
THE USA JOURNALS

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984)
VOLUME 06 ISSUE07

 24

https://www.theamericanjournals.com/index.php/tajet

PUBLISHED DATE: - 11-07-2024
DOI: - https://doi.org/10.37547/tajet/Volume06Issue07-04 PAGE NO.: - 24-39

AUTOMATION OF TEXT DATA PROCESSING USING NLP

 Yaroslav Starukhin
 Senior Data scientist, McKinsey & Company, Boston, USA

 Vladimir Diukarev
 Head of Data Analytics, Anti-Fraud Department, Sberbank Moscow, Russian Federation

INTRODUCTION

In the era of information explosion and exponential
growth of text data, the automation of their
processing becomes not just desirable but critically
necessary for the effective functioning of the
scientific community and industry as a whole.
Scientific publications, technical documents,
patents, and other forms of textual information are
generated at an unprecedented rate, creating
significant challenges for their analysis,
categorization, and extraction of valuable insights.

Natural Language Processing (NLP) is an
interdisciplinary field at the intersection of
linguistics, computer science, and artificial
intelligence that focuses on the interaction
between computers and human language. In recent
years, NLP has shown significant progress, largely
due to the development of deep learning and the
emergence of transformer architectures such as

BERT (Bidirectional Encoder Representations from
Transformers) and GPT (Generative Pre-trained
Transformer) [1,2].

The automation of text data processing using NLP
opens up a wide range of possibilities, including but
not limited to:

1. Document classification by topic, which is
critical for the efficient organization and
retrieval of information in large text corpora.

2. Keyword and phrase extraction, allowing
quick identification of the main content of a
document.

3. Topic modeling, revealing latent topics in
document collections.

4. Semantic analysis, contributing to a deeper
understanding of the context and meaning of

RESEARCH ARTICLE Open Access

Abstract

https://www.theamericanjournals.com/index.php/tajet
https://www.theamericanjournals.com/index.php/tajet
https://doi.org/10.37547/tajet/Volume06Issue07-04
https://doi.org/10.37547/tajet/Volume06Issue07-04

THE USA JOURNALS

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984)
VOLUME 06 ISSUE07

 25

https://www.theamericanjournals.com/index.php/tajet

text.

5. Automatic summarization, providing brief
summaries of large documents.

The relevance of this topic is underscored by the
growing demand for automated text processing
systems in various sectors, including research
institutes, libraries, publishers, patent offices, and
corporate R&D departments. Moreover, in the
context of the development of artificial intelligence
technologies and big data, the improvement of NLP
methods becomes a key factor in creating more
intelligent and efficient information systems.

The main goal of this research is the development
and implementation of a comprehensive
automated text data processing system using
modern NLP methods, aimed at analyzing scientific
publications.

To achieve this goal, the following tasks were set:

1. Conduct a critical analysis of existing NLP
methods and algorithms applicable to
scientific text processing tasks, with a
particular focus on the latest achievements
in transformer architectures.

2. Develop the system architecture, integrating
various NLP components, including text
preprocessing, vector representation,
classification, topic modeling, and keyword
extraction.

3. Implement and optimize a BERT-based
classification model adapted for categorizing
scientific articles by disciplines.

4. Implement a topic modeling algorithm using
Latent Dirichlet Allocation (LDA) to identify
latent topics in the corpus of scientific texts.

5. Develop and integrate a keyword extraction
method based on the TextRank graph
algorithm, adapted for working with
scientific terminology.

6. Conduct experimental validation of the
developed system on a corpus of scientific
articles obtained from the arXiv repository,
with an assessment of the effectiveness of
each system component.

7. Implement a web interface to demonstrate

the functionality of the system and provide
the possibility of interactive analysis of
scientific texts.

8. Evaluate the potential and limitations of the
developed system in the context of real use
scenarios in academic and industrial
environments.

This research aims to overcome existing
limitations in the automated processing of
scientific texts and proposes an integrated
approach that combines classical NLP methods
with advanced deep learning technologies. It is
expected that the results of the research will
contribute to the development of methodology for
scientific literature analysis and provide practical
tools for researchers and information management
specialists.

Theoretical Foundations of NLP

As noted earlier, Natural Language Processing
(NLP) is a complex research area that combines
linguistics, computer science, and artificial
intelligence. The fundamental goal of NLP is to
develop methods and algorithms that enable
computer systems to effectively analyze,
understand, and generate human language in its
natural form.

