance
mechanisms [2]. At the same time, the dynamic nature
of load changes and the proliferation of cloud
technologies reveal new bottlenecks with critical
effects on performance and reliability [3]. A more
recent review [4] likewise underscores the importance
of an integrated approach to balancing, testing, and
monitoring in distributed environments.

In this article, we build on the results presented in [5],
which featured architectural patterns and
methodological recommendations for designing
systems that can endure sudden load spikes without
incurring critical degradation in service quality.
However, an open question remains: how to
consolidate practical techniques (e.g., sharding,
caching, asynchronous queues) within a unified
methodology that also accounts for network-layer
components (such as SDN-based load balancing) and
the proper integration of microservices (including
Node.js)?

A portion of existing research focuses on localized
issues, such as the transition from a monolith to
microservices [1] and splitting databases (both SQL and
NoSQL), while another part addresses networking
solutions (Software-Defined Networking, intelligent
routing) [3, 4]. Nevertheless, many such works lack a
fully integrated model that can combine tools at various
layers (application–database–network) into a cohesive
strategy for high performance and fault tolerance.

The purpose of this study is to systematically analyze
the primary challenges and existing solutions for
building high-load software (with attention to

microservice patterns, database optimization, and
networking aspects) and to present the author’s
approach—extending ideas from the already published
monograph [5] —demonstrating the added value of
combining these solutions under a single framework.

● We summarize approaches for constructing
high-load systems, including microservice architecture,
database sharding, and asynchronous load balancing.

● We illustrate how the author’s concept (as
outlined in [5]) can be applied to real-world projects,
ensuring high fault tolerance and the ability to
withstand traffic peaks.

● We provide recommendations for integrating
the above-mentioned methods into a unified
architectural model, allowing for the effective
elimination of bottlenecks across different tiers
(application, database, and network).

By merging microservice architecture, intelligent
balancing mechanisms (potentially involving SDN), and
a well-designed data storage scheme (sharding,
replication), the system gains a significantly higher
capacity for handling sudden surges in load, thereby
reducing the risk of performance degradation and
maintaining the stability of the overall service.

1. Key challenges in building high-load software

A fundamental consideration when designing high-load
software is choosing the architectural style: a
monolithic approach or a microservices pattern. In the
traditional monolith, all modules and business
functions are deployed as a single process [1]. This
approach initially simplifies development and
deployment, yet when the load grows significantly,
major drawbacks quickly emerge:

● Scalability Complexity: In a monolithic setup, it
is often difficult to selectively scale an individual
module; the entire application must be scaled as one
unit, leading to inefficient resource use.

● Tight Coupling: Any change in one module may
require recompiling and redeploying the entire
application, thereby increasing the risk of regression
and system downtime [6].

● Longer Build and Test Cycles: As the
functionality expands, so does the codebase,
complicating CI/CD pipelines.

By contrast, the microservices style partitions the
application into a set of small, autonomous services,
each deployed and scaled independently [1, 2]. These
services communicate via lightweight protocols (HTTP,
gRPC, message queues). Such an approach makes it
possible to:

The American Journal of Engineering and Technology 232 https://www.theamericanjournals.com/index.php/tajet

The American Journal of Engineering and Technology

● Scale only the specific services under peak load.

● Accelerate the development and release of
updates without impacting the entire product.

● Flexibly choose technology stacks for different
services.

However, microservices also present notable
challenges: they require sophisticated orchestration

(e.g., Kubernetes, Docker Swarm), introduce
complexities in unified monitoring/logging, and raise
concerns regarding network latency and reliability in
service-to-service communication [4].

For clarity, Table 1 compares key characteristics of
monolithic vs. microservice architecture.

Table 1. Comparison of monolithic and microservice architecture (based on [1]).

Criterion Monolithic Architecture Microservice Architecture

Scalability Entire application scales as one

unit; potentially costly/inefficient

Granular scaling of only the needed

services

Development

Complexity

Initially simpler; single codebase

and repo

Requires well-thought-out DevOps

practices; multiple repos

Coupling High—modules are tightly

coupled

Low—each service is autonomous

Deployment

& Updates

Any change triggers a rebuild of

the entire application

Services are deployed independently;

supports Blue-Green and Canary strategies

Resilience A critical failure in one module

can bring down the whole system

Failures are isolated to a single service;

additional failover detection is required

Testing One overall test cycle; high risk of

regressions

Each service can be tested individually;

end-to-end testing is more complex

Technology

Choice

Single stack (language,

framework, database)

Each service can opt for the most

appropriate stack

Shifting from a legacy monolith to microservices in
practice is non-trivial and involves:

● Service Boundaries and Decomposition:
Determining appropriate boundaries for each
microservice while avoiding over-splitting [7].

