
THE USA JOURNALS 

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984) 
VOLUME 06 ISSUE12 

                                                                                                                    

  

 84 

 

https://www.theamericanjournals.com/index.php/tajet 

 

PUBLISHED DATE: - 13-12-2024 
DOI: - https://doi.org/10.37547/tajet/Volume06Issue12-09                                                                       PAGE NO.: - 84-91 
     

 
 

PROTO REFLECTION IMPLEMENTATION FOR 

DYNAMIC INTERACTION WITH GRPC 

SERVICES IN HIGH-LOAD SYSTEMS 
 

Kish Aleksei 
Senior Software Engineer / Technical Owner at Semrush Spain, Barcelona 

INTRODUCTION   

In the modern era of high-load systems and 

microservice architecture, the efficiency of 

interactions between services has become a 

priority. The gRPC protocol, based on the binary 

serialization Protocol Buffers, offers impressive 

advantages: it can be up to eight times faster than 

traditional JSON serialization, and message sizes 

are reduced by 60–80% [1,2]. This is achieved 

through the efficient use of HTTP/2 features such 

as request multiplexing and header compression 

[3]. 

However, despite these technical advancements, 

Swift developers face significant limitations when 

working with Protocol Buffers. Unlike some other 

languages, Swift does not provide built-in 

mechanisms for dynamically generating code from 

`.proto` files at runtime. This means that all 

messages and services must be generated during 

compilation, making it challenging to work with 

dynamic or frequently changing data structures 

[4]. 

Additionally, Swift’s limited reflection capabilities, 

particularly in the context of Protocol Buffers, 

complicate the implementation of general 

serialization and deserialization mechanisms and 

the dynamic creation of messages based on their 

types. Certain data types may not be fully 

compatible with Swift, requiring additional 

RESEARCH ARTICLE Open Access 

Abstract 

 

 

https://www.theamericanjournals.com/index.php/tajet
https://www.theamericanjournals.com/index.php/tajet
https://doi.org/10.37547/tajet/Volume06Issue12-09
https://doi.org/10.37547/tajet/Volume06Issue12-09


THE USA JOURNALS 

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984) 
VOLUME 06 ISSUE12 

                                                                                                                    

  

 85 

 

https://www.theamericanjournals.com/index.php/tajet 

 

transformations that could lead to performance 

degradation [5]. Integrating Protocol Buffers into 

existing projects may also require substantial 

codebase modifications, especially if binary 

serialization protocols were not initially planned. 

In a world where service APIs evolve at an 

incredible pace, static interaction methods become 

a bottleneck in the development process. The need 

to recompile applications and regenerate classes 

with each API change not only slows down the 

release of updates but also hinders rapid 

adaptation to changing market requirements. 

The goal of this work is to present the 

SwiftProtoReflect library, which implements Proto 

Reflection for dynamic interaction with gRPC 

services in Swift. This innovative solution allows 

developers to dynamically explore and interact 

with services and methods without the need to 

generate static classes from `.proto` files using 

`protoc`. As a result, server-side changes no longer 

require recompilation and code updates on the 

client side, significantly accelerating development 

and deployment processes. 

METHODS 

Modern distributed systems are built on the 

concept of efficient inter-service communication 

using Protocol Buffers and gRPC. Protocol Buffers 

is a mechanism for serializing structured data, 

where each message is defined through a proto file 

containing strictly typed descriptions of the data 

structure. This format provides significant 

performance advantages over JSON or XML due to 

its binary data transmission format [2].   

The fundamental principle of Protocol Buffers is 

the use of a specialized interface definition 

language (IDL) that allows for the description of 

data structures independently of programming 

languages or platforms. Each field in a message is 

assigned a unique number, type, and name, 

ensuring backward compatibility as the protocol 

evolves. An important aspect is its support for 

complex data types, including nested messages, 

enumerations, repeated fields, and associative 

arrays [6].   

gRPC, built on Protocol Buffers, implements the 

concept of remote procedure calls over HTTP/2. A 

key feature is its support for four interaction types: 

unary requests, server streaming, client streaming, 

and bidirectional streaming. The use of HTTP/2 

provides advantages such as request multiplexing, 

stream prioritization, and header compression [2].   

