W
THE USA
!‘(')URNA'I.?

The American Journal of
Engineering and Technology

ISSN 2689-0984 | Open Access

D)

Check for updates

OPEN ACCESS

01 December 2024

05 January 2025

06 February 2025
Vol.07 Issue02 2025

Ramazanov Israpil. (2025). Data Security Methods in Mobile Applications
on React Native. The American Journal of Engineering and Technology,
7(02), 18-24. https://doi.org/10.37547/tajet/Volume07lssue02-04

© 2025 Original content from this work may be used under the terms
of the creative commons attributes 4.0 License.

The American Journal of Engineering and Technology

Original Research
18-24
10.37547/tajet/Volume07Issue02-04

Data Security Methods in
Mobile Applications on
React Native

Ramazanov Israpil

Technical Lead, Photon Infotech, Los Angeles California US

Abstract: The article examines methods for ensuring
data protection in mobile applications developed using
the React Native framework, widely employed for
creating cross-platform solutions. The introduction
highlights the importance of ensuring security amid the
growing number of mobile device users and the
increasing volume of personal data processed by
applications. Developers are tasked with preventing
data breaches and unauthorized access to sensitive
information, which requires meticulous attention at all
stages of development.

The objective of the study is to analyze data protection
methods. The discussion focuses on encryption, user
authentication, APl security, and the use of secure
storage for sensitive data. Particular attention is paid to
the features of applications built with React Native and
the vulnerabilities inherent to this framework. The study
includes a review of existing protection methods and
practical implementation of recommendations in real-
world projects.

The findings indicate that a comprehensive approach is
essential to ensure the security of mobile applications
on React Native. Implementing biometric
authentication, including fingerprint and facial
recognition, as well as data encryption on both client
and server sides, is mandatory. Protecting interactions
to prevent attacks aimed at intercepting or modifying
data is also of critical importance.

The information presented in the study will be valuable
to developers, information security experts, and
professionals in mobile technologies.

Keywords: Data security, mobile applications, React
Native, encryption, authentication, API, biometrics,
attack prevention.

Introduction: Mobile applications built on the React

18

https://www.theamericanjournals.com/index.php/tajet

https://doi.org/10.37547/tajet/Volume07Issue02-04
https://doi.org/10.37547/tajet/Volume07Issue02-04
https://doi.org/10.37547/tajet/Volume07Issue02-04
https://doi.org/10.37547/tajet/Volume07Issue02-04
https://doi.org/10.37547/tajet/Volume07Issue02-04

The American Journal of Engineering and Technology

Native framework are in high demand among
developers due to their ability to create solutions for
multiple platforms using a single codebase. The
growing use of such applications is accompanied by
increasing security threats, particularly in the context
of the expanding number of users and the processing
and storage of their personal data. This emphasizes the
importance of information protection, as data
breaches can lead to negative consequences for both
users and developers.

These applications handle various types of sensitive
information, including personal data, payment details,
and passwords. Ensuring the security of this
information is challenging due to the limited resources
of mobile devices, vulnerabilities in client-server
architectures, and the specific features of the
framework. React Native is not exempt from these
issues, as its unique characteristics can introduce
additional risks that require tailored approaches to
data protection.

The growing threats in mobile technologies demand
continuous updates to security methods. The
emergence of new attack types, such as data
interception, information modification, and the
exploitation of vulnerabilities in mobile platforms and
frameworks, necessitates the improvement of existing
security mechanisms. However, many available
solutions fail to address the specific features of React
Native, complicating the development of secure
applications on this platform.

The aim of this study is to analyze data protection
methods in mobile applications developed with React
Native and evaluate their effectiveness.

METHODS

The article by Borawake A. V. and Shahakar M. [1]
examines the use of React Native for developing an
application aimed at collecting and analyzing data on
the condition of dams.

The studies by Xu G. et al. and Allen J., Kelleher C. [2,
3] focus on methods for securing mobile applications
that use native libraries for Android. These works
describe ways to prevent leaks of sensitive
information, which is particularly relevant for mobile
solutions developed with React Native. The
approaches presented in these studies are directed at
protecting data processed through native

The American Journal of Engineering and Technology

components, making them applicable to mobile
applications built on this platform.

