
The American Journal of Engineering and Technology 18 https://www.theamericanjournals.com/index.php/tajet

TYPE Original Research

PAGE NO. 18-24

DOI 10.37547/tajet/Volume07Issue02-04

OPEN ACCESS

SUBMITED 01 December 2024

ACCEPTED 05 January 2025

PUBLISHED 06 February 2025

VOLUME Vol.07 Issue02 2025

CITATION

Ramazanov Israpil. (2025). Data Security Methods in Mobile Applications
on React Native. The American Journal of Engineering and Technology,
7(02), 18–24. https://doi.org/10.37547/tajet/Volume07Issue02-04

COPYRIGHT

© 2025 Original content from this work may be used under the terms

of the creative commons attributes 4.0 License.

Data Security Methods in

Mobile Applications on

React Native

Ramazanov Israpil

Technical Lead, Photon Infotech, Los Angeles California US

Abstract: The article examines methods for ensuring
data protection in mobile applications developed using
the React Native framework, widely employed for
creating cross-platform solutions. The introduction
highlights the importance of ensuring security amid the
growing number of mobile device users and the
increasing volume of personal data processed by
applications. Developers are tasked with preventing
data breaches and unauthorized access to sensitive
information, which requires meticulous attention at all
stages of development.

The objective of the study is to analyze data protection
methods. The discussion focuses on encryption, user
authentication, API security, and the use of secure
storage for sensitive data. Particular attention is paid to
the features of applications built with React Native and
the vulnerabilities inherent to this framework. The study
includes a review of existing protection methods and
practical implementation of recommendations in real-
world projects.

The findings indicate that a comprehensive approach is
essential to ensure the security of mobile applications
on React Native. Implementing biometric
authentication, including fingerprint and facial
recognition, as well as data encryption on both client
and server sides, is mandatory. Protecting interactions
to prevent attacks aimed at intercepting or modifying
data is also of critical importance.

The information presented in the study will be valuable
to developers, information security experts, and
professionals in mobile technologies.

Keywords: Data security, mobile applications, React
Native, encryption, authentication, API, biometrics,
attack prevention.

Introduction: Mobile applications built on the React

https://doi.org/10.37547/tajet/Volume07Issue02-04
https://doi.org/10.37547/tajet/Volume07Issue02-04
https://doi.org/10.37547/tajet/Volume07Issue02-04
https://doi.org/10.37547/tajet/Volume07Issue02-04
https://doi.org/10.37547/tajet/Volume07Issue02-04

The American Journal of Engineering and Technology 19 https://www.theamericanjournals.com/index.php/tajet

The American Journal of Engineering and Technology

Native framework are in high demand among
developers due to their ability to create solutions for
multiple platforms using a single codebase. The
growing use of such applications is accompanied by
increasing security threats, particularly in the context
of the expanding number of users and the processing
and storage of their personal data. This emphasizes the
importance of information protection, as data
breaches can lead to negative consequences for both
users and developers.

These applications handle various types of sensitive
information, including personal data, payment details,
and passwords. Ensuring the security of this
information is challenging due to the limited resources
of mobile devices, vulnerabilities in client-server
architectures, and the specific features of the
framework. React Native is not exempt from these
issues, as its unique characteristics can introduce
additional risks that require tailored approaches to
data protection.

The growing threats in mobile technologies demand
continuous updates to security methods. The
emergence of new attack types, such as data
interception, information modification, and the
exploitation of vulnerabilities in mobile platforms and
frameworks, necessitates the improvement of existing
security mechanisms. However, many available
solutions fail to address the specific features of React
Native, complicating the development of secure
applications on this platform.

The aim of this study is to analyze data protection
methods in mobile applications developed with React
Native and evaluate their effectiveness.

METHODS

The article by Borawake A. V. and Shahakar M. [1]
examines the use of React Native for developing an
application aimed at collecting and analyzing data on
the condition of dams.

The studies by Xu G. et al. and Allen J., Kelleher C. [2,
3] focus on methods for securing mobile applications
that use native libraries for Android. These works
describe ways to prevent leaks of sensitive
information, which is particularly relevant for mobile
solutions developed with React Native. The
approaches presented in these studies are directed at
protecting data processed through native

components, making them applicable to mobile
applications built on this platform.