https://www.theamericanjournals.com/index.php/tajet


THE USA JOURNALS 

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984) 
VOLUME 06 ISSUE12 

                                                                                                                    

  

 86 

 

https://www.theamericanjournals.com/index.php/tajet 

 

 

Figure 1 - Proto Reflection Mechanisms 

The Proto Reflection mechanism represents an 

innovative approach to dynamically exploring the 

structure of services and messages. It is based on 

the concept of metaprogramming, enabling the 

retrieval of information about data types and 

methods at runtime. This mechanism leverages 

advanced reflection capabilities, providing access 

to service metadata through a dedicated reflection 

service [7]. 

The theoretical foundation of Proto Reflection 

encompasses several key concepts. The first is 

dynamic typing, which allows interaction with data 

types without their prior declaration in code. The 

second is service introspection, enabling the 

https://www.theamericanjournals.com/index.php/tajet


THE USA JOURNALS 

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984) 
VOLUME 06 ISSUE12 

                                                                                                                    

  

 87 

 

https://www.theamericanjournals.com/index.php/tajet 

 

exploration of available methods and their 

signatures. The third is data 

serialization/deserialization, facilitating 

conversion between binary formats and 

programming language data structures. 

A central concept within Proto Reflection is the use 

of descriptors—special metadata that describe the 

structure of messages and services. Descriptors 

contain comprehensive information about field 

types, constraints, and relationships, enabling 

dynamic data validation during runtime. This 

descriptor system ensures strict type safety even 

in the absence of static typing [8]. 

In the context of high-load systems, Proto 

Reflection offers mechanisms for performance 

optimization. These include metadata caching, lazy 

descriptor loading, and efficient memory 

management when working with large datasets. 

Theoretically, performance comparable to 

statically generated code can be achieved with 

proper implementation of caching and 

optimization mechanisms. 

A fundamental aspect of Proto Reflection is its 

support for backward compatibility during 

protocol evolution. The theoretical model 

incorporates mechanisms for handling unknown 

fields, supporting message versioning, and 

ensuring seamless interaction between clients and 

servers of different versions. This is achieved by 

preserving unknown field information during 

deserialization and correctly transmitting it during 

subsequent serialization. 

Despite its significant advantages, the Proto 

Reflection mechanism has limitations that hinder 

its effective application in certain scenarios. One 

key limitation is its restricted support in some 

programming languages, such as Swift, where 

dynamic typing and reflection capabilities are 

significantly constrained. This complicates the 

implementation of universal mechanisms for 

dynamic interaction with gRPC services and 

necessitates the development of specialized 

solutions [7]. 

Additionally, increased computational resource 

requirements for dynamic metadata processing 

can lead to higher latency and memory 

consumption. In high-load systems, this can 

become a critical factor impacting overall 

application performance [6]. 

Another challenge is ensuring security during 

dynamic interaction. The absence of static typing 

increases the risk of errors and vulnerabilities, 

requiring the implementation of additional 

validation and exception-handling mechanisms, 

which complicates system architecture [2]. 

These limitations create barriers to the 

widespread adoption of Proto Reflection in 

practical applications, particularly on platforms 

with limited reflection capabilities. As a result, 

there is a need to develop specialized tools capable 

of overcoming these constraints and enabling 

efficient dynamic interaction with gRPC services in 

languages with restricted dynamic typing 

capabilities. 

RESULTS AND DISCUSSION 

Overcoming the theoretical limitations associated 

with using Protocol Buffers and gRPC in the Swift 

language, an innovative approach has been 

developed to enable dynamic interaction with 

gRPC services without the need for static code 

generation. This approach is realized in the 

SwiftProtoReflect library, which implements Proto 

Reflection for Swift, opening new horizons in the 

development of high-performance and flexible 

applications. 

The SwiftProtoReflect library allows for the 

dynamic definition of Protocol Buffers message 

structures without the use of ̀ .proto` files and prior 

code generation. This is achieved through the use 

of message descriptors (ProtoMessageDescriptor), 

which describe the full name of the message, its 

https://www.theamericanjournals.com/index.php/tajet


THE USA JOURNALS 

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984) 
VOLUME 06 ISSUE12 

                                                                                                                    

  

 88 

 

https://www.theamericanjournals.com/index.php/tajet 

 

fields, data types, and other characteristics. As a 

result, developers can create and manipulate 

messages at runtime, significantly enhancing 

application flexibility. 