The article by Jamarino K., Brozen M., and Blumenberg
E. [6] discusses the creation of a real-time incident
management system using React Native. One of the
critical tasks highlighted is ensuring data security, as
incidents often involve information that requires
protection during transmission and storage. The study
emphasizes the necessity of securing data in
applications where timely responses are critical.

The work of Potocky S. and Stulrajter J. [4] is dedicated
to methods for preventing the recovery of data from
lost mobile devices. The proposed approaches aim to
minimize the risk of leaks resulting from device loss.
These methods help eliminate the compromise of
personal data.

The scientific work of Munthe-Kaas H. M., Berg R. C., and
Blaasveer N. [5], while not directly addressing data
security issues, offers insights relevant to the
development of mobile solutions. In such applications,
it remains essential to consider the protection of users'
personal information, even when the focus is not
explicitly on this subject.

Thus, the issues of data security encompass various
aspects, from preventing leaks through native libraries
to ensuring the safety of real-time information in
incident management systems. However, many studies
lack sufficient attention to comprehensive methods for
protecting data at all stages, from collection to
destruction. Developing universal solutions that can be
effectively applied in various scenarios for mobile
applications created on the React Native platform is
crucial.

The methodology of this study involves reviewing
existing data protection methods and implementing
recommendations in real-world projects.

RESULTS AND DISCUSSION

Modern mobile applications developed using the React
Native framework face an increasing number of security
threats. Although iOS and Android platforms provide
security tools, their capabilities are insufficient to fully
prevent data leaks, hacking, and manipulation of
information [1-3]. Figure 1 below illustrates the features
inherent in the architecture of React Native.

19 https://www.theamericanjournals.com/index.php/tajet

The American Journal of Engineering and Technology

Using JavaScript: JavaScript code is available for analysis,
which allows attackers to extract confidential information
such as API keys, authentication data, and secrets.

Local Storage: React Native applications use various data
storage tools, including AsyncStorage, SecureStore,
SQL.ite. However, these storages do not provide an

adequate level of protection, which leads to the risk of
information extraction during physical access to the device.

Features of the React Native architecture

Sensitive data processing: Applications often work with
important information, such as passwords or payment data,
which require protection both on the client side and when

transmitted over the network.

Fig. 1. Features of the React Native architecture [1-3]

Ensuring data security in mobile applications built on
React Native requires a comprehensive approach,
encompassing encryption, authentication, code and
API protection. Adhering to security principles at every
level—from data storage to data transmission—helps
minimize risks of leaks, manipulation, and breaches. It
is essential not only to implement these methods but
also to conduct regular security audits to identify and

eliminate vulnerabilities in a timely manner and to keep
the application up to date.

To ensure data security in mobile applications built on
React Native, several key aspects must be considered,
ranging from encryption to protection against attacks
and data leaks. Addressing each of these aspects creates
an application with minimal risks for users [4, 6]. Table
1 below describes data protection methods.

Table 1. Data Protection Methods [4, 6]

Method Name

Description

Encryption

transmission channels.

Encryption remains a critical method for protecting data during both storage and
transmission. For React Native, encryption must cover both local storage and
Local Encryption: Secure libraries such as react-
native-encrypted-storage or react-native-keychain can be used to integrate
with OS-secured storage like Keychain on iOS and Keystore on Android. This
minimizes the risk of leaks. However, encryption alone cannot ensure complete

The American Journal of Engineering and Technology

20 https://www.theamericanjournals.com/index.php/tajet

The American Journal of Engineering and Technology

security if application vulnerabilities allow access to data. Encryption in
Transmission: Data transmitted over channels should use HTTPS with TLS.
Proper certificate verification is critical to prevent "Man-in-the-Middle™ attacks.
SSL Pinning can be implemented to bind the application to predefined
certificates, avoiding potential spoofing.

