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Abstract: The research focuses on how Multi-Agent 
Systems (MAS) coupled with Machine Learning (ML) can 
help manage the challenges and risks associated with 
new-generation supply chains networks. The proposed 
MAS-ML framework improves flexibility, adaptability, 
and predictiveness in essential roles in supply chain 
management (SCM), including demand forecasting, 
inventory management, production planning, and SCM 
logistics. The framework is based on decentralised 
decision-making where each agent is responsible for a 
particular supply chain activity but employs real-time 
data foresight from the ML model to streamline the 
activities. This decentralisation enables resilience in 
supply chains, which can experience events such as 
demand variability and transportation disruptions. 
MAS-ML is presented in this paper as the solution 
capable of enhancing supply chain performance, 
reliability, and cost optimisation in situations 
characterised by risk and uncertainty, such as the 
current global pandemic. In addition, this paper 
presents potential research areas, such as the 
integration of more enhanced deep learning algorithms, 
the extension of proposing MAS-ML into other sectors, 
and the addressing of ethical and transparency concerns 
associated with AI-based decision-making systems. The 
proposed MAS-ML framework improves the 
adaptability and resiliency of supply chains, providing a 
flexible solution for modern supply chain problems. 

Keywords: Multi-Agent Systems (MAS), Machine 
Learning (ML), Supply Chain Management, Demand 
Forecasting, Inventory Management, Production 
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Planning, Logistics Optimisation, Supply Chain 
Flexibility, Decentralised Decision-Making, Supply 
Chain Resilience, Predictive Analytics, Random Forest, 
Gradient Boosting. 

 

Introduction: Decision-making in today's global supply 
chain environment involves robust strategic 
framework and techniques than traditional supply 
chain models (Katsaliaki et al., 2022). The proposed 
MAS-ML framework is a holistic method that addresses 
the adaptability incorporating predictive 
computational ability. Supply chains are the principles 
of the global economy, which allow the generation of 
materials, the distribution of products, and the 
delivery of them to clients worldwide. More recently, 
though, the supply chains have been threatened in 
ways that have opened the supply chain experts to 
new forms of management. COVID-19 has disrupted 
operations worldwide, resulting in factory closures, 
transportation constraints, and heightened demand 
for specific goods, including personal protection 
equipment (Camur et al., 2023). The pandemic caused 
severe supply chain disruptions, with many companies 
facing delays in production and shipping (Xu et al., 
2020). For instance, global automotive manufacturing 
slowed significantly due to factory shutdowns in key 
regions like China, the US, and Europe. 

Many businesses were forced to adopt new strategies, 
such as digitalisation to maintain supply chain 
resilience during the crisis. Supply chains grow in size 
and sophistication, and demand fluctuation, inventory 
status and transportation complications are 
challenging to forecast and control (Ghadge et al., 
2020). Traditional supply chain systems with standard 
planning rely on accurate forecasts, and a centralised 
control system cannot handle these challenges in real-
time (Epiphaniou et al., 2020). For instance, rigid 
production planning and arithmetic demand 
forecasting approaches regularly overlook consumer 
demand fluctuations and transportation chain 
disruptions.  

  The major problems of modern supply chains are 
uncertainty. The current demand forecasting models 
have some drawbacks in predicting the consumers’ 
changing behaviour, primarily influenced by digital 
platforms and volatile economic environments 
(Kalkanci., 2011). Supply chain managers mainly deal 
with global transportation networks, where delays, 
lockups and cost volatility are strangers. The older 
supply chain management systems that used historical 
parameters and forecasts cannot accurately 
accommodate these variables (Katsaliaki et al., 2022). 
In this regard, conventional decision-making models 

can be ineffective in many settings because they do not 
allow one to predict the appearance of a new factor in 
the process. That is why, with increasing levels of supply 
chain integration, the impact of such inefficiencies is 
much more significant. Thus, new approaches, which 
may effectively accommodate flexibility emerging due 
to uncertainty, are deemed necessary.  

 This work proposes a novel approach known as MAS-
ML o address these challenges affecting supply chain 
management in the current environment of fluctuating 
uncertainty level. The integration of Multi-Agent 
Systems with Machine Learning enables the 
enhancement of reliability and flexibility of supply chain. 
Integrating MAS and ML for the development of the 
MAS-ML approach makes it possible to increase 
flexibility and adaptability that include demand 
forecasting, inventory management, production 
planning, and logistics functions. Therefore, logistics 
agents can use of predictive models in order to find 
optimal routes that can improve efficiency in delivery of 
products. MAS linked with ML provides a strong 
background useful for addressing more complicated and 
supply chains (Pasupuleti et al., 2024). 

