
THE USA JOURNALS

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984)
VOLUME 06 ISSUE09

 38

https://www.theamericanjournals.com/index.php/tajet

PUBLISHED DATE: - 12-09-2024
DOI: - https://doi.org/10.37547/tajet/Volume06Issue09-06 PAGE NO.: - 38-44

METHODS FOR ENHANCING FAULT

TOLERANCE IN SYSTEMS WITH HYBRID

ARCHITECTURE

Kuzevanov Igor

 Senior Member of Technical Staff @ Oracle, Santa Clara, California, USA

INTRODUCTION

Modern information systems increasingly utilize

hybrid architectures that combine elements of

cloud technologies, on-premises servers, and edge

computing. These systems enable organizations to

manage data and computing resources more

efficiently by distributing workloads across

various components, thereby providing high

flexibility and scalability. However, as the

complexity of such architectures grows, so does the

number of potential vulnerabilities, making the

issue of ensuring fault tolerance critically

important. Fault tolerance, defined as the system's

ability to continue functioning in the event of

partial or complete failures, becomes a crucial

aspect in the design and operation of hybrid

systems.

The relevance of this study is driven by the growing

demands for reliability and continuity of business

processes, particularly in the context of intensive

use of cloud technologies and distributed

computing.

The aim of this work is to analyze existing methods

for enhancing fault tolerance in systems with

hybrid architecture, identify their advantages and

disadvantages, and offer recommendations for

their optimal application in modern information

environments.

1. Types of Failures and Vulnerabilities in

Hybrid Systems

The threats and vulnerabilities that arise in

distributed systems are associated with risks that

can jeopardize the stability and security of these

RESEARCH ARTICLE Open Access

Abstract

https://www.theamericanjournals.com/index.php/tajet
https://www.theamericanjournals.com/index.php/tajet
https://doi.org/10.37547/tajet/Volume06Issue09-06
https://doi.org/10.37547/tajet/Volume06Issue09-06

THE USA JOURNALS

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984)
VOLUME 06 ISSUE09

 39

https://www.theamericanjournals.com/index.php/tajet

systems. Vulnerabilities are weaknesses within the

system, including software bugs, ineffective

security measures, or unreliable passwords, which

can be exploited by malicious actors to attack the

system. Threats, in turn, represent potential

negative consequences of exploiting these

vulnerabilities, such as unauthorized access, data

breaches, or system failures. Ensuring security in

distributed systems is of paramount importance

given their complexity, high level of integration,

and frequent use for critical tasks.

Since distributed systems form the backbone of

many essential services, such as online banking,

healthcare, and telecommunications, disruptions

caused by security threats can have severe

consequences. For example, DDoS attacks, which

overwhelm the system with fake traffic, can render

it inaccessible to legitimate users.

The security of distributed systems also directly

impacts customer trust in an organization. Any

breach, particularly those involving data leaks, can

severely damage a company's reputation, leading

to financial losses and a loss of customer trust.

Distributed systems face a variety of threats,

including denial-of-service attacks (DoS/DDoS),

data interception and eavesdropping, insider

threats from employees, and infections by malware

and ransomware. Each of these threats can have

serious consequences, including data loss and

disruption of the organization's operations [1].

Hybrid systems introduce new threat vectors not

present in traditional IT environments. In

particular, data transmitted between cloud and on-

premises components may be at risk of

interception or tampering. Moreover, the complex

structure of hybrid systems increases the number

of potential attack points, giving malicious actors

more opportunities to exploit vulnerabilities.

To ensure comprehensive protection of hybrid

systems, various penetration testing

methodologies are employed. Each of these

methods focuses on specific aspects of the system

and allows its security to be assessed from

different perspectives. The combined use of these

methods enables the most accurate identification

of potential vulnerabilities and enhances the level

of protection [2]. Table 1 presents the existing

types of penetration testing.

Table 1. Types of Penetration Testing [3].

Type of

Testing Description

Black Box

This method involves testing the system without prior knowledge of its internal

structure, simulating the actions of an external attacker. The goal is to gain

unauthorized access and identify vulnerabilities without the involvement of

developers.

White Box

Unlike the black box method, white box testing is conducted with full access to

system information. This method includes analyzing the source code, architecture,

and infrastructure, allowing for the identification of vulnerabilities at the code and

configuration levels.