Authentication | The process of verifying user identity must be securely organized, while
and controlling access to server resources. OAuth 2.0 and JWT: The OAuth 2.0
Authorization | protocol is used for session management and authorization, separating
authentication from authorization. JSON Web Tokens (JWT) are used for secure
client-server data exchange without the need to store credentials on the server,
reducing the risk of leaks. Multi-Factor Authentication (MFA): For enhanced
access security, multi-factor authentication can be implemented. This includes
one-time passwords (OTP) sent via SMS or email and biometric methods like
face or fingerprint recognition on iOS devices. The react-native-fingerprint-
scanner library can be used to integrate biometric authentication in React
Native.

Code The JavaScript code used in React Native applications can be easily decompiled,
Obfuscation posing a security risk. Attackers may extract source code to identify
and Source | vulnerabilities. Code Obfuscation: Obfuscation alters the structure of the code,
Code renaming variables and functions to make it harder to understand. The
Protection Javascript-obfuscator tool is used for this purpose. Use of Native Modules:
Storing sensitive information and executing critical logic in native modules
enhances security, as native code is more difficult to decompile. Additionally,
native modules improve application performance.

API Protection | APIs serve as the primary communication channel between the client and server,
making their security a top priority. Request Authentication: APIs should be
secured against unauthorized access using authentication mechanisms like API
keys, OAuth 2.0, or JWT. Keys and tokens must not be stored in the client-side
code to prevent extraction. Rate Limiting: To protect against DoS attacks, rate
limiting is employed to restrict the frequency of requests. This helps maintain
server stability under abnormal loads. Injection Protection: API protection
must include measures to prevent injection attacks, such as SQL injections. This
can be achieved through parameterized queries, ORM libraries, and server-side
validation of all client-supplied data.

dependencies. Next, Table 2 will describe the
advantages and disadvantages of methods to ensure
data security in React Native mobile applications.

In turn, dependencies must be updated regularly to
prevent vulnerable libraries from being exploited.

Outdated versions may contain vulnerabilities that can
be exploited for attacks. Tools such as npm audit or
Snyk [1, 3, 5] are used to check the security of

The American Journal of Engineering and Technology 21 https://www.theamericanjournals.com/index.php/tajet

The American Journal of Engineering and Technology

Table 2. Advantages and disadvantages of data security methods in React Native

mobile applications [1, 3, 5]

Security
Method

Advantages

Disadvantages

1. Device Data
Encryption

- Ensures confidentiality of data stored
on the device.- Protects data even in
case of physical access to the device.-
Convenient for securing sensitive
information, such as passwords and
tokens.

- Impacts performance, especially
when encrypting large amounts of
data.- Requires additional libraries and
configurations, such as react-native-
encrypted-storage or react-native-
keychain.

2. Biometric
Authentication

- Convenient and quick authentication
method, improving user experience.-

- Depends on device capabilities,
making it unavailable on older

(Face ID, | Reduces the need for entering | models.- Requires external libraries,
Touch ID) passwords or PIN codes, enhancing | such as react-native-fingerprint-
security.- Provides a high level of | scanner.
security, making biometric data hard to
forge.
3. Network | - Encrypts all transmitted data, |- Requires proper server-side
Data preventing interception (e.g., MITM | configurations to support HTTPS.-
Protection attacks).- HTTPS is a standard, | Does not eliminate the need for other

(HTTPS, TLS)

ensuring secure and simple server
integration.- Protects data
confidentiality during client-server
transmission.

layers of protection (e.g., server-side
validation).

4. Token and
Session Data
Protection

- Secures tokens with safe storage
solutions (e.g., react-native-
keychain), reducing the risk of leaks.-
Improves security by using secure
storage (e.g., Keychain on iOS,
Keystore on Android).

- Some solutions can be complex to
implement and maintain across
platforms.- Risk of data leakage due to
improper session management or
vulnerabilities in implementation.

5. Code
Obfuscation

- Makes code less readable for
attackers, hindering analysis and
modification.- Protects intellectual

property and prevents code duplication.

- Not a safeguard against all attack
types, such as API exploitation.- May
complicate debugging and application
testing processes.