MAS and ML add a new perspective in supply chain 
management due to the flexibility of handling the 
modern supply chain nature, which is full of 
uncertainties (Stoychev, 2023). Implementation of the 
MAS framework would enable each of the supply chain 
agents to operate autonomously, therefore ensuring 
the fast and effective decision-making regarding the 
real-time data that constantly flows into the system 
(Rajbala et al., 2023). This research presents a significant 
contribution to literature as it seeks to understand the 
factors responsible for the growing concern of supply 
chain management in the modern world economy. The 
overall purpose of the MAS-ML is to assist the 
companies in improving the organisational 
performance, reducing costs and enhancing the 
customer satisfaction due to more efficient supply 
chain. Furthermore, the adoption of ML models into the 
MAS framework helps the supply chain managers to 
reduce the risk that arises when their supply chain is 
disrupted, hence improving operations resilience 
(Farazi, 2024). 

Literature Review 

Supply Chain Resilience 

Supply chain responsiveness can be defined as the 
capability of the supply chain to protect against 
potential disruptions, mitigate them, and continue with 
business operations. Today, supply chains are highly 
susceptible to disruptions caused by factors like the 
COVID-19 outbreak (Raja Santhi and Muthuswamy, 
2022). As the advent of the COVID-19 pandemic has 
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shown, there is a need for robust and flexible supply 
chains that are ready to face rapid fluctuations in 
demand, production and delivery (Frederico, 2021). 
Industry 4.0 technologies are a robust technique that 
suggests digitising human activity systems through 
intelligent technologies such as IoT, AI, and data 
analytics for real-time monitoring and decision-
making. Predictive analytics, one of the main segments 
of Industry 4.0, enables the supply chain manager to 

anticipate disruptions that could occur and plan how the 
operations will look through the use of past and present 
data (Spieske and Birkel, 2021). For example, IoT devices 
can offer Managers real-time insights into inventory 
availability, while AI-driven systems can provide 
different suppliers or transportation routes during 
disruptions. 

 

 

 

 

 

 

Figure 1: Industrial revolutions from Industry 1.0 to Industry 5.0 (Source: Folgado et al., 2024) 

The other important factor that defines supply chain 
vulnerability is that many supply chain managers need 
help knowing where to begin when handling risk (Wu 
and Chen, 2014). When it comes to decision-making in 
the context of supply chain management, the reason 
itself is bounded by the fact that no manager can make  

a decision when encountering supply chain disruptions 
or uncertainty in the market. Hence, there is a need for 
systems that can use data to counter human cognitive 
biases or shortcomings in real-time. 

 

 

 

 

 

 

 

 

Figure 2: Supply Chain Resilience Source: https://www.altexsoft.com/blog/supply-chain-resilience/ 

Multi-Agent Systems (MAS) 

Multi-agent systems (MAS) are distributed, self-
organised systems where numerous agents are 
associated with various roles or activities in a supply 
chain, like inventories, production, or transportation 
(Gui et al., 2024). MA supports real-time decision-
making since the agents can work autonomously while 
acquiring and exchanging data to meet goal-oriented 
supply chain goals (Nitsche et al., 2023). However, the 
decentralised functionality of MAS makes it useful in 
supply chains because various functions may need to 

respond to new circumstances or changes in demand 
promptly. This means that the development of MAS in 
the supply chain emphasises agents that adapt to 
different strategies. This also allows agents to see what 
has happened in their surroundings, gain knowledge of 
the events, and plan their actions for the situation (Lee 
et al., 2019). This flexibility makes MAS highly suitable  

for solving uncertainties and dynamic environments 
because agents can operate in real-time without 
resorting to a higher authority. 

 

 

 

 

 

 

 

 

Figure 3: Multi-Agent System (Source: Kishore et al., 2006) 
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The current MAS design for the supply chain 
application was decentralised decision making, where 
every agent is capable of making its own decisions 
based on the role it plays in the supply chain 
application. This makes the supply chain adaptive to 
market forces and conditions, thus leading to 
increased flexibility of the supply chain 
(Gružauskas,2020). Artificial Intelligence (AI) has come 
to be regarded as an empowering technology within 
the supply chain field to enhance the forecast models 
and support functions in the decision-making process 
(Mahraz, 2022). Random forests and Neural networks 
are some of the applications of the ML in the supply 
chain management to analyse big data, and identity 
hidden trends (Ni et al., 2020). Random Forests have 
been implemented in the supply chain management 
context for demand fluctuation forecasting and 
inventory control (Makkar et al., 2020). For instance, a 
supply chain manager uses Random Forests to forecast 
the demand for a particular product during a holiday 
and subsequently order the required stock (Kosasih 
and Brintrup, 2022). This makes it easier to predict 
which products are likely to be popular and which are 
likely to be unpopular, and this leads to minimisation 
of situations where stock out or overstocking occurs 

frequently. 