Key concepts in NLP include:

1. Tokenization: the process of splitting text
into minimal meaningful units (tokens),
usually words or subwords. This step is
critical for further analysis as it defines the
basic elements with which subsequent
algorithms will work.

2. Lemmatization and Stemming: methods for
reducing words to their base form.
Lemmatization considers the morphology of
the language and returns the dictionary form
of a word, while stemming applies simpler
rules to strip suffixes. The choice of method
depends on the balance between accuracy
and computational efficiency.

3. Part-of-Speech Tagging (POS-tagging):
automatic determination of parts of speech
for each word in the text. This information is
crucial for syntactic and semantic analysis

https://www.theamericanjournals.com/index.php/tajet

THE USA JOURNALS

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984)
VOLUME 06 ISSUE07

 26

https://www.theamericanjournals.com/index.php/tajet

tasks.

4. Syntactic Parsing: constructing a tree
structure of a sentence that reflects the
syntactic relationships between words.
Modern approaches often use probabilistic
context-free grammars (PCFG) or deep
neural networks for this task.

5. Semantic Analysis: extracting meaning from
text, including word sense disambiguation
and analysis of semantic roles. Methods here

range from simple statistical approaches to
complex neural network models [3,4].

Vector representation of words and texts plays a
key role in modern NLP. Models such as Word2Vec,
GloVe, and FastText allow words to be represented
as dense vectors in a multidimensional space,
reflecting the semantic relationships between
words. The evolution of these approaches has led
to the emergence of contextual embeddings such as
ELMo and, subsequently, transformer models.

Figure 1 – Vector Representation of Words and Texts using Word2Vec

The last decade has seen significant progress in the
field of NLP, largely due to the development of deep
learning and the emergence of transformer
architectures. Transformers, first introduced by
Vaswani et al. [8], revolutionized sequence
processing by introducing the self-attention
mechanism, which allows models to efficiently
capture context over long distances. This
architecture formed the basis for models such as

BERT, GPT, and their numerous variations.

BERT (Bidirectional Encoder Representations from
Transformers) is a model pretrained on a massive
corpus of text using two tasks: masked language
modeling (MLM) and next sentence prediction
(NSP). The key advantage of BERT lies in its ability
to consider the context of a word from both
directions, which is particularly important for
natural language understanding tasks.

Table 1. Performance comparison of various models on standard NLP tasks

Model GLUE Score SQuAD v1.1 (F1) CoNLL-2003 NER (F1)

BERT-base 78.3 88.5 92.4

RoBERTa 86.5 94.6 92.8

https://www.theamericanjournals.com/index.php/tajet

THE USA JOURNALS

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984)
VOLUME 06 ISSUE07

 27

https://www.theamericanjournals.com/index.php/tajet

XLNet 88.4 95.1 93.0

T5 89.7 94.8 93.5

Development of transformer models has led to the
emergence of several innovative approaches:

1. Transfer Learning: Using models pretrained
on large corpora and fine-tuning them on
specific tasks has significantly improved
results across various domains, including
the analysis of scientific texts.

2. Few-shot Learning: The ability of models to
adapt to new tasks with minimal examples
has opened new possibilities in domains
with limited annotated data.

3. Multilingual Models: The development of
models capable of working with multiple
languages simultaneously has greatly
expanded the applicability of NLP
technologies on a global scale.

However, despite impressive progress, modern
NLP approaches face several challenges. The
interpretability of complex neural network models
remains a critical issue, especially in the context of
analyzing scientific texts where transparency of
reasoning is crucial. Additionally, the
computational complexity of large language
models creates barriers for their widespread use in
resource-constrained environments.

In the context of processing scientific texts,
particular attention is given to adapting general
language models to the specifics of scientific
discourse. This includes pretraining on scientific
literature corpora, developing specialized
pretraining tasks that account for the structure of
scientific papers, and integrating domain-specific
knowledge into model architectures [5-7].

Figure 2 – Evolution of Language Models in NLP

In conclusion, modern approaches to text
processing in NLP are characterized by integrating
deep learning, particularly transformer
architectures, with classical methods of linguistic
analysis. This synergy enables the creation of
systems capable of not only efficiently processing
large volumes of textual data but also extracting
deep semantic representations from them, which is
especially crucial when working with scientific
texts.