One of the key components is the ability to extract 

metadata about services, methods, and data 

structures directly from the gRPC server. Utilizing 

the capabilities of Proto Reflection, a client 

application can request information about 

available services and methods from the server 

and then dynamically form the necessary requests. 

This is especially crucial in environments with 

constantly changing APIs, where static code 

generation becomes a significant obstacle. 

Dynamic request construction is another 

important aspect. Based on the retrieved 

metadata, the library automatically generates 

correct gRPC requests, allowing developers to 

focus on application logic rather than the technical 

details of message formation. This not only 

accelerates the development process but also 

reduces the likelihood of errors related to data 

structure incompatibilities. 

The practical application of this approach can be 

demonstrated through an example of interacting 

with a service that provides user information. 

Instead of the traditional method, which requires 

prior generation of classes from `.proto` files, a 

developer can dynamically create a message 

descriptor: 

 

import SwiftProtoReflect 

 

let messageDescriptor = ProtoMessageDescriptor( 

    fullName: "User", 

    fields: [ 

        ProtoFieldDescriptor(name: "id", number: 1, type: .int32, 

isRepeated: false, isMap: false), 

        ProtoFieldDescriptor(name: "name", number: 2, type: .string, 

isRepeated: false, isMap: false), 

        ProtoFieldDescriptor(name: "email", number: 3, type: 

.string, isRepeated: false, isMap: false) 

    ], 

    enums: [], 

    nestedMessages: [] 

) 

 

Creating a dynamic message and setting field values are performed as follows: 

 

var dynamicMessage = ProtoReflect.createMessage(from: 

messageDescriptor) 

dynamicMessage.set(field: messageDescriptor.fields[0], value: 

.intValue(101)) 

dynamicMessage.set(field: messageDescriptor.fields[1], value: 

.stringValue("Alice")) 

dynamicMessage.set(field: messageDescriptor.fields[2], value: 

https://www.theamericanjournals.com/index.php/tajet


THE USA JOURNALS 

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984) 
VOLUME 06 ISSUE12 

                                                                                                                    

  

 89 

 

https://www.theamericanjournals.com/index.php/tajet 

 

.stringValue("alice@example.com")) 

 

Serialization of the message into the Protocol Buffers binary format is accomplished using the `marshal` 

function: 

 

if let wireData = ProtoReflect.marshal(message: dynamicMessage) { 

    // Send data to the server 

} 

 

Upon receiving a response from the server, deserialization is performed without the need to know the 

exact message structure at compile time: 

 

if let receivedData = /* data from the server */, 

   let unmarshaledMessage = ProtoReflect.unmarshal(data: 

receivedData, descriptor: messageDescriptor) { 

    let userId = unmarshaledMessage.get(field: 

messageDescriptor.fields[0])?.getInt() 

    let userName = unmarshaledMessage.get(field: 

messageDescriptor.fields[1])?.getString() 

    let userEmail = unmarshaledMessage.get(field: 

messageDescriptor.fields[2])?.getString() 

    // Process the received data 

} 

 

This approach demonstrates how dynamic 

interaction with gRPC services simplifies 

development and enhances application 

adaptability. Developers are no longer tied to 

statically generated classes and can easily adapt to 

changes in service APIs. 

A comparison with the traditional approach 

reveals significant advantages. With static code 

generation from ̀ .proto` files, any change in the API 

requires regenerating and recompiling 

applications. This not only slows down the 

development process but can also lead to version 

incompatibilities and errors. In contrast, using 

SwiftProtoReflect eliminates this problem, 

allowing applications to automatically adapt to 

server-side changes without the need to modify 

the codebase. 

Furthermore, the absence of similar solutions for 

Swift underscores the originality and 

innovativeness of this approach. While other 

languages, such as Java or Python, have 

mechanisms for reflection and dynamic code 

generation, Swift has been limited in these 

capabilities until recently. SwiftProtoReflect fills 

this gap, expanding the language's functionality 

and opening new possibilities for developers. 