Machine Learning (ML) in Supply Chains 

Neural Network techniques in ML are known to be 
effective in identifying non-linear patterns in the supply 
chain data. It illustrates how Neural Networks can 
simulate the interaction between market demand, 
production capabilities, and supplier lead time to 
enhance production scheduling and procurement. 
Neural Networks can update their knowledge from new 
data, making it easier to improve on the forecast made 
if conditions change frequently. The application of ML in 
the supply chain results in improved decision-making 
decreased operational executions, and significant 
improvement in supply chain activity (Quayson et al., 
2023). Understanding the interplay between contracts 
and behaviour supplies an essential perspective on 
supply chain dynamics. Many supply chain members, 
including the supplier, manufacturer, and distributors, 
develop legal and business contracts that define risk, 
responsibility and reward (Farazi, 2024). However, a 
fixed traditional contract model could more effectively 
address risks, uncertainty, and what people do in the 
real world. That is where the role of Behavioral 
Economics, which looks at how people depart from 
rational choice, comes in. 

 

 

 

 

 

 

Figure 4: ML system configuration (Sharma et al., 2020). 

Chen and Rong (2020) look into factors such as 
contract complexity and individual behaviour that 
affect supply chain performance. For instance, the 
complexity of contracts, such as extensive 
documentation, exposes the parties to 
misunderstanding or misinterpretation, causing 
inefficiency and conflicts among the supply chain 
members (Li et al., 2020). Furthermore, bounded 
rationality the finite capabilities of the decision-makers 
may lead to robust decisions. Some of these 
behavioural factors must be considered whenever 
contracts are being developed to fit into the supply 
chain and in a capability /constrained environment 
(Chen, 2013). 

According to behavioural contract theory, contracts 
ought to be made more fundamental and should also 
be made to bring out the concept of alignment of 
incentives. For example, performance-based deals 
with incentives that can be points such as on-time  

delivery or expense reduction are likely to reduce the 
impact of bounded rationality and enhance overall 
supply chain effectiveness (Li et al., 2009). Thus, it 
enables the companies to identify the behavioural 
characteristics of supply chain partners and develop 
contracts that can facilitate cooperation and minimise 
uncertainties in the supply chain. The review of supply 
chain resilience, Multi-Agent Systems (MAS), Machine 
Learning (ML), and contract design reveals a clear trend 
towards incorporating advanced technologies and 
behavioural insights to optimise decision-making in 
complex and dynamic supply chains.  

MAS and ML is a promising approach for real-time and 
decentralised decision-making for achieving 
cooperation throughout contracting networks (Farazi, 
2024). In combination, these methods provide a full 
solution to contemporary problems of managing supply 
chains, thus increasing the organisations’ resistance to 
unpredictable situations. 
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Proposed MAS-ML Framework 

 

 

 

 

 

 

 

 

 

 

Figure 5: Proposed MAS Framework 

The decision making process in SCM is most often 
agility and flexibility oriented in the present world due 
to increased volatility in supply chain. The integration 
of both Multi-Agent Systems (MAS) and Machine 
Learning (ML) is proposed to address these problems 
and provide a robust and efficient approach to supply 
chain exposure. In MAS, supply chain functions such as 
demand forecasting, inventory control, manufacturing 
planning, and logistics are considered as objects that 
can act independently and make decisions. The 
Random Forest and Gradient Boosting Machines 
scrutinise all the historical data along with the current 
data and the agents get prompt and forecasted 
decisions. MAS-ML models possess the capability for 
near real-time changes and thus offer greater flexibility 
and responsiveness in supply chain operations most 
notably in the market context.  

Machine Learning Integration for Predictive Analytics 

Forecasting of demand is an essential feature of the 
supply chain management. Random Forest and GBM in 
the MAS framework can better estimate demand using 
historical data and trends (Seyedan and Mafakheri, 
2020). The demand forecasting models created actual 
time prediction utilised by the MAS framework to 
present demand requirement in the future (Zohra 
Benhamida et al., 2021). These forecasts are useful 
especially to agents such as inventory and production 
managers for the purpose of ensuring that inventory 
matches the supply chain management needs. 

Another strategic function of the organisational 
structure that the ML models in the framework include 
is Inventory Optimisation (Chowdhury et al., 2024). It 
allows the inventory agent to forecast for the right 
quantities of stock. The inventory agent defines the 
stock using the prediction from machine learning so 
that the agent can reduce supplies depending on the 
fluctuations in demand (Sakib, 2021). This approach 
optimises costs while ensuring that products are  

available to meet customer demand, thus improving 
overall supply chain performance (Li and Chen, 2020). 

Production Scheduling is related to demand forecasting 
and inventory management since the former depends 
on the latter to be accurate. Once the demand 
prediction is produced, the production agent computes 
the "Production_needed" and the 
"Production_schedule" to ensure the production 
capacity is efficiently used. The simulation made it 
easier to explain how to forecast demand in scheduling 
the production process, the available material, and the 
workforce within limited production abilities. Such 
flexibility in product scheduling enables the supply chain 
to quickly meet the higher or lower demand in the 
market without undue lead time. 

