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INTRODUCTION   

GitHub [2], one of the largest platforms for hosting 

and collaborative development of software, has 

become an integral part of the modern 

technological landscape. Its role in evaluating 

technology projects and startups is growing as 

more investors and developers turn to platform 

activity metrics to make decisions on funding and 

collaboration [4]. However, with the increasing 

popularity of GitHub, a significant issue has 

arisen—manipulation of metrics such as stars, 

commits, and forks, which calls into question the 

reliability of these data as indicators of project 

success and quality [3]. 

The relevance of studying methods for analyzing 

public GitHub data is justified by the need to 

improve the accuracy and reliability of technology 

project evaluations. The falsification of metrics, for 

example, fake stars, creates a false impression of a 

project's popularity and significance, which can 

mislead investors and users. As a result, identifying 

anomalies in such data becomes a critical task for 

ensuring transparency and fairness in the 

technology community [3]. 

Machine learning (ML), as an advanced data 

analysis technology, opens new possibilities for 

detecting such anomalies. Machine learning 

algorithms can process large amounts of data, 

identifying hidden patterns and deviations from 

the norm that are difficult to detect using 

traditional analysis methods. Applying these 

algorithms to GitHub data enables the automation 

of detecting suspicious activities, such as sudden 
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spikes in stars or unusual commit patterns, 

contributing to a more accurate assessment of 

projects. 

The goal of this study is to develop a methodology 

for detecting anomalies in GitHub data using 

machine learning algorithms. The study will 

explore the main approaches to analyzing such 

data, conduct a comparative analysis of various 

machine learning algorithms, and propose a 

conceptual model of a system for automated 

anomaly detection. This model can be applied to 

projects focused on evaluating technology 

startups, such as DualSpace AI, providing more 

reliable and objective analysis results. 

Thus, the research is aimed at addressing the 

important task of improving the transparency and 

reliability of GitHub data, which ultimately 

contributes to better decision-making in software 

development and investment. 

1. Theoretical foundations and methodology 

for detecting anomalies in GitHub data 

GitHub [2], as a platform for hosting and 

collaborative software development, provides a 

wide range of public data that can serve as a basis 

for analyzing and evaluating technology projects 

[4]. These data include, but are not limited to, the 

number of stars, forks, commits, pull requests, as 

well as metadata about users, repositories, and 

project-related events. 

The data structure on GitHub is organized into 

repositories, each representing a container for 

code and associated artifacts. The main elements of 

a repository include: 

- Commits: These are fixed changes to the code that 

are recorded in the change history. Commits 

contain information about who made the changes, 

when they were made, and a description of the 

changes. 

- Stars: This metric reflects the popularity and 

interest in a repository. Users can "star" 

repositories to show their support or interest. 

- Forks: These are copies of a repository created for 

further development or modification of the code. 

Forks are an important indicator that a project is 

attracting developers and has potential for further 

development. 

- Pull requests: These are proposals to make 

changes to a repository, which can be accepted or 

rejected by the project owners. Pull requests 

reflect community activity and the involvement of 

external developers. 

Each of these elements can be analyzed to detect 

anomalies that may indicate unnatural or 

manipulative actions. 

Anomalies in GitHub data can take various forms, 

each representing a potential threat to the 

accuracy of project analysis and evaluation. It is 

important to classify these anomalies to develop 

effective methods for detecting and mitigating 

them. 

The main types of anomalies include: 

- Star anomalies: Sudden spikes in the number of 

stars may indicate manipulation, where stars are 

bought or generated by bots. These anomalies are 

easily noticeable when analyzing time series data, 

revealing unnatural patterns. 

- Commit anomalies: Excessive activity in the form 

of numerous minor or irrelevant commits over a 

short period may indicate attempts to create the 

illusion of active development. 

- Fork anomalies: A sharp increase in the number 

of forks, especially if these forks do not lead to 

further activity, may signal manipulation aimed at 

increasing a project’s visibility. 

- Pull request anomalies: A large number of pull 

requests from inactive or newly created accounts 

may indicate artificial activity designed to boost 

the project's popularity [4]. 
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To address the task of detecting anomalies in 

GitHub data, machine learning methods are 

employed. One approach is to use unsupervised 

learning algorithms, such as Isolation Forest [5] 

and One-Class SVM [6]. These methods are 

particularly useful when there are no pre-labeled 

data, as they can detect outliers based on the 

statistical characteristics of the dataset. Isolation 

Forest, for instance, constructs multiple random 

trees, which help to identify data points that are 

easiest to isolate from the main cluster [5]. These 

algorithms are well-suited for analyzing large and 

complex data, such as GitHub activities. 