Gray Box

This method is a compromise between black box and white box testing. The tester has

limited knowledge of the system, allowing them to focus on identifying

https://www.theamericanjournals.com/index.php/tajet

THE USA JOURNALS

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984)
VOLUME 06 ISSUE09

 40

https://www.theamericanjournals.com/index.php/tajet

vulnerabilities in specific components while remaining relatively independent of the

developers.

Physical

Penetration

Testing

This method focuses on the physical security of the system, including attempts to

access hardware or facilities where servers and other critical components are housed.

Web

Application

Testing

This approach aims to identify vulnerabilities in web interfaces, such as SQL injection

or cross-site scripting, which could be used by attackers to compromise the system

[3].

2. Traditional Methods for Enhancing Fault

Tolerance

Fault tolerance refers to the ability of a system or

its components to continue functioning after a

partial or complete failure. There are several levels

of fault tolerance: zero, high, and low. At the zero

level of fault tolerance, any critical point of failure

leads to a complete shutdown of the system. An

example would be a situation where the failure of a

single component, such as a valve core, renders the

entire system non-functional. A high level of fault

tolerance means that the system can continue

operating even if individual components fail, as

seen in facilities with backup generators that

maintain lighting and power supply when the main

energy source is lost. A low level of fault tolerance

provides only the minimally necessary functions,

such as emergency lighting and elevator operation.

The goal of designing for fault tolerance is to

minimize risks to people and reduce potential

damage to property. Despite the aim to enhance

fault tolerance, it is important to consider the

trade-offs related to costs and technical

capabilities. By analyzing the criticality of systems,

the likelihood of failure, and the associated costs, it

is possible to determine which system components

require increased reliability. Using the right EAM

(Enterprise Asset Management) software helps

simplify the process of data collection and

facilitates informed decision-making regarding

fault tolerance [4].

Fault tolerance is therefore of paramount

importance in the design and deployment of

modern information systems.

First, it ensures the continuity of critical services,

which is especially important for organizations

where any downtime can lead to significant

financial losses or damage to reputation.

Second, fault tolerance is directly linked to

enhancing system reliability. Redundant

mechanisms help prevent data loss and minimize

the risk of prolonged downtime, which is critical

for maintaining operational stability.

Third, fault tolerance contributes to improving

system scalability. Automatic load redistribution

among redundant components makes it easier for

the system to adapt to increased loads while

maintaining stable performance. Table 2 below

presents the types of fault tolerance at different

levels of the system.

Table 2. Types of Fault Tolerance at Different Levels of the System [4].

Type of Fault Tolerance General Description of Fault Tolerance Type

https://www.theamericanjournals.com/index.php/tajet

THE USA JOURNALS

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984)
VOLUME 06 ISSUE09

 41

https://www.theamericanjournals.com/index.php/tajet

at Various System Levels

Server Fault Tolerance

Involves the presence of backup servers that automatically take over

workloads in the event of a primary server failure.

Database Fault Tolerance

Involves creating backups of databases that come into play if the

primary server fails.

Network Component Fault

Tolerance

Achieved by redundant routers, switches, and connections, allowing

communication to be maintained even during network failures.

Data Storage Fault

Tolerance

Involves replicating data across multiple storage devices, ensuring

access even if one device fails.

Application Fault

Tolerance

Implemented through routing user requests to backup instances of

applications in case of a primary failure.

To successfully implement fault tolerance, careful

planning and the deployment of several key

strategies are necessary:

1. Redundancy: Incorporating redundant

components that can be used as backups ensures

the immediate restoration of system functionality.

2. Automated Monitoring: Continuous monitoring

of the system’s status allows for the prompt

detection and resolution of issues before they

impact performance.

3. Rapid Recovery: Implementing procedures that

enable instant switching to backup components

reduces downtime and minimizes the impact on

users.

4. Load Balancing: Distributing the load across

various resources prevents individual components

from being overloaded and maintains stable

system operation [5].

Fault-tolerant systems are designed with

additional components that can replace failed

devices or processes, thereby preventing

operational disruptions. The main elements of

fault-tolerant systems are outlined in Table 3.

Table 3. The Main Elements of Fault-Tolerant Systems [6].

Elements of

Fault-Tolerant

Systems Description of Elements

Diversification

Diversification involves creating backup components that operate independently

of the primary ones. This can include using alternative power sources in case the

primary source fails, allowing the system to continue functioning even under

extreme conditions.

Redundancy

The introduction of redundant elements helps minimize the impact of failures. For

instance, a system with multiple power supplies, where each supply can maintain

system operation, ensures continuous functioning even if one power supply fails.