The article by Jamarino K., Brozen M., and Blumenberg
E. [6] discusses the creation of a real-time incident
management system using React Native. One of the
critical tasks highlighted is ensuring data security, as
incidents often involve information that requires
protection during transmission and storage. The study
emphasizes the necessity of securing data in
applications where timely responses are critical.

The work of Potocký S. and Štulrajter J. [4] is dedicated
to methods for preventing the recovery of data from
lost mobile devices. The proposed approaches aim to
minimize the risk of leaks resulting from device loss.
These methods help eliminate the compromise of
personal data.

The scientific work of Munthe‐Kaas H. M., Berg R. C., and
Blaasvær N. [5], while not directly addressing data
security issues, offers insights relevant to the
development of mobile solutions. In such applications,
it remains essential to consider the protection of users'
personal information, even when the focus is not
explicitly on this subject.

Thus, the issues of data security encompass various
aspects, from preventing leaks through native libraries
to ensuring the safety of real-time information in
incident management systems. However, many studies
lack sufficient attention to comprehensive methods for
protecting data at all stages, from collection to
destruction. Developing universal solutions that can be
effectively applied in various scenarios for mobile
applications created on the React Native platform is
crucial.

The methodology of this study involves reviewing
existing data protection methods and implementing
recommendations in real-world projects.

RESULTS AND DISCUSSION

Modern mobile applications developed using the React
Native framework face an increasing number of security
threats. Although iOS and Android platforms provide
security tools, their capabilities are insufficient to fully
prevent data leaks, hacking, and manipulation of
information [1-3]. Figure 1 below illustrates the features
inherent in the architecture of React Native.

The American Journal of Engineering and Technology 20 https://www.theamericanjournals.com/index.php/tajet

The American Journal of Engineering and Technology

Fig. 1. Features of the React Native architecture [1-3]

Ensuring data security in mobile applications built on
React Native requires a comprehensive approach,
encompassing encryption, authentication, code and
API protection. Adhering to security principles at every
level—from data storage to data transmission—helps
minimize risks of leaks, manipulation, and breaches. It
is essential not only to implement these methods but
also to conduct regular security audits to identify and

eliminate vulnerabilities in a timely manner and to keep
the application up to date.

To ensure data security in mobile applications built on
React Native, several key aspects must be considered,
ranging from encryption to protection against attacks
and data leaks. Addressing each of these aspects creates
an application with minimal risks for users [4, 6]. Table
1 below describes data protection methods.

Table 1. Data Protection Methods [4, 6]

Method Name Description

Encryption Encryption remains a critical method for protecting data during both storage and

transmission. For React Native, encryption must cover both local storage and

transmission channels. Local Encryption: Secure libraries such as react-

native-encrypted-storage or react-native-keychain can be used to integrate

with OS-secured storage like Keychain on iOS and Keystore on Android. This

minimizes the risk of leaks. However, encryption alone cannot ensure complete

F

ea
tu

re
s

o
f

th
e

R
ea

ct
 N

at
iv

e
a
rc

h
it

ec
tu

re

Using JavaScript: JavaScript code is available for analysis,
which allows attackers to extract confidential information

such as API keys, authentication data, and secrets.

Local Storage: React Native applications use various data
storage tools, including AsyncStorage, SecureStore,
SQLite. However, these storages do not provide an

adequate level of protection, which leads to the risk of
information extraction during physical access to the device.

Sensitive data processing: Applications often work with
important information, such as passwords or payment data,
which require protection both on the client side and when

transmitted over the network.

The American Journal of Engineering and Technology 21 https://www.theamericanjournals.com/index.php/tajet

The American Journal of Engineering and Technology

security if application vulnerabilities allow access to data. Encryption in

Transmission: Data transmitted over channels should use HTTPS with TLS.

Proper certificate verification is critical to prevent "Man-in-the-Middle" attacks.

SSL Pinning can be implemented to bind the application to predefined

certificates, avoiding potential spoofing.