● Security and Distributed Transactions: In a
monolith, transactions are typically ACID-compliant;
however, microservices call for saga patterns or CQRS
for transaction management [2].

● Ensuring Consistency: Independent databases
for multiple services increase the risk of conflicting
writes and data drift.

● Team Readiness: Requires upskilling DevOps
teams to work with Kubernetes or equivalent
orchestration systems, plus introducing centralized
logging and distributed tracing [3].

● Pitfalls in Designing the Distributed Model:
Mistakes made at this stage are expensive to correct
and might only surface under high load [1].

Within high-load scenarios, the “cost of an error”
escalates exponentially for two primary reasons:

● Financial Loss: Downtime in e-commerce
services can amount to tens of thousands of dollars per
minute.

● Reputational Risk: Frequent failures drive users
toward competitors, and regaining trust can be nearly
impossible [8].

Likewise, a poorly planned architecture (e.g., a non-
sharded monolith confronted by massive traffic
growth) can render the entire service unreachable
during peak hours [4].

Historically, large-scale systems have relied on

The American Journal of Engineering and Technology 233 https://www.theamericanjournals.com/index.php/tajet

The American Journal of Engineering and Technology

heavyweight relational DBMSs (Oracle, PostgreSQL,
MySQL). When data volumes grow vertically, several
issues arise:

● Difficulty of Horizontal Scaling: Traditional
relational models are geared toward “scale up”
(beefing up a single node), eventually hitting hardware
limits [8].

● Locking and Contention: High concurrency
leads to an increased risk of lock contention and delays,
which degrade throughput.

● High Cost of Licensing and Hardware: Scaling
“upward” can be prohibitively expensive [9].

The popularity of NoSQL solutions (MongoDB,
Cassandra, Redis) stems from their original design for
horizontal scalability (scale out). A key consideration is
the CAP theorem (Consistency, Availability, Partition
Tolerance): it is impossible to achieve both strong
consistency and high availability simultaneously under
network partitions [10]. In high-load software,
therefore, eventual consistency is often chosen,
enabling asynchronous data synchronization while
keeping the system online even if some nodes fail.

● NoSQL Advantages: Distributed architecture
(ring topology), easy scale-out by adding servers, high
write throughput.

● Drawbacks: Lack of ACID transactions,
complexity for analytical queries, extra layers for inter-
service consistency [8].

Sharding is a technique for dividing data into logical
partitions (shards) potentially residing on different
nodes. This is particularly effective for:

● Continuous Growth in Data Volumes: new
shards can be added “on the fly,” distributing load [11].

● Geographically Distributed Systems: shards
located closer to regional users reduce latency [8].

However, choosing the wrong shard key (e.g., one that
is poorly correlated with usage frequency) leads to load
imbalances (the “hot shard” problem) [3].
Concurrently, replication (master-slave or master-
master) is typically essential for fault tolerance: if one
node goes down, another can still handle requests.
Many architectures adopt a hybrid strategy, storing
some data in a relational DB and some in NoSQL [12].

Large-scale network infrastructures for Internet
services often come under peak load from legitimate
traffic and from DDoS (Distributed Denial of Service)
attacks, in which hundreds of thousands of malicious
requests attempt to saturate bandwidth [4]. Under
such conditions:

 ● Any “single point” (authentication server, API
gateway) can quickly be overwhelmed.

● Local failure in a load balancer or firewall can
cause full service unavailability.

Continuous availability (High Availability) at the
network layer is therefore critical, along with a flexible
traffic-filtering algorithm (e.g., rate limiting to block IPs
that exhibit suspiciously high activity).

In high-load scenarios, a traffic asymmetry often arises:
one service might experience a surge in requests, while
another remains underutilized. Solutions include:

● Load Balancing: distributing incoming requests
across a server pool using round-robin, least
connections, or load-based algorithms [2]. At the
network layer, SDN technologies can dynamically
reconfigure routing [3].

● Asynchronous Queues (RabbitMQ, Apache
Kafka): offloading critical services by running tasks in
the background. This is especially valuable for
operations (e.g., report generation) that do not require
an immediate response [8].

● Caching (Redis, Memcached, CDN): storing
frequently accessed data in memory or at edge
locations, drastically reducing database load [4].

An appropriate combination of these techniques
minimizes latency and protects services against
temporary overloads.

Finally, monitoring and logging in a distributed
microservices architecture—often with dozens of
services and numerous servers—becomes another
major challenge. In monolithic systems, collecting logs
centrally is often sufficient. Yet under high load and
service sprawl:

● End-to-End Tracing to follow a request through
multiple services is difficult.

● Brief load spikes can generate an
overwhelming number of log events, potentially
saturating the logging system. Missed logs hamper
incident investigations [1].

● Tools such as Prometheus+Grafana for metrics
and Elastic Stack (ELK) for text-based logs must
themselves be clustered and scaled [3].