The MAS implement Logistics and Transportation 
Optimisation as another primary function wherein the 
use of machine learning models is done to reduce 
transportation costs and routes (Adi et al., 2021). The 
transportation agents used supervised machine learning 
to forecast the optimal means of transporting the 
merchandise depending on cost and time (Barua et al., 
2020). These predictions enabled the logistics agent to 
optimise transportation plans by constantly adapting 
costs and delivery time. In addition to cutting transport 
costs, real-time optimisation capabilities improve 
logistics' effectiveness, dependability, and adaptability 
to demand or supply shock spikes. 

Agent-Based Decision-Making 

The primary stages in the MAS-ML framework are Agent 
Interaction and Coordination. The decision-making is 
decentralised, and each agent works independently, 
although he may consult and provide information to 
other agents (Antons and Arlinghaus, 2022). On the 
other hand, the logistics agent works closely with the 
inventory and production agents to ensure that all the 
right products reach the appropriate point of sale at an 
appropriate time (Aliawadi and SINGH, 2021). It allows 
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real-time decision-making without any central 
authority, as with traditional organisations. The above 
coding simulation depicts how every agent operates to 
ensure sufficient supply chain flow, not only in cases 
where demand and logistics conditions shift. 

The MAS framework helped exemplify the adaptive 
response through agents who modify the production 
timetables and logistical strategies based on data 
collected at the time. It also maintains the flexibility of 
the supply chain, which is essential for overcoming 
disruptions (Xu et al., 2021). Another strategic 
component of the MAS framework is logistics and 
inventory collaboration. Logistics and inventory agents 
play an essential role in product movement from the 
point of production to the distribution centres or 
customers (Kramarz and Kmiecik, 2022). It was found 
that the logistics agent predicted the likely transport 
pattern and the inventory agent checked whether the 
stocks were adequate.  

Resilience and Adaptability 

Controlling uncertainty is one of the most significant 
objectives of the MAS-ML framework. There are 
various sources of uncertainty in supply chain such as 
demand uncertainty, disruption in production and 
distribution, and any other unpredictable situation 
(Kumar and Sharma, 2021). The MAS-ML framework 
addresses such uncertainties since the supply chain 
agents are allowed to change the response 
dynamically. Real-time decision making facilitates the 
execution of machine learning models within the 
context of MAS framework (Pereira and Frazzon, 
2021). Other advantages of the MAS-ML framework 
are Cost and Efficiency Improvements. Through the 

coordination of production, inventory, and logistics, the 
framework aims at reducing expenditures while 
enhancing supply chain operations (Pasupuleti et al., 
2024). For instance, the linear programming model 
sought to reduce holding costs while also striving to 
ensure that stocks, inventories were adequate. This 
synergy cost and efficiency not only increase the 
profitability of the supply chain but also over supply 
chain disruption (Buschiazzo et al., 2020). 

Evaluation of the Framework 

The primary KPIs suitable for assessing the effectiveness 
of the MAS-ML framework are as follows: predictive 
accuracy, production line quantity, decreased lead time, 
and reduced logistics costs (Islam et al., 2024). 
Additionally, linear programming optimised stock levels, 
reducing holding costs and improving overall efficiency. 
The above metrics enable an understanding of the level 
of improvement in supply chain resiliency due to the 
implementation of the MAS-ML framework. 

This shows that through using the MAS-ML framework, 
the supply chain gains high flexibility and 
responsiveness. Thus, the applied framework optimizes 
supply chain activities in terms of its production 
schedule, logistics, and transportation plan to reduce 
time and cost of the supply chain (Ikevuje et al., 2020). 

METHODOLOGY  

This section focuses on the approach used in realising 
and evaluating the integration between MAS and ML in 
enhancing supply chain resilience. The four elements 
are data capture, machine learning model design, MAS 
emulation, and performance assessment indicators. 

  

 

Figure 6: Proposed Methodology Diagram
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Data Collection 

MAS-ML can collect a considerable volume of data that 
define the supply chain, including inventory, rate of 
production, demand, cost of shipping, and time. These 
datasets were collected from real-life supply chain 
environments or well-articulated simulated scenarios. 
In the coding simulation, variables like "Stock levels," 
"Production volumes," and "Shipping costs" were 
crucial in modelling the decision of agents in the MAS 
framework. It ensures that the agents have historical 
and real-time information to make predictive and 
adaptive decisions. Data Preprocessing was vital to 
guarantee that the data collected was free from 
blindness and biases. The missing values were either 
imputed appropriately by measures like the mean or 
omitted, and records with missing values were also 
omitted. Numerical data was scaled correctly, which 
made it easier for the machine learning models to 
place all the values in a standard range. Variables like 
"Product types" and "Transportation modes" were hot 
encoded to make it possible for machine learning 
algorithms to process them. This preprocessing 
corresponds to the steps described in the coding file 
part, where supply chain attributes were 

discretised/mapped to a more suitable format for ML 
models. 