However, deep learning algorithms also find 

applications in detecting more complex anomalies. 

Autoencoders and Generative Adversarial 

Networks (GANs) are capable of identifying 

complex, non-linear anomalies that are difficult to 

detect with traditional methods [7]. Autoencoders, 

for example, are trained to compress data into a 

latent space and then reconstruct them, allowing 

for the detection of anomalies based on the 

difference between the original data and their 

reconstructed versions [8]. This approach is 

particularly effective for analyzing complex and 

high-dimensional data typical of GitHub activity. 

When selecting the optimal algorithm for anomaly 

detection, several factors must be considered. 

First, the characteristics of the data, such as 

volume, temporal dynamics, and noise, play a key 

role. For instance, for time-series data analysis, 

such as star activity, algorithms capable of 

accounting for temporal dependencies may be 

preferred. Second, the objective of the analysis also 

influences the choice of method: if the main goal is 

to detect all possible anomalies, preference may be 

given to algorithms with high sensitivity, even if 

this leads to an increase in false positives. Third, 

algorithm performance is crucial in cases where 

computational resources are limited or when large 

volumes of data need to be processed in real-time. 

In this context, simpler and faster methods may be 

more desirable. 

To better understand how different algorithms can 

be applied to GitHub data and which are most 

effective in various scenarios, Table 1 is provided. 

 

Table 1. Algorithms applied to GitHub data [5-8] 

Algorithm Sensitivity Specificity Performance Interpretability 

Isolation Forest High Medium High Medium 

One-Class SVM Medium High Medium Low 

Autoencoders High High Low Low 

K-Means Medium Medium High Medium 

 

This table allows for a visual assessment of which 

algorithm may be most suitable for a specific 

GitHub data analysis task, considering the 

objectives and constraints. 

Thus, the methodology for detecting anomalies in 

GitHub data requires a comprehensive approach 

that takes into account the characteristics of the 

data, the goals of the analysis, and the 

requirements of the algorithms. The correct choice 

of machine learning methods not only automates 

the anomaly detection process but also 

significantly improves the accuracy and reliability 

of the results, which is especially important in the 

context of evaluating technology projects and 

making investment decisions. 

https://www.theamericanjournals.com/index.php/tajet


THE USA JOURNALS 

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984) 
VOLUME 06 ISSUE10 

                                                                                                                    

  

 36 

 

https://www.theamericanjournals.com/index.php/tajet 

 

2. Analysis of machine learning algorithms for 

anomaly detection 

The analysis of machine learning algorithms for 

detecting anomalies in GitHub data requires a 

thorough examination to provide practical 

guidance on using advanced methods in real-world 

data conditions. This section focuses on the 

technical aspects and details of applying various 

algorithms, emphasizing their adaptation to the 

specific characteristics of GitHub data. 

Unsupervised learning algorithms, such as 

Isolation Forest and One-Class SVM, play a crucial 

role in detecting anomalies in datasets where it is 

difficult to predefine what constitutes normal or 

deviant behavior. Isolation Forest is particularly 

effective for handling high-dimensional data and 

can be adapted to work with large datasets typical 

of GitHub activities. The algorithm operates by 

building trees that purposefully isolate data points, 

assessing how easy or difficult it is to separate 

them from the main cluster [5]. In the context of 

GitHub data analysis, this means that the algorithm 

can detect repositories or activities that 

significantly deviate from typical behavior 

patterns, such as sudden spikes in stars or 

anomalous commit patterns. 

One-Class SVM employs the principle of data 

separation in multidimensional space, 

constructing a hyperplane that distinguishes 

normal data from anomalies. This method can be 

especially useful in cases where anomalies 

represent subtle deviations from the norm, which 

are difficult to detect using simpler methods [6]. 

However, its effectiveness heavily depends on 

kernel and regularization parameter selection, 

requiring fine-tuning for each specific dataset. In 

the context of GitHub data, this means that One-

Class SVM can be used to detect less obvious 

manipulations, such as a systematic increase in 

stars over a prolonged period. 