In summary, the key issues discussed in this section
affect all layers of high-load systems—ranging from the
application architecture (monolith or microservices) to
database and network interactions, encompassing
DDoS protection and load balancing configurations.
Subsequent sections will address methods to mitigate
these obstacles, demonstrating how the author’s

The American Journal of Engineering and Technology 234 https://www.theamericanjournals.com/index.php/tajet

The American Journal of Engineering and Technology

integrated approach (see [5]) effectively tackles these
challenges in combination.

2. Existing solutions and optimization approaches

Microservice architecture involves breaking an
application into a set of loosely coupled, independent
services [1]. The most commonly used patterns include:

● Service Discovery: Registers services in a
central registry, simplifying automatic request routing.

● Circuit Breaker: Prevents cascading failures by
"breaking the chain" when persistent errors are
detected.

● API Gateway: Serves as a single entry point for
external requests, routing traffic to specific services
while providing authentication functions.

According to [5], these patterns ensure isolation and
enable flexible scaling of components experiencing the
highest load. It is critical to avoid tight coupling
between services by minimizing direct calls and mutual
data storage.

Step-by-step recommendations for service
decomposition and technology selection:

● Domain modeling. It is recommended to follow
the Domain-Driven Design methodology by defining
bounded contexts and independent functional areas
[5]. Each area becomes a separate microservice with its
own data storage.

● Protocol selection. Internal service
communication can utilize gRPC or AMQP, whereas
public APIs typically remain on HTTP/REST [1].

● Infrastructure foundation. A basic
orchestration layer (Docker, Kubernetes) and a
configuration server (HashiCorp Vault, Consul) should
be in place. This approach ensures that each service is
deployed independently and managed through
centralized tools [4].

Such decomposition reduces the risk of monolithic
bottlenecks as traffic increases and allows for more
flexible resource allocation.

Caching server-side data (e.g., storing the results of
computationally expensive queries) can reduce the
load on the central database and improve response
times. Two main approaches are commonly used in
practice:

● Redis: Supports data structures (hashes, lists,
sets), allows TTL configuration, and enables cluster
replication for availability.

● Memcached: Designed for simple key-value
storage, providing high-speed access but lacking
persistence support [8].

In [5], it is noted that proper use of TTL and regular
checks for "expired records" significantly reduce the
number of redundant queries to the database. For
example, the following Node.js code (using Redis)
demonstrates caching query results:

const redis = require('redis');

const client = redis.createClient();

function setCache(key, data, ttl = 3600) {

 client.setex(key, ttl, JSON.stringify(data));

}

function getCache(key, callback) {

 client.get(key, (err, reply) => {

 if (err) callback(err, null);

 else if (reply) callback(null,

JSON.parse(reply));

 else callback(null, null);

 });

}

Here, setex sets the time-to-live (TTL) in seconds,
allowing Redis to automatically remove outdated data.

Load balancing across multiple nodes ensures high
availability. The most widely used solutions are Nginx
and HAProxy, which support Round Robin, Least
Connections, and Weighted Round Robin algorithms
[1]. Additionally, [5] emphasizes the need to
implement:

● Horizontal scaling: Automatic server addition
managed by Kubernetes orchestration or AWS Auto
Scaling in response to increased traffic [11].

● CDN (Content Delivery Network): Static
resources (images, JS/CSS) are distributed across
globally deployed nodes (e.g., Cloudflare, CloudFront),
reducing latency and offloading the primary backend.

To minimize response time under high loads, long-
running operations (such as PDF generation or mass
notifications) should be offloaded to background
queues (RabbitMQ, Kafka) [4]. In [5], the following
advantages are highlighted:

● Asynchronous processing: The API immediately
responds with "task received", while actual processing
occurs in the background.

● Resilience: If one worker fails, messages remain
in the queue, allowing other workers to continue
processing.

The American Journal of Engineering and Technology 235 https://www.theamericanjournals.com/index.php/tajet

The American Journal of Engineering and Technology

● Worker scalability: As message volume
increases, additional worker processes can be added.

For example, in Node.js, the Bull library can be used:

const Queue = require('bull');

const emailQueue = new

Queue('emailQueue');

emailQueue.process(async (job) => {

 // Simulating email sending

 await sendEmail(job.data.email);

});

emailQueue.add({ email:

'user@example.com' });

This approach improves load distribution and simplifies
the implementation of event-driven mechanisms.

For high-load systems, ensuring automatic failover to
backup nodes is critical. This can be implemented as:

● Active-Active: All nodes are available
simultaneously, and the load is distributed; in case of
failure, traffic is redirected to the remaining nodes.

● Active-Passive: A standby node is activated only
when the primary node fails [11].