Feature Selection was the most crucial step when 
deciding which variables would be input to the machine 
learning models. Some attributes, such as order 
quantities, lead time, and shipping cost, were selected 
because they are relevant inputs in generating demand 
forecasts and are primarily used in optimising 
production processes.  

Machine Learning Model Development 

Model Selection was based on the challenge of 
algorithms integrated supply chain and dynamic data. 
Random Forest and Gradient Boosting were chosen as 
the primary models because these algorithms showed 
high rates of predictive accuracy and are suitable for 
working with large datasets with many attributes 
(Callens et al., 2020). In the coding implementation of 
these models, positive feedback was achieved in the 
ability to predict demand and enhance real-time 
reinforcement decisions for supply chain agents. Due to 
their stability and ability to avoid overfitting, they are 
ideal for unpredictable demand. 

 

 

 

 

 

 

 

 

 

 

Figure 7: Machine Learning Methodologies Source: 
https://www.forbes.com/sites/louiscolumbus/2018/06/11/10-ways-machine-learning-is-revolutionizing-

supply-chain-management/ 

Training and Testing entailed data division or the 
division of a dataset into training and testing sets. The 
hyperparameter optimisation process achieved the 
best results for the machine learning models (Yang and 
Shami, 2020). The Random Forest model was used in 
the coding simulation process, and the estimators 
were repeatedly searched and improved to get the 
optimum values. This tuning of the model guarantees 
that it is accurately tuned depending on the level of 
demand to make the best decisions for the agents. 
Regarding Model Evaluation, the measures involved 
were Mean Square Error (MSE) and Mean Absolute 
Error (MAE) to determine the accuracy of the models 
generated.  

Multi-Agent System (MAS) Simulation 

The MAS Framework Setup had an agent design that 
dealt with different supply chain functions, including 
demand forecast, inventory, production schedule, and 
logistics. During the coding simulation, agents 
responded proactively to the demand requirements and 
logistics conditions on the field shared in real-time to 
arrive at decisions coherent with the overall goals of the 
supply chain.  

Regarding simulation facilities, AIFs were developed to 
depict how agents in a particular supply chain interact 
and self-organise in response to changing conditions. 
The actual changes to the production schedule and 
logistic operations to match the predicted demand were 
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made while testing the MAS framework in the 
Simulation Environment. The coding illustrated how 
this environment emulated the real-world conditions 
under which the agents operated regarding fluctuating 
demands and supply chain challenges. A simulated 
supply chain environment was created to validate the 
feasibility and efficiency of the proposed MAS-ML 
framework to handle the supply chain operations. 

Every agent integrates decision logic to control the 
decision-making process. For instance, the Production 
Agent used a simple rule that answered questions 
regarding production timing and quantity based on 
estimated demand and available inventory. This logic 
helped direct the accurate production of the required 
products without using many raw materials when they 
were not needed. Such heuristics were used in the 
coding example to improve the production schedules 
and make the supply chain as efficient as possible. 

Optimisation Techniques 

Linear programming was use to optimise the Stock 
Holding Cost. The scipy' linprog' function was used to 
solve the problem of minimising the cost of holding 
stock. This optimisation made it easy for the agents to 
provide adequate stock to clients after meeting the 
costs of acquiring these stocks without spending much 
money. Logistics Optimisation aims to find the best 
transportation routes by employing a predictive 
model, reducing shipping expenses. In the coding 
simulation, resource allocation was seen in calculating 
shipping costs and choosing transport infrastructure to 

ensure the optimum use of resources and timely 
delivery. 

Production planning was employed where demand was 
identified to be higher than demand in stores. It 
managed to avoid overproduction while at the same 
time focusing on areas that required more attention. 
The performance measures involve the Mean Square 
Error and Mean Absolute Error of the demand forecast, 
and the usage of the logistic resources, for flexibility and 
cost analysis of the framework.  

Implementation: Integration of MAS and ML in the 
Case Study 

To demonstrate the applicability of the proposed Multi-
Agent System (MAS) and Machine Learning (ML) 
framework, this paper presents a manufacturing 
company’s supply chain example in which the firm 
specialises in consumer electronics. This is because the 
demand in this area is very unpredictable due to 
changes in the customers’ preference in the 
advancement in technologies. Therefore, the MAS-ML 
framework is anticipated to improve the flexibility as 
well as increase efficiency and capability of responding 
to actual changes at a comparatively cheaper cost. 