Deep learning, with its ability to handle complex 

and nonlinear dependencies, offers more powerful 

tools for detecting anomalies in GitHub data. 

Autoencoders are a type of neural network that 

learns to reconstruct original data from its 

compressed representation. During training, the 

autoencoder forms a latent space where normal 

data is reconstructed with minimal errors, while 

anomalies cause significant discrepancies between 

the original and reconstructed data [8]. For GitHub 

data analysis, autoencoders can be useful for 

detecting complex patterns that simpler 

algorithms might miss. For instance, an 

autoencoder can detect a repository that 

artificially maintains high activity levels through 

constant minor code changes. 

Generative Adversarial Networks (GANs) 

represent another deep learning method that can 

be adapted for anomaly detection. In GANs, two 

neural networks—the generator and the 

discriminator—compete with each other: the 

generator attempts to create synthetic data that 

looks like the real data, while the discriminator 

tries to distinguish the synthetic data from the real 

[7]. In the context of anomaly detection, the 

discriminator can be trained on real GitHub data to 

detect artificially created activities, such as fake 

stars or anomalous fork patterns. Despite their 

power, GANs require significant computational 

resources and can be challenging to configure and 

interpret, limiting their use in real-world 

applications. 

To better understand algorithm behavior and 

effectiveness in analyzing GitHub data, visualizing 

the results of their operation is particularly useful. 

For example, visualizing data distributions before 

and after applying anomaly detection algorithms 

can show how the algorithms isolate anomalous 

data. Time series graphs that display activity in 

GitHub repositories can also help identify 

anomalies, such as sudden spikes in activity that 

may be hidden in large volumes of data. 
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For illustration, the following types of activity 

distribution charts can be used to show normal and 

anomalous patterns: 

1. Star distribution over time: This chart can 

display how the number of stars changes over 

time. Anomalous spikes that are not supported by 

corresponding activity in other metrics may 

indicate manipulation. 

2. Commit density chart: This chart shows how 

frequently commits occur over a specific period. 

An abnormally high commit density, especially 

with minimal changes, may indicate artificially 

generated activity. 

3. Repository activity heatmap: A heatmap can 

visualize activity by days and hours, revealing 

anomalous patterns such as excessive activity 

during non-working hours or uneven distribution 

of activity. 

These visualizations help to better understand 

algorithm behavior and allow users to interpret 

the results by providing clear evidence of 

anomalies. Thus, the analysis of machine learning 

algorithms for detecting anomalies in GitHub data 

requires not only selecting and configuring 

appropriate methods but also using visualization 

to gain deeper insights into the data and their 

interpretation. 

3. Conceptual model of the anomaly detection 

system for project evaluation 

The conceptual model of the DualSpace anomaly 

detection system for project evaluation, based on 

GitHub data, represents a multi-layered 

architecture that integrates various machine 

learning algorithms for automated analysis and 

interpretation of data. This model is designed to 

ensure transparency and reliability in the 

evaluation of technology projects, which is 

particularly important for investors, developers, 

and analysts who rely on GitHub data as an 

indicator of project quality and popularity. 

It is essential to emphasize that this system 

accounts for the diversity and complexity of 

GitHub data. Repositories on this platform contain 

multiple types of data, including activity metrics 

(such as the number of stars, forks, commits) and 

metadata about users and events. These data 

exhibit temporal dependencies and may be 

distributed unevenly, which necessitates the use of 

advanced processing and analysis methods. 

At the first stage, data collection is performed 

using the GitHub API. This process is automated, 

allowing the system to regularly update 

information about repositories, users, and events. 

The data includes activity metrics, such as the 

number of stars, forks, commits, and pull requests, 

as well as metadata about users, their activities, 

and event timestamps. These data arrive in an 

unstructured form, and preprocessing them plays 

a crucial role in ensuring the accuracy of 

subsequent analysis. 

 

import requests 

 

# Example of retrieving repository data using the GitHub API 

url = "https://api.github.com/repos/username/repository" 

response = requests.get(url) 

data = response.json() 

 

# Extracting necessary metrics 
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stars = data['stargazers_count'] 

forks = data['forks_count'] 

commits_url = data['commits_url'] 

 

print(f"Stars: {stars}, Forks: {forks}") 

 

This code illustrates a simple request to the GitHub 

API to obtain basic information about a repository, 

such as the number of stars and forks. In the real 

system, the requests are more complex and involve 

processing large volumes of data from numerous 

repositories. 