METHODOLOGY

Within this study, a comprehensive set of tools and
libraries carefully selected for efficient processing
and analysis of scientific texts was utilized. The
foundation of the technological stack was the
Python programming language, chosen for its rich
ecosystem of libraries for natural language
processing (NLP) and machine learning.

Key components of the toolkit included:

https://www.theamericanjournals.com/index.php/tajet

THE USA JOURNALS

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984)
VOLUME 06 ISSUE07

 28

https://www.theamericanjournals.com/index.php/tajet

1. PyTorch: A deep learning framework used
for implementing and training neural
networks, particularly transformer models.
PyTorch was chosen for its flexibility and
efficiency in handling dynamic
computational graphs.

2. Hugging Face Transformers: A library
providing pre-trained models and tools for
working with transformer architectures.
This library greatly simplifies the process of
fine-tuning and applying modern language
models.

3. spaCy: A library for advanced NLP tasks such
as tokenization, lemmatization, and part-of-
speech tagging. spaCy is known for its high
performance and accuracy in linguistic
analysis.

4. NLTK (Natural Language Toolkit): A
comprehensive library for NLP used for
additional text processing tasks and
linguistic analysis.

5. Gensim: A library for topic modeling and text
vectorization, used for implementing LDA
and working with word embeddings.

6. scikit-learn: A machine learning library used
for data preprocessing, model evaluation,
and implementing classical machine
learning algorithms.

7. NetworkX: A library for working with
graphs, used in implementing the TextRank
algorithm for keyword extraction.

The text processing methodology in this study is
based on a multi-stage approach, combining
classical NLP methods with modern deep learning
techniques. The choice of methods is driven by the
specific characteristics of scientific texts and the
need for a balance between analysis accuracy and
computational efficiency.

1. Text preprocessing: A combination of
methods from spaCy and NLTK was chosen
for text preprocessing. The process includes
tokenization, lemmatization, and stop-word

removal. Lemmatization was preferred over
stemming due to its higher accuracy in
handling scientific terminology. Part-of-
speech tagging is additionally applied to
extract meaningful parts of speech (nouns,
adjectives, verbs), which is crucial for
scientific text analysis.

2. Text vectorization: Pre-trained BERT model
specialized for scientific texts (SciBERT) is
used for creating text embeddings. BERT
was chosen for its ability to capture context
and effectively handle scientific terminology.
Token-level embeddings are generated and
then aggregated to obtain the document
representation.

3. Document classification: For classifying
scientific papers by disciplines, a fine-tuned
version of SciBERT is applied. The fine-
tuning process involves adding a
classification layer on top of the pre-trained
model and training on a corpus of labeled
scientific articles. This method was chosen
for its superior performance in text
classification tasks, especially in scientific
literature analysis.

4. Topic modeling: Latent Dirichlet Allocation
(LDA) is used to identify latent topics in the
corpus of scientific texts. Despite the
emergence of neural network approaches to
topic modeling, LDA was chosen for its
interpretability and efficiency in handling
large text corpora. Topic coherence is
additionally applied to optimize the number
of topics and improve model quality.

5. Keyword extraction: A modified TextRank
algorithm is implemented for extracting
keywords and phrases. The choice was
motivated by the method's ability to
consider text structure and identify the most
significant terms without the need for pre-
training. The algorithm modification
includes leveraging part-of-speech tags and
using word embeddings to assess semantic
similarity between words.

Table 2. Comparison of selected methods with alternatives

https://www.theamericanjournals.com/index.php/tajet

THE USA JOURNALS

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984)
VOLUME 06 ISSUE07

 29

https://www.theamericanjournals.com/index.php/tajet

Task Selected method Alternative Обоснование выбора

Векторизация SciBERT Word2Vec Лучший учет контекста и

специфики научных текстов

Классификация Fine-tuned SciBERT SVM с TF-IDF Высокая точность на сложных

текстах, способность к

трансферному обучению

Тематическое

моделирование

LDA Neural Topic

Model

Интерпретируемость результатов,

масштабируемость

Извлечение

ключевых слов

Модифицированный

TextRank

RAKE Учет структуры текста,

отсутствие необходимости в

обучающих данных

To evaluate the effectiveness of the developed
methods, a comprehensive approach is applied:

1. Classification: Metrics such as accuracy,
precision, recall, and F1-score are utilized,
alongside a confusion matrix for detailed
analysis of classification errors.