6. Secure
Storage

- Ensures secure storage of data, such as
tokens or passwords, in encrypted
form.- Compatible with i0OS and
Android platforms for secure storage.

- Increases application load, requiring
interaction with secure storage (e.g.,
Keychain or Keystore).- Does not
eliminate vulnerabilities in specific
device implementations or OS

The American Journal of Engineering and Technology 22

https://www.theamericanjournals.com/index.php/tajet

The American Journal of Engineering and Technology

versions.

7. Role-Based
Access Control

- Controls access to application
functionality based on user roles.-

- Requires setup on both client and
server sides.- Increases development

(RBAC) Effective in multi-user applications | and testing complexity.
requiring different access levels.
8. Regular | - Regular application and library | - Requires continuous monitoring and
Updates and | updates protect against emerging | implementation of new patches,
Security threats.- Reduces the risk of | making the process labor-intensive.-
Patches vulnerabilities in older versions. Delays in updates can expose the
application to vulnerabilities.
9. Two-Factor | - Provides an additional layer of |- Requires extra steps for users,

Authentication
(2FA)

security for user accounts.- Makes
unauthorized access more difficult,
even in cases of password leaks.

potentially reducing convenience.-
Integration with external services
(e.g., SMS or authentication apps) is
necessary.

10.
Injection
Protection

Code

- Protects against attacks involving
malicious code in server queries.-
Reduces the risk of data corruption and

- Requires validation and protection
for all server interactions, adding
development complexity.- Not always

(e.g., SQL | system compromise.

Injection)

able to prevent all injection types,
especially with inadequate input data
control.

Thus, ensuring the security of mobile applications
developed with React Native requires a
comprehensive approach and adherence to various
best practices. Data protection during transmission,
storage, and processing, as well as protection against
attacks, including MITM, injections, and data leaks,
must all be considered to create a reliable and secure
application.

CONCLUSION

This study analyzed data protection methods in mobile
applications developed using the React Native
framework. The relevance of the topic is determined
by the increasing security threats associated with this
platform. The analysis revealed that to ensure reliable
protection of user information, it is necessary to
consider not only standard approaches, such as
encryption, authentication, and API security, but also
the specific characteristics of mobile operating systems
on which the applications operate.

Attention was given to vulnerabilities specific to React
Native and measures aimed at minimizing them. It is
crucial to establish secure interactions between client
and server components, apply modern data encryption

The American Journal of Engineering and Technology

methods for both storage and transmission, and
implement biometric technologies to strengthen
authentication.

REFERENCES

Borawake A.V., Shahakar M. Embankment Protection -
A cross-platform React Native application for
embankment protection using crowdsourcing data
//The 2021 International Conference on Computing,
Communication and Green Engineering (CCGE). — IEEE,
2021. - pp. 1-7.

Xu G. et al. SoProtector: Privacy protection of
proprietary SO files in developing mobile applications of
the Internet of Things //IEEE Internet of Things Journal.
—2019. —vol. 7. — No. 4. — pp. 2539-2552.

Allen J., Kelleher S. The viability of React examples for
effective APl Learning (REVEAL): a tool to help
programmers use incompatible code examples in React.
js //Journal of Computer Languages. — 2023. —Vol. 75. —
p. 101201.

Potocky S., Stulrajter J. Advanced Anti-Forensic
Protection of Mobile Applications //2023
Communication and Information Technologies (KIT). —
IEEE, 2023. — pp. 1-8.

23 https://www.theamericanjournals.com/index.php/tajet

The American Journal of Engineering and Technology

Munte-Kaas H. M., Berg R. S., Blaasver N. The
effectiveness of measures to reduce homelessness: a
systematic review and meta-analysis //Campbell
Systematic Reviews. —2018. — Vol. 14. — No. 1. — pp. 1-
281.

Jamarino K., Brozen M., Blumenberg E. Planning in
support of and against the automotive Homelessness:
Spatial trends and determinants of motor housing in
Los Angeles //lournal of the American Planning
Association. —2023. —Vol. 89. — No. 1. — pp. 80-92.

The American Journal of Engineering and Technology

24

https://www.theamericanjournals.com/index.php/tajet