The MAS-ML framework was implemented in four key 
areas: Demand forecasting, inventory management, 
production planning, logistics optimisation, and selling 
prices. The detailed diagram with steps is depicted 
below:  

 

 

 

 

 

 

 

 

Figure 8: MAS-ML Framework 

Demand Forecasting Agent 

The demand forecasting agent was designed to 
calculate the future demand for a product and in this 
context, the clients’ sales history, market trends and 
behaviour were applied (Zohdi et al., 2022). The agent 
used advanced machine learning techniques like 
Random Forests and Gradient Boosting Machines to 
develop precise demand forecasting. When 
incorporating the use of ML into this agent, the 
company was able to move from static to dynamic in 
terms of the forecast and this means that the 
predictions made by the agent could be refreshed from 
time to time 

Inventory Management Agent 

The inventory management agent adapted the number 
of stocks to the demand forecast that the demand 
forecasting agent obtained. This agent ensured no 
stockouts or overstocking of products and components. 
It retained the ML predictions to proactively estimate 
the demand shortly and determine the right quantity of 
stocks to help reduce holding costs while making the 
products easily available. The inventory management 
agent also liaised with the logistics agent to ensure that 
the frequency of restocking matched the company's 
manufacturing and delivery timetable. 
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Production Planning Agent 

The production planning agent was supposed to 
respond to the predicted demand and change the 
production schedule accordingly. This agent applied 
the demand forecasts to determine the 
“Production_needed” and “Production_schedule" 
variables to maintain total capacity without excess 
inventory. Where there were changes in demand 
forecast, the production planning agent had to make 
recommendations to increase or reduce production 
depending on available labour, raw materials, and lead 
time to produce the products. This performance was 
achieved by linking the demand forecasts derived from 
the ML algorithm to real-time company production 
data through this agent to increase production 
efficiency while reducing waste. 

Logistics Optimisation Agent 

The logistics agent ensured that the movement of 
goods was timely and effective, all in the most 
affordable manner. This agent estimated the shipping 
time, cost of transportation, and lead time using the 
predictive capabilities of the machine learning models. 
By including this information, the logistics agent could 
redirect deliveries where needed to minimise delays 
and expenses related to transportation. They also 
collaborated with the inventory and production agents 
to efficiently utilise transportation resources, 
especially when responding to shifts in demand or 
supply shocks. 

RESULTS 

The simulation of the MAS-ML framework generated 
the following results that enhanced the operation of 
the supply chain: 

Multi-Agent System 

  

Figure 9: Multi-Agent System 

The provided code depicts the Multi-Agent System 
where the Adjustment Agent freezes the new 
production level if it exceeds the predicted number. 
The Production Agent reacts to the forecasted demand 
and changes its production level similarly. Each agent 
begins with given inventory and production rates. 
When the forecasted demand exceeds the current 
inventory, the agents raise production by the 
discrepancy and set the current inventory to zero. In 
this case, both agents had very little inventory left, and 
the new productions were set to be 322.24 units to 
meet the demand. This simulation mimics the ability of 
agents to change the production rate in response to 
forecasted demand to achieve supply chain 

equilibrium. 

 

 

Figure 10: Mean Absolute Error 

The code determines Mean Absolute Error (MAE) for 
demand forecasting using the predicted values (y_pred) 
and actual test values (y_test). MAE calculates the mean 
of the absolute differences between the actual and 
predicted values without referencing signs. In this case, 
the MAE is about 361.72. Therefore, the predicted 
demand is 361.72, meaning the actual demand is 
increasing. A lower MAE mean that the model is more 
accurate, while a higher value shows that the error rate 
of the forecasting model needs to be improved. It helps 
evaluate the forecast accuracy of demand by the model. 

 

  

Figure 11: MAE for Inventory, Production, Logistics 

  

In the simulated model, three agents, Inventory, 
Production, and Logistics, adjust to the demand based 
on the machine learning prediction. Firstly, each agent 
has initial conditions of inventory, production and 
logistics levels entered by the user. Upon receiving the 
following demand forecast of 331.4 units, the Inventory 
and Production Agents reduce the inventory level to 
zero and then scale the production according to the 
needs. Due to the increase in production to 101 units, 
The Logistics Agent adapts the company's logistics 
resources. Self-organised behaviour across agents 
shows how agents forecast demand, make operational 
decisions, and achieve supply chain equilibrium. This 
result is aligned with the proposed goal of improving 
supply chain robustness through utilising multi-agent 
systems (MAS) with machine learning to facilitate timely 
adaption in response to market conditions and increase 
flexibility and responsivity of the supply chain. 

Stock Levels vs Predicted Demand 
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Figure 12: Stock Levels vs Predicted Demand 

This graph represents the actual stock level of a 
particular product against the expected demand rate 
when the given test data is applied. The blue line refers 
to the stock level, which is generally low, adding below 
100 units often. The orange colour is used for the 
forecasted demand and is much higher and varies 
between 300 and 700 units. The difference between 
stocks and forecasted demand also shows that current 
inventory is insufficient for the forecasted market 
needs, and always having a higher inventory is only 
sometimes useful due to its variation, which calls for 
flexibility in inventory management. 