Replication

Replication is the method of creating copies of the system or its components that

operate in parallel and deliver identical results. If one copy fails, another

https://www.theamericanjournals.com/index.php/tajet

THE USA JOURNALS

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984)
VOLUME 06 ISSUE09

 42

https://www.theamericanjournals.com/index.php/tajet

continues to perform the tasks, minimizing the risk of data loss or operational

downtime. This approach can be implemented at both the component level and

the entire system level, creating duplicate structures to enhance reliability [6].

3. Modern Approaches and Tools for Ensuring

Fault Tolerance in Hybrid Systems

One of the most effective methods for increasing a

system's resilience to failures is hardware

duplication, which involves having multiple

components that perform identical functions. For

example, additional power supplies, memory

modules, hard drives, processors, or network

interfaces can be used. If one of these elements

fails, another can take over, ensuring the system's

continuous operation. Hardware-level duplication

can be implemented at various levels, including

individual components, devices, boards, or even

the entire system. However, it's important to note

that implementing hardware duplication increases

costs, complicates the system, and raises its energy

consumption.

An alternative approach to enhancing fault

tolerance is software redundancy, which involves

having multiple versions of the same software

capable of producing identical results. In this

context, different algorithms, programming

languages, or implementations can be used, which,

despite their differences, solve the same task. If one

version produces an erroneous result, another can

detect and correct it. Software redundancy can be

applied at various stages of development, testing,

or operation. It is important to note that this

approach increases development time, requires

additional resources for testing, and increases the

amount of memory used.

Another method for ensuring system reliability is

the use of error detection and correction

mechanisms. These mechanisms can include

checksums, parity codes, error correction systems,

or watchdog timers to detect faults in data or

signals. Recovery methods after failures may

involve rollback, restart, or process replication.

These mechanisms can be implemented at the

hardware level, software level, or middleware

level. However, applying these methods inevitably

increases system load, introduces additional

delays, and may reduce throughput [7].

To minimize the risk of errors and failures in the

system, preventive measures such as applying

design standards, coding rules, and quality

assurance procedures can be used. These methods

help prevent errors in both the hardware and

software components of the system. Additionally,

load balancing, proper resource allocation, and

effective system planning help avoid failures.

Implementing preventive measures requires

careful planning, in-depth analysis, and

optimization at all stages—from design to system

operation.

A fifth way to enhance system reliability is through

tools designed for modeling and evaluating the

system's response to potential failures. These tools

can include software and hardware solutions for

testing components like memory, disks, or network

interfaces for errors. Various metrics and tests can

also be applied to assess system reliability and

availability in the event of failures. The modeling

and testing process requires significant time and

resource investments, as well as a high level of

expertise.

Lastly, a comprehensive approach to the

development and integration of hardware and

software is crucial for enhancing system reliability.

This approach involves close coordination between

these components, which allows for optimizing

system performance under failure conditions. For

https://www.theamericanjournals.com/index.php/tajet

THE USA JOURNALS

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984)
VOLUME 06 ISSUE09

 43

https://www.theamericanjournals.com/index.php/tajet

example, adaptive hardware or software methods

can be used to configure the system according to

the situation. Joint modeling and debugging can

also be applied to verify the system's correct

operation. However, this approach requires high

skill levels and careful coordination among all

participants in the system development and

implementation process [8].

The choice between these approaches depends on

the goals and specifics of the application. Critically

important systems, such as financial or medical

applications, require maximum resilience and

continuous operation. For less critical applications,

a strategy of gradual degradation may be

acceptable, allowing for resource savings while

maintaining a certain level of functionality.

When designing fault-tolerant systems, architects

need to define an acceptable level of system

survivability. Complete fault tolerance is

unattainable, so specific goals must be set, which

can vary depending on the application's

architecture and its operational environment.

The most common goals include:

1. Node failure tolerance: Deploying software

instances across multiple nodes helps minimize

risks in the event of hardware failures.

2. Availability zone failure tolerance: Using

multiple data centers within a single cloud region

protects the application from failures related to the

outage of a specific data center.

3. Cloud region failure tolerance: Deploying

software instances across different cloud regions

provides protection against more widespread

failures, such as the outage of an entire region.

4. Cloud provider failure tolerance: Utilizing a

multi-cloud architecture or on-premises

deployment helps safeguard against a complete

service failure from a specific provider.

Additionally, when designing these systems,

factors such as acceptable recovery time (RTO) and

allowable data loss (RPO) must be considered.

These parameters significantly influence the choice

of architectural solutions and, consequently, the

associated costs.