2. Topic Modeling: Topic coherence metric is
applied to assess the quality of extracted
topics.

3. Keyword Extraction: Comparison with
manually provided keywords from authors
is conducted using precision and recall
metrics at the document level.

Additionally, qualitative evaluation by domain
experts in relevant scientific fields is performed to

verify the relevance and usefulness of the extracted
information.

The chosen methodology ensures a comprehensive
approach to analyzing scientific texts, combining
the advantages of modern deep learning methods
with established classical NLP techniques. This
approach effectively addresses tasks such as
classification, topic modeling, and extracting key
information from scientific publications, taking
into account their specificity and complexity.

Practical Part

1. Data Collection

Data collection is a fundamental stage of any
machine learning project. In this case, we used the
arXiv API to obtain scientific articles from various
fields.

 import arxiv

import pandas as pd

from tqdm import tqdm

def fetch_arxiv_data(categories, max_results=1000):
 data = []
 for category in tqdm(categories):
 search = arxiv.Search(
 query=f"cat:{category}",
 max_results=max_results,
 sort_by=arxiv.SortCriterion.SubmittedDate
)
 for result in search.results():

https://www.theamericanjournals.com/index.php/tajet

THE USA JOURNALS

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984)
VOLUME 06 ISSUE07

 30

https://www.theamericanjournals.com/index.php/tajet

 data.append({
 'title': result.title,
 'abstract': result.summary,
 'category': category
 })
 return pd.DataFrame(data)

categories = ['cs.AI', 'physics.app-ph', 'q-bio.BM', 'math.ST', 'astro-ph.CO']
df = fetch_arxiv_data(categories)

df.to_csv('arxiv_dataset.csv', index=False)

Here, the ‘arxiv’ library is used to interact with the
arXiv API. The function ‘fetch_arxiv_data’ takes a
list of categories and the maximum number of
results for each category. Additionally, ‘tqdm’ is
used to display progress, which is especially useful
when working with large volumes of data.

Five different categories were selected: artificial
intelligence (cs.AI), applied physics (physics.app-
ph), biomolecular physics (q-bio.BM), statistical

theory (math.ST), and cosmology and extragalactic
astronomy (astro-ph.CO). This ensures diversity in
the dataset, which is important for training a
robust classification model.

2. Text Preprocessing

Text preprocessing is a critically important stage in
NLP. Here, a combination of classical methods and
modern approaches based on transformers will be
used.

import spacy
import torch
from transformers import BertTokenizer, BertModel

class TextPreprocessor:
 def __init__(self):
 self.nlp = spacy.load('en_core_web_sm')
 self.tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
 self.model = BertModel.from_pretrained('bert-base-uncased')

 def preprocess(self, text):
 doc = self.nlp(text)
 tokens = [token.lemma_.lower() for token in doc if not token.is_stop and token.is_alpha]
 return ' '.join(tokens)

 def vectorize(self, text, max_length=512):
 inputs = self.tokenizer(text, return_tensors='pt', max_length=max_length, truncation=True,
padding='max_length')
 with torch.no_grad():
 outputs = self.model(**inputs)
 return outputs.last_hidden_state[:, 0, :].squeeze().numpy()

preprocessor = TextPreprocessor()
df['processed_abstract'] = df['abstract'].apply(preprocessor.preprocess)

df['vector'] = df['processed_abstract'].apply(preprocessor.vectorize)

The Text Preprocessor class performs two main
functions:

1. ‘preprocess’: utilizes spaCy for tokenization,
lemmatization, and stop-word removal. This

https://www.theamericanjournals.com/index.php/tajet

THE USA JOURNALS

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984)
VOLUME 06 ISSUE07

 31

https://www.theamericanjournals.com/index.php/tajet

classical approach to text preprocessing helps
reduce dimensionality and noise in the data.

2. ‘vectorize’: uses a pretrained BERT model to
create vector representations of the text. BERT
(Bidirectional Encoder Representations from
Transformers) is a powerful model that considers
the context of the word in both directions, resulting
in more informative text representations.

By applying both of these functions to the dataset,
we generate both the processed text and its vector

representation. This provides flexibility in
subsequent analysis: we can use the processed text
for methods based on words (e.g., LDA), while the
vector representations can be used for machine
learning methods.