Scheduled Production Volumes 

  

Figure 13: Scheduled Production Volumes 

This bar chart illustrates the amount of production 
planned in numerous test instances. Each bar's length 
is proportional to the production capacity needed 
based on the forecasted demand. The planned 
production quantities are different and range from 
about 100 to more than 600 units. These oscillations in 
the amount of production volumes indicate that 
demand predictions can be quite volatile, and it is 
essential to accurately align production capabilities to 
the real-time market. 

Inventory Levels and Production Needed 

 

  

Figure 14: Inventory Levels and Production Needed 

The above chart shows the initial stock level in yellow. 
The line in red represents the production that needs to 
be undertaken to meet the anticipated demand. Except 
that the actual production demand substantially 
exceeds the initial stock, more inventory must be 
needed to cover the need. Therefore, new production is 
required, and there is a deficiency in current resources 
and potential production, stressing the significance of 
proper supply estimation and flexible manufacturing 
methods. 

Optimal Stock Levels Based on Cost Optimisation 

  

Figure 15: Optimal Stock Levels Based on Cost 
Optimisation 

This graph illustrates the changes to the stock levels 
after a cost-optimisation algorithm has been run on the 
company inventory. It is observed from the chart that 
the optimisation leads to a highly stochastic and 
extremely high stock level of more than 600 units for an 
item single index. In contrast, the rest of the indices 
reveal zero or almost zero stock levels. This suggests 
that the cost-optimisation model ensures that stock is 
maximised for a particular item driven by high expected 
demand or a constrained supply chain. This indicates a 
need for additional optimisation regarding the stock of 
different products in the store. 

Inventory Levels vs Predicted Demand 
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Figure 16: Inventory Levels vs Predicted Demand 

This plot shows how the inventory (orange) and the 
forecasted demand (blue) correlate with augmented 
test data. The demand forecast also demonstrates high 
volatility and reaches a level ranging from 300 to 700 
units. As for inventory, it is very low, approximately 
100 units for a while. This is to argue that raw material 
and other inventory flows have a huge variability in 
customer demand. This calls for improved inventory 
stock management methods to fit the volatile and 
unpredictable market. The agents may have to 
customise their production scheduling and inventory 
restocking to maintain the equilibrium supply chain. 

Production Scheduling Based on Predicted Demand 

 

Figure 17: Production Scheduling Based on Predicted 
Demand 

This bar chart represents the planned production 
quantities in light of the forecasted consumer 
requirements. The production volumes vary from 100 
to 600 units in different test iterations. The variability 
in the production schedule visually demonstrates how 
this system adapts to changes in demand by the hour. 
This is a sign of the real-time adaptation of production 
levels to changes in demand. It shows how crucial it is 
to establish workable solutions, such as an adaptive 
workable supply chain. 

Logistics Resources Utilization (Shipping Costs) Over 
Time 

 

Figure 18: Logistics Resources Utilisation (Shipping 
Costs) Over Time 

This graph measures shipping cost (logistics resources) 
in time. The shipping costs are volatile, ranging from 2 
to 8 units. This variability implies that the logistics 
operations are flexible enough to adapt to production 
rate changes and demand. Seasonal changes could be 
another reason for the fluctuations, as the flow of 
production lines dictates various transportation 
requirements. Congestion costs may reflect the volume 
of production or sales, while low congestion costs may 
indicate little pressure on demand. It becomes critical, 
therefore, to manage these costs well to minimise 
fluctuations and maximise efficiency in supply chain 
costs. 

Inventory, Production, and Logistics Interaction 

 

Figure 19: Inventory, Production, and Logistics 
Interaction 

This graph portrays the inventory levels, planned 
production, logistics, and shipping costs. The green line 
corresponds to the planned production, which varies 
widely from 200 to 600 units, indicating how the system 
adjusts to expected customer demand. The orange 
colour represents the degree of inventory position less 
than 100 units throughout the test data points. The 
purple corresponds to the logistics costs and that there 
is minimal stress on transportation factors. The 
integration of these elements also reveal that the 
process of synchronising inventory management, 
manufacturing planning and transportation is critical in 
improving supply chain performance. 
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Table 1: Comparison Metric  

Metric Test Data Index 1 Test Data Index 2 Test Data Index 3 Average Value 

Mean Absolute Error (MAE) 361.72 354.12 369.82 361.89 

Scheduled Production (Units) 322.24 500.45 410.34 411.68 

Logistics Costs (Shipping) 21.00 51.00 101.00 57.67 

Inventory Levels (Units) 100 90 80 90.00 

DISCUSSIONS 

This paper explores integrating multi-agent systems 
(MAS) and machine learning to enhance the reliability 
and flexibility of supply chain systems. Balancing 
supply and demand is critical, and with historical data, 
Random Forest Regression produces reasonably good 
forecasts. In this regard, the research employs the 
Random Forest model to forecast future demand, 
including product type, transportation mode, and 
inventory level. The Mean Absolute Error (MAE) 
obtained in the predictions enable the evaluation of 
the model and its response to changes in demand. The 
machine learning component is used to provide a 
mechanism for an agent to respond to variations in 
demand forecasts and alter their actions accordingly. 
Machine learning guarantees that the supply chain can 
be more sensitive and active in detecting and 
minimising supply and demand variability situations in 
which there is an excess of actual or lack of inventory. 