Authentication

and

Authorization

The process of verifying user identity must be securely organized, while

controlling access to server resources. OAuth 2.0 and JWT: The OAuth 2.0

protocol is used for session management and authorization, separating

authentication from authorization. JSON Web Tokens (JWT) are used for secure

client-server data exchange without the need to store credentials on the server,

reducing the risk of leaks. Multi-Factor Authentication (MFA): For enhanced

access security, multi-factor authentication can be implemented. This includes

one-time passwords (OTP) sent via SMS or email and biometric methods like

face or fingerprint recognition on iOS devices. The react-native-fingerprint-

scanner library can be used to integrate biometric authentication in React

Native.

Code

Obfuscation

and Source

Code

Protection

The JavaScript code used in React Native applications can be easily decompiled,

posing a security risk. Attackers may extract source code to identify

vulnerabilities. Code Obfuscation: Obfuscation alters the structure of the code,

renaming variables and functions to make it harder to understand. The

javascript-obfuscator tool is used for this purpose. Use of Native Modules:

Storing sensitive information and executing critical logic in native modules

enhances security, as native code is more difficult to decompile. Additionally,

native modules improve application performance.

API Protection APIs serve as the primary communication channel between the client and server,

making their security a top priority. Request Authentication: APIs should be

secured against unauthorized access using authentication mechanisms like API

keys, OAuth 2.0, or JWT. Keys and tokens must not be stored in the client-side

code to prevent extraction. Rate Limiting: To protect against DoS attacks, rate

limiting is employed to restrict the frequency of requests. This helps maintain

server stability under abnormal loads. Injection Protection: API protection

must include measures to prevent injection attacks, such as SQL injections. This

can be achieved through parameterized queries, ORM libraries, and server-side

validation of all client-supplied data.

In turn, dependencies must be updated regularly to
prevent vulnerable libraries from being exploited.

Outdated versions may contain vulnerabilities that can
be exploited for attacks. Tools such as npm audit or
Snyk [1, 3, 5] are used to check the security of

dependencies. Next, Table 2 will describe the
advantages and disadvantages of methods to ensure
data security in React Native mobile applications.

The American Journal of Engineering and Technology 22 https://www.theamericanjournals.com/index.php/tajet

The American Journal of Engineering and Technology

Table 2. Advantages and disadvantages of data security methods in React Native

mobile applications [1, 3, 5]

Security

Method

Advantages Disadvantages

1. Device Data

Encryption

- Ensures confidentiality of data stored

on the device.- Protects data even in

case of physical access to the device.-

Convenient for securing sensitive

information, such as passwords and

tokens.

- Impacts performance, especially

when encrypting large amounts of

data.- Requires additional libraries and

configurations, such as react-native-

encrypted-storage or react-native-

keychain.

2. Biometric

Authentication

(Face ID,

Touch ID)

- Convenient and quick authentication

method, improving user experience.-

Reduces the need for entering

passwords or PIN codes, enhancing

security.- Provides a high level of

security, making biometric data hard to

forge.

- Depends on device capabilities,

making it unavailable on older

models.- Requires external libraries,

such as react-native-fingerprint-

scanner.

3. Network

Data

Protection

(HTTPS, TLS)

- Encrypts all transmitted data,

preventing interception (e.g., MITM

attacks).- HTTPS is a standard,

ensuring secure and simple server

integration.- Protects data

confidentiality during client-server

transmission.

- Requires proper server-side

configurations to support HTTPS.-

Does not eliminate the need for other

layers of protection (e.g., server-side

validation).

4. Token and

Session Data

Protection

- Secures tokens with safe storage

solutions (e.g., react-native-

keychain), reducing the risk of leaks.-

Improves security by using secure

storage (e.g., Keychain on iOS,

Keystore on Android).

- Some solutions can be complex to

implement and maintain across

platforms.- Risk of data leakage due to

improper session management or

vulnerabilities in implementation.

5. Code

Obfuscation

- Makes code less readable for

attackers, hindering analysis and

modification.- Protects intellectual

property and prevents code duplication.

- Not a safeguard against all attack

types, such as API exploitation.- May

complicate debugging and application

testing processes.