The next step involves data preprocessing, which 

may include data cleaning, normalization, and 

dimensionality reduction. These steps are 

essential for preparing the data for more complex 

analysis, such as anomaly detection. A key aspect 

at this stage is the removal of noise, which can 

distort the analysis results. 

Once the data is prepared, it is passed to the 

anomaly detector, where various machine learning 

algorithms are applied. It is important for the 

system to be flexible and support different analysis 

methods depending on the nature of the data. For 

example, to analyze time series of activity, 

recurrent neural networks (RNNs) can be used, as 

they account for temporal dependencies and can 

detect anomalies that manifest in changes in 

activity patterns. 

 

from sklearn.ensemble import IsolationForest 

 

# Example of using Isolation Forest to detect anomalies 

model = IsolationForest(n_estimators=100, contamination=0.01) 

model.fit(training_data) 

 

# Predicting anomalies 

anomalies = model.predict(test_data) 

 

In this example, the code demonstrates the use of 

the Isolation Forest algorithm to detect anomalies 

in the data. This method is well-suited for working 

with large datasets where anomalies may be rare 

and difficult to detect using traditional methods 

[9]. 

After detecting anomalies, the system moves to the 

stage of result interpretation. It is important not 

only to detect deviations but also to provide users 

with context that helps them understand the 

causes and consequences of these anomalies. This 

may include data visualizations, such as activity 

distribution graphs, time series charts, or 

heatmaps, which visually show when and how the 

anomalies occurred. 
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import matplotlib.pyplot as plt 

 

# Example of creating an activity distribution chart 

plt.plot(dates, star_counts) 

plt.title("Star Distribution Over Time") 

plt.xlabel("Date") 

plt.ylabel("Number of Stars") 

plt.show() 

 

 

Figure 1 – Number of Stars in the Repository Over Time 

 

This graph shows how the number of stars in a 

repository changed over time and allows users to 

visually assess possible anomalies, such as sudden 

spikes in activity [10]. 

Finally, the system generates comprehensive 

reports that include information on the detected 

anomalies, analysis of their causes, and 

recommendations for further actions. These 

reports can be used to assess project reputation, 

make investment decisions, or for internal analysis 

by developers. 

Thus, the proposed conceptual model represents a 

comprehensive solution for the automated 

analysis of GitHub data. It enables the detection 

and interpretation of anomalies, which contributes 
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to improving the transparency and reliability of 

technology project evaluation. Integrating systems 

like DualSpace can significantly enhance decision-

making processes in the technology sector, 

providing more accurate and informative data for 

all stakeholders. 

CONCLUSION 

In conclusion, the conducted research has 

demonstrated that using machine learning 

algorithms to detect anomalies in GitHub data is 

not only feasible but also an essential tool for 

ensuring transparency and objectivity in 

evaluating technology projects. GitHub, as a central 

platform for hosting and collaborative software 

development, provides a vast amount of data that 

can serve as an indicator of project success and 

popularity. However, manipulations of this data, 

such as inflating stars or artificially generating 

activity, can distort the real picture, misleading 

investors, developers, and other stakeholders. 

The methodology proposed in this article covers 

the entire anomaly detection process, from data 

preprocessing to interpreting results using 

visualizations and generating reports. The use of 

unsupervised learning algorithms, such as 

Isolation Forest and One-Class SVM, as well as deep 

learning methods like autoencoders and GANs, 

ensures high accuracy in anomaly detection, 

allowing both obvious and hidden manipulations 

to be identified. 

The developed conceptual model of the anomaly 

detection system offers a flexible and scalable 

solution that can be adapted to various conditions 

and data types. It takes into account the specifics of 

GitHub data, their temporal dependencies, and 

uneven distribution, making it particularly 

effective for analyzing large and complex datasets. 

Integrating such a system into technology project 

evaluation processes, as demonstrated by 

DualSpace, can significantly improve decision-

making quality by providing more reliable and 

accurate data. This, in turn, enhances transparency 

in the technology market, strengthens trust 

between investors and developers, and ultimately 

promotes a fairer distribution of resources. 

Thus, the presented research and proposed 

methodology highlight the significance and 

potential of applying machine learning in the 

analysis of GitHub data, opening new 

opportunities for the development of automated 

systems for evaluating technology projects. 
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