 The MAS framework describes the central part of the 
adaptation decision-making process within the supply 
chain. Every agent, such as Inventory Agent, 
Production Agent, and Logistics Agent, is a partially 
autonomous entity that adapts its actions with the 
help of forecasted demand and actual data. The 
Inventory Agent oversees stock status, the Production 
Agent coordinates production based on estimated 
demand. The role of the Logistics Agent is to minimise 
shipping and transportation expenses. Such agents 
interact and coordinate to allow all the processes in the 
logistics network, including inventory, production, and 
distribution, to run concurrently. The autonomous 
adaptive decision-making capability present in this 
system is a significant plus point in terms of the 
flexibility of the supply chain. 

Linear programming is used for cost optimisation 
within the framework to minimise the stock holding 
cost while ensuring that the production and logistics 
capacities are adequate to meet the entire demand. 
This approach allows the system to determine the least 
costly combination of resource distribution and output 
across the supply chain so that no agent produces too 
much, too little, or at a rate or volume that can be 
considered inefficient. 

Maintaining low operational costs to meet the 
fluctuating demand is always a challenge for any 
supply chain. It dictates that optimisation algorithms  

guarantee that production and logistics are being run 
under the right parameters, given the estimates on 
demand and stocks. The result of costs is minimised, but 
the system remains flexible enough to respond to shifts 
or changes in demand and operational symmetry in that 
the system can respond promptly and effectively to 
changes at any level. However, this approach's highly 
attractive characteristic is the agents' cooperation. 
Since information is shared and decisions are made 
collectively within the MAS framework, agents can 
address any disruptions or fluctuations in demand as 
soon as they arise.  

CONCLUSION  

This paper evaluates the Multi-Agent System (MAS) and 
Machine Learning (ML) framework to support robust 
supply chains in the emerging digital economy. MAS and 
ML are the best approach to most problems associated 
with conventional supply chain management systems. 
The decision-making is decentralised through the 
introduction of autonomous agents with the machine’s 
learning predictive knowledge. Real-time solutions for 
demand forecasting, inventory planning, production 
planning, and logistics can be provided with the help of 
the framework. One of the most crucial advantages of 
this adaptability in decision-making is that supply chains 
can bounce back from disruptions, thus achieving higher 
total efficiency and reduced expenditures. An important 
observation that has been made in this study is that 
Random Forests can be used to make good predictions 
of metrics like demand, lead times and shipping costs in 
a supply chain. For example, the demand forecasting 
agent can observe a rapid rise or fall in demand which 
can be useful to the inventory management agent when 
determining stocking levels and avoiding costly mistakes 
such as overstocking or stock out. 

The decentralised MAS-ML framework minimises agent 
central authority decision-making, which is associated 
with high rigidity, thereby enhancing flexibility and 
responsibility in the supply chain. In most conventional 
organisational systems, the top functions and makes 
decisions, which take time to filter down to lower levels. 
MAS allows every agent to function independently and 
in a real-time environment. For instance, whenever the 
logistics agent faces a transportation delay, it can 
promptly reschedule shipments and alert the 
production and inventory agents, thereby minimising 
disruptions throughout the supply chain. 
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The proposed MAS-ML framework presents a notable 
improvement in increasing the resilience of supply 
chains, but the following directions for subsequent 
studies can strengthen the framework and raise the 
possibility of its expansion to other sectors. The 
possible development is deepening the framework by 
incorporating more sophisticated deep learning 
methods. Although algorithms like random forest are 
good predictors, there may be more accurate deep 
learning structures like LSTM networks or CNNs for 
identifying intricate patterns in the supply chain data. 
Deep learning models have the flexibility to use large 
amounts of data, which have temporal dependencies, 
and this has long been seen in global supply chain 
systems. Additionally, RL could train an agent to arrive 
at further well-grounded, long-term decisions in light 
of the state transitions in the supply chain.  

A closer look at applying MAS-ML methodology to 
industries other than manufacturing and consuming 
goods is a promising area for further study. The ideas 
of MAS and ML can be extended to several industries, 
including healthcare, pharmaceuticals, and energy, 
where the supply chains are equally as intricate and 
unpredictable as those in manufacturing and require 
tremendous flexibility. In addition, future work may 
also seek to refine the structure and feasibility of the 
framework. This involves enhancing the framework's 
scalability to process large volumes of real-time data 
from IoT devices, sensors, and blockchain networks. 
Such an approach could guarantee that humans' and 
machines' strengths are optimally utilised to deliver 
the best results. 
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