Previous research [5] highlighted that multi-region
deployment further reduces the risk of global
downtime. It is essential to test the failover mechanism
and periodically simulate failures (Chaos Engineering)
to verify the correctness of the recovery plan [8].

Modern monitoring practices involve collecting metrics
(CPU usage, response latency, number of active
connections) and logs from all system components
(microservices, databases, load balancers, etc.).
Recommended tools include:

● Prometheus: Stores time-series metrics and
allows alert configuration.

● Grafana: Provides real-time metric
visualization.

● ELK Stack (Elasticsearch, Logstash, Kibana):
Centralized log collection and analysis with convenient
search and aggregation capabilities (Smith & Brown,
2021).

For request correlation in microservice architecture,
trace IDs are assigned to all service logs [4]. [5]
describes how end-to-end tracing simplifies bottleneck
identification and anomaly analysis.

Load testing (Apache JMeter, Locust) provides insights
into system behavior under extreme conditions [1]. It is
recommended to:

● Simulate an increase in users or transactions
within a short time frame.

● Analyze response time, throughput, and error
rates.

● Implement chaos testing (Chaos Engineering)
by randomly shutting down containers to verify the
ability of remaining nodes to handle the load [8].

A systematic approach to testing improves reliability
and enables early detection of technical issues.

Thus, the solutions described in this section form a
comprehensive optimization strategy for high-load
systems at all levels—from microservice architecture to
fault tolerance mechanisms and testing.

CONCLUSION

High-load software development entails more than
simply adding servers or scaling existing infrastructure.
Rather, it requires a holistic approach that incorporates
architectural design, database optimization,
asynchronous task processing, and robust monitoring.
Microservices emerge as a central paradigm, enabling
independent scaling and minimizing cross-service
dependencies. Caching strategies and load balancing
significantly improve throughput and reduce mean
response times, while background queues handle
resource-intensive or time-consuming processes
asynchronously.

Equally vital is the implementation of redundancy and
failover techniques to mitigate downtime and protect
against partial failures, as well as continuous
observability through metrics and centralized logging.
These strategies, drawn from both established best
practices and systematic analyses [5], offer a
comprehensive roadmap for practitioners aiming to
build or refine high-load environments.

Future research may investigate the potential of
machine learning for predictive scaling, explore
advanced distributed consensus models beyond
traditional CAP-theorem constraints, and delve deeper
into security concerns, including automated anomaly
detection to counter sophisticated distributed attacks.
Incorporating these developments promises to
advance the field further, ensuring that high-load
software remains flexible, fault-tolerant, and capable of
sustaining peak traffic demands under evolving
conditions.

The American Journal of Engineering and Technology 236 https://www.theamericanjournals.com/index.php/tajet

The American Journal of Engineering and Technology

REFERENCES

Newman, S. (2019). Monolith to Microservices.
O’Reilly.

Dragoni, N., Lanese, I., Larsen, S. T., Mazzara, M.,
Mustafin, R., & Weber, T. (2017). Microservices: How to
Make Your Application Scale. In R. Sellami & B. Vogel
(Eds.), Microservices: Science and Engineering (pp. 10–
30). Springer.

Neghabi, A. A., Jafari Navimipour, N., Hosseinzadeh, M.,
& Rezaee, A. (2018). Load Balancing Mechanisms in the
Software Defined Networks: A Systematic and
Comprehensive Review of the Literature. IEEE Access,
6, 14159–14178.

Belgaum, M. R., Musa, S., Alam, M. M., & Su’ud, M. M.
(2020). A Systematic Review of Load Balancing
Techniques in SDN. IEEE Access, 8, 98612–98630.

Kozub V. Best practices for the development of high-
load systems / Volodymyr Kozub - K.: Gutenberg, 2024.
- 116 p. ISBN 978-617-95387-2-8

Bass, L., Weber, I., & Zhu, L. (2015). DevOps: A Software
Architect’s Perspective. Addison-Wesley.

Evans, E. (2004). Domain-Driven Design: Tackling
Complexity in the Heart of Software. Addison-Wesley.

Kleppmann, M. (2017). Designing Data-Intensive
Applications. O’Reilly.

Stonebraker, M., & Hong, S. (2018). What To Do About
Growing Data Volume and Variety? Communications of
the ACM, 61(8), 34–39.

Brewer, E. (2012). CAP Twelve Years Later: How the
‘‘Rules’’ Have Changed. Computer, 45(2), 23–29.

Harrison, G., Huang, B., & Zhang, Y. (2019). Improving
the Scalability of Sharded Databases with Adaptive
Load Balancing. International Journal of Database
Management Systems, 11(3), 41–56.

Patel, A., Chauhan, S., & Sen, D. (2019). A Hybrid
Approach for Data Storage in Distributed
Environments. Journal of Cloud Computing, 8(1), 10–
15.