6. Secure

Storage

- Ensures secure storage of data, such as

tokens or passwords, in encrypted

form.- Compatible with iOS and

Android platforms for secure storage.

- Increases application load, requiring

interaction with secure storage (e.g.,

Keychain or Keystore).- Does not

eliminate vulnerabilities in specific

device implementations or OS

The American Journal of Engineering and Technology 23 https://www.theamericanjournals.com/index.php/tajet

The American Journal of Engineering and Technology

versions.

7. Role-Based

Access Control

(RBAC)

- Controls access to application

functionality based on user roles.-

Effective in multi-user applications

requiring different access levels.

- Requires setup on both client and

server sides.- Increases development

and testing complexity.

8. Regular

Updates and

Security

Patches

- Regular application and library

updates protect against emerging

threats.- Reduces the risk of

vulnerabilities in older versions.

- Requires continuous monitoring and

implementation of new patches,

making the process labor-intensive.-

Delays in updates can expose the

application to vulnerabilities.

9. Two-Factor

Authentication

(2FA)

- Provides an additional layer of

security for user accounts.- Makes

unauthorized access more difficult,

even in cases of password leaks.

- Requires extra steps for users,

potentially reducing convenience.-

Integration with external services

(e.g., SMS or authentication apps) is

necessary.

10. Code

Injection

Protection

(e.g., SQL

Injection)

- Protects against attacks involving

malicious code in server queries.-

Reduces the risk of data corruption and

system compromise.

- Requires validation and protection

for all server interactions, adding

development complexity.- Not always

able to prevent all injection types,

especially with inadequate input data

control.

Thus, ensuring the security of mobile applications
developed with React Native requires a
comprehensive approach and adherence to various
best practices. Data protection during transmission,
storage, and processing, as well as protection against
attacks, including MITM, injections, and data leaks,
must all be considered to create a reliable and secure
application.

CONCLUSION

This study analyzed data protection methods in mobile
applications developed using the React Native
framework. The relevance of the topic is determined
by the increasing security threats associated with this
platform. The analysis revealed that to ensure reliable
protection of user information, it is necessary to
consider not only standard approaches, such as
encryption, authentication, and API security, but also
the specific characteristics of mobile operating systems
on which the applications operate.

Attention was given to vulnerabilities specific to React
Native and measures aimed at minimizing them. It is
crucial to establish secure interactions between client
and server components, apply modern data encryption

methods for both storage and transmission, and
implement biometric technologies to strengthen
authentication.

REFERENCES

Borawake A.V., Shahakar M. Embankment Protection -
A cross-platform React Native application for
embankment protection using crowdsourcing data
//The 2021 International Conference on Computing,
Communication and Green Engineering (CCGE). – IEEE,
2021. – pp. 1-7.

Xu G. et al. SoProtector: Privacy protection of
proprietary SO files in developing mobile applications of
the Internet of Things //IEEE Internet of Things Journal.
– 2019. – vol. 7. – No. 4. – pp. 2539-2552.

Allen J., Kelleher S. The viability of React examples for
effective API Learning (REVEAL): a tool to help
programmers use incompatible code examples in React.
js //Journal of Computer Languages. – 2023. – Vol. 75. –
p. 101201.

Potocký S., Štulrajter J. Advanced Anti-Forensic
Protection of Mobile Applications //2023
Communication and Information Technologies (KIT). –
IEEE, 2023. – pp. 1-8.

The American Journal of Engineering and Technology 24 https://www.theamericanjournals.com/index.php/tajet

The American Journal of Engineering and Technology

Munte‐Kaas H. M., Berg R. S., Blaasver N. The
effectiveness of measures to reduce homelessness: a
systematic review and meta‐analysis //Campbell
Systematic Reviews. – 2018. – Vol. 14. – No. 1. – pp. 1-
281.

Jamarino K., Brozen M., Blumenberg E. Planning in
support of and against the automotive Homelessness:
Spatial trends and determinants of motor housing in
Los Angeles //Journal of the American Planning
Association. – 2023. – Vol. 89. – No. 1. – pp. 80-92.