The costs of ensuring fault tolerance can vary

widely. Operating a system designed for high fault

tolerance may require significant financial

investment; however, these costs must be weighed

against the potential losses in the event of a failure.

For example, downtime for a critical application

could result in substantial financial losses and

damage to the company's reputation.

Moreover, it is essential to consider the costs of

restoring system functionality after a failure, as

well as the impact of downtime on the morale and

productivity of the development team.

An important example of a cost-effective approach

to fault tolerance is the transition to specialized

solutions, such as the use of distributed databases.

For instance, a major company’s switch from

MySQL to CockroachDB not only improved the fault

tolerance of their database but also significantly

reduced maintenance costs through the

automation of complex processes.

The following practical examples illustrate modern

approaches and tools for ensuring fault tolerance

in hybrid systems:

Google Infrastructure: Google’s large-scale

distributed infrastructure is an example of a highly

fault-tolerant system. One of the key strategies is

global data replication, which helps reduce latency

and increase system resilience. Another important

element of Google’s approach is performance

isolation, which helps maintain high availability

and low latency even under abnormal load

conditions.

Cluster management systems like Borg

demonstrate Google's commitment to ensuring

reliability and availability. Borg combines cluster

https://www.theamericanjournals.com/index.php/tajet

THE USA JOURNALS

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984)
VOLUME 06 ISSUE09

 44

https://www.theamericanjournals.com/index.php/tajet

management tasks with resource allocation

optimization and failure recovery, maintaining

high service quality for users.

AWS Route 53: Amazon Web Services' (AWS)

Route 53 service is an example of a highly available

and fault-tolerant system. It uses a network of

devices that monitor the health of resources in

various regions, enabling a rapid response to

failures. If issues are detected, the system

automatically switches to alternative resources,

ensuring uninterrupted operation.

Route 53 is designed to remain resilient even under

widespread failures. Thanks to its well-considered

architecture, which includes redundant resources

and efficient load distribution, the service

maintains stability and high performance under

the most challenging conditions [9].

CONCLUSION

In conclusion, ensuring fault tolerance in hybrid

systems requires a comprehensive approach that

incorporates both traditional and modern

methods. To achieve an optimal level of fault

tolerance, it is essential not only to consider the

architecture and specific operational

characteristics of the system but also to carefully

analyze potential risks and costs. A multi-layered

approach, which includes hardware and software

redundancy, sharding, data replication, and other

methods, can significantly enhance the reliability

and stability of systems, particularly those critical

to essential infrastructures. However, complete

fault tolerance is unattainable, making it important

to establish acceptable goals and levels of system

survivability based on its purpose.

REFERENCES

1. Jansen A. C. H., Kana A. A., Hopman J. J. A

Markov-based vulnerability assessment for the

design of on-board distributed systems in the

concept phase //Ocean Engineering. – 2019. –

T. 190. – P. 106-448.

2. Al Shebli H. M. Z., Beheshti B. D. A study on

penetration testing process and tools //2018

IEEE Long Island Systems, Applications and

Technology Conference (LISAT). – IEEE, 2018.

– pp. 1-7.

3. Ur-Rehman A. et al. Vulnerability modeling for

hybrid IT systems //2019 IEEE international

conference on industrial technology (ICIT). –

IEEE, 2019. – pp. 1186-1191.

4. Koren I., Krishna C. M. Fault-tolerant systems. –

Morgan Kaufmann, 2020. Sharma P., Prasad R.

Techniques for Implementing Fault Tolerance

in Modern Software Systems to Enhance

Availability, Durability, and Reliability //

Eigenpub Review of Science and Technology. –

2023. – T. 7. – No. 1. – pp. 239-251.

5. What is Fault Tolerance? 3 Techniques &

Definition. [Electronic resource] Access mode:

https://www.wallarm.com/what/what-is-

fault-tolerance (access date 08/21/2024).

6. Kumari P., Kaur P. A survey of fault tolerance in

cloud computing // Journal of King Saud

University-Computer and Information

Sciences. – 2021. – T. 33. – No. 10. – pp. 1159-

1176.

7. What is fault tolerance, and how to build fault-

tolerant systems. [Electronic resource] Access

mode:

https://www.cockroachlabs.com/blog/what-

is-fault-tolerance/ (date of access

08/21/2024).

8. Hybrid -system approach to fault-tolerant

quantum communication. [Electronic

resource] Access mode:

https://archive.org/details/arxiv-1209.3851

(date of access 08/21/2024)

https://www.theamericanjournals.com/index.php/tajet