The importance for the Data Engineering industry 

lies in the ability to quickly and efficiently process 

large volumes of data under changing 

requirements. In today's world, data is a primary 

https://www.theamericanjournals.com/index.php/tajet


THE USA JOURNALS 

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984) 
VOLUME 06 ISSUE12 

                                                                                                                    

  

 90 

 

https://www.theamericanjournals.com/index.php/tajet 

 

resource, and the ability to interact dynamically 

with various services and information sources 

becomes critically important. SwiftProtoReflect 

provides tools for creating flexible and scalable 

systems capable of adapting to new data and API 

changes without delays and additional costs. 

For example, in the field of marketing research, 

where data comes from numerous different 

sources and services, the ability to quickly 

integrate new APIs and adapt to changes in 

existing ones becomes a key advantage. Using 

SwiftProtoReflect allows for reducing the time 

required to integrate new services and mitigates 

risks associated with changes in data structures. 

Performance evaluation indicates that using 

dynamic serialization and deserialization does not 

lead to significant speed losses compared to the 

traditional approach. This is confirmed by testing 

the library in real-world conditions, where 

performance metrics comparable to those of 

statically generated code were obtained. 

Limitations and future developments also deserve 

attention. Despite significant advantages, the 

library may encounter limitations related to the 

complexity of data structures or specific data types 

not fully supported in dynamic mode. However, 

these limitations can be overcome through further 

library development and functionality expansion. 

CONCLUSION 

The implementation of Proto Reflection in Swift via 

the SwiftProtoReflect library represents a 

significant step forward in developing flexible and 

adaptive applications. By overcoming language 

limitations and traditional methods of interacting 

with gRPC services, this approach opens new 

opportunities for developers, especially in the Data 

Engineering field. It allows for reduced 

development time, increased application 

adaptability, and more efficient resource 

utilization. 

The shift from static code generation to dynamic 

service interaction reflects the modern trend 

towards creating more flexible and scalable 

systems. SwiftProtoReflect not only solves existing 

problems but also sets the direction for further 

development of tools and methods in inter-service 

communication. 

REFERENCES 

1. gRPC //Microsoft. [Electronic resource] – URL: 

https://learn.microsoft.com/en-

us/dotnet/architecture/cloud-native/grpc 

2. Sangwai A. et al. Barricading System-System 

Communication using gRPC and Protocol 

Buffers //2023 5th Biennial International 

Conference on Nascent Technologies in 

Engineering (ICNTE). – IEEE, 2023. – С. 1-5. 

3. Biswas R., Lu X., Panda D. K. Accelerating 

TensorFlow with Adaptive RDMA-Based gRPC 

//2018 IEEE 25th International Conference on 

High Performance Computing (HiPC). – IEEE, 

2018. – С. 2-11. 

4. Barik R. et al. Optimization of Swift Protocols 

//Proceedings of the ACM on Programming 

Languages. – 2019. – Т. 3. – №. OOPSLA. – С. 1-

27. 

5. Nimpattanavong C. et al. Improving Data 

Transfer Efficiency for AIs in the 

DareFightingICE using gRPC //2023 8th 

International Conference on Business and 

Industrial Research (ICBIR). – IEEE, 2023. – С. 

286-290. 

6. de Matos F. F. S. B., Rego P. A. L., Trinta F. A. M. 

An Empirical Study about the Adoption of 

Multi-language Technique in Computation 

Offloading in a Mobile Cloud Computing 

Scenario //CLOSER. – 2021. – С. 207-214. 

7. Liang L., He Z. The Design of a Protocol Buffer 

Library for Vala //2021 IEEE 15th 

International Conference on Electronic 

https://www.theamericanjournals.com/index.php/tajet


THE USA JOURNALS 

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984) 
VOLUME 06 ISSUE12 

                                                                                                                    

  

 91 

 

https://www.theamericanjournals.com/index.php/tajet 

 

Measurement & Instruments (ICEMI). – IEEE, 

2021. – С. 51-55. 

8. Blyth D. et al. ProIO: An Event-Based I/O 

Stream Format for Protobuf Messages 

//Computer Physics Communications. – 2019. 

– Т. 241. – С. 98-112.  

 

https://www.theamericanjournals.com/index.php/tajet