3. Classification

For classification, we used a fine-tuned BERT
model. This modern approach allows achieving
high accuracy in text classification tasks.

import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder

class ArxivDataset(Dataset):
 def __init__(self, texts, labels):
 self.texts = texts
 self.labels = labels
 self.tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')

 def __len__(self):
 return len(self.texts)

 def __getitem__(self, idx):
 text = self.texts[idx]
 label = self.labels[idx]
 encoding = self.tokenizer(text, return_tensors='pt', max_length=512, truncation=True,
padding='max_length')
 return {
 'input_ids': encoding['input_ids'].flatten(),
 'attention_mask': encoding['attention_mask'].flatten(),
 'label': torch.tensor(label)
 }

class BertClassifier(nn.Module):
 def __init__(self, num_classes):
 super(BertClassifier, self).__init__()
 self.bert = BertModel.from_pretrained('bert-base-uncased')
 self.dropout = nn.Dropout(0.1)
 self.fc = nn.Linear(768, num_classes)

 def forward(self, input_ids, attention_mask):
 outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask)
 pooled_output = outputs.pooler_output
 x = self.dropout(pooled_output)
 logits = self.fc(x)

https://www.theamericanjournals.com/index.php/tajet

THE USA JOURNALS

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984)
VOLUME 06 ISSUE07

 32

https://www.theamericanjournals.com/index.php/tajet

 return logits

Data preparation
le = LabelEncoder()
df['label'] = le.fit_transform(df['category'])

X_train, X_test, y_train, y_test = train_test_split(df['processed_abstract'], df['label'], test_size=0.2,
random_state=42)

train_dataset = ArxivDataset(X_train.tolist(), y_train.tolist())
test_dataset = ArxivDataset(X_test.tolist(), y_test.tolist())

train_loader = DataLoader(train_dataset, batch_size=16, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=16)

Model training
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = BertClassifier(num_classes=len(le.classes_)).to(device)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.AdamW(model.parameters(), lr=2e-5)

num_epochs = 5
for epoch in range(num_epochs):
 model.train()
 for batch in tqdm(train_loader):
 input_ids = batch['input_ids'].to(device)
 attention_mask = batch['attention_mask'].to(device)
 labels = batch['label'].to(device)

 optimizer.zero_grad()
 outputs = model(input_ids, attention_mask)
 loss = criterion(outputs, labels)
 loss.backward()
 optimizer.step()

 # Model estimation
 model.eval()
 correct = 0
 total = 0
 with torch.no_grad():
 for batch in test_loader:
 input_ids = batch['input_ids'].to(device)
 attention_mask = batch['attention_mask'].to(device)
 labels = batch['label'].to(device)

 outputs = model(input_ids, attention_mask)
 _, predicted = torch.max(outputs, 1)
 total += labels.size(0)

https://www.theamericanjournals.com/index.php/tajet

THE USA JOURNALS

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984)
VOLUME 06 ISSUE07

 33

https://www.theamericanjournals.com/index.php/tajet

 correct += (predicted == labels).sum().item()

 accuracy = correct / total
 print(f'Epoch {epoch+1}/{num_epochs}, Accuracy: {accuracy:.4f}')

Saving the model

torch.save(model.state_dict(), 'bert_classifier.pth')

Here, a custom ‘Dataset’ is created to work with our
data, and a ‘BertClassifier’ model is introduced,
which utilizes a pre-trained BERT and adds a
classification layer on top of it.

The ‘LabelEncoder’ is used to convert textual
category labels into numerical ones, which is
necessary for training the model.

The training process involves epochs and batches
of data, typical for deep learning. AdamW optimizer

and CrossEntropyLoss function are utilized, which
are well-suited for working with BERT.

After each epoch, the model is evaluated on the test
dataset to track the training progress.

4. Topic Analysis

Latent Dirichlet Allocation (LDA) was used for
topic analysis, which is one of the most popular
methods in topic modeling

from gensim import corpora
from gensim.models import LdaMulticore
import pyLDAvis.gensim_models

def analyze_topics(texts, num_topics=5):
 # Creating a dictionary and corpus
 dictionary = corpora.Dictionary(texts)
 corpus = [dictionary.doc2bow(text) for text in texts]

 # LDA model training
 lda_model = LdaMulticore(corpus=corpus, id2word=dictionary, num_topics=num_topics, workers=4)

 # Visualization of results
 vis = pyLDAvis.gensim_models.prepare(lda_model, corpus, dictionary)
 pyLDAvis.save_html(vis, 'lda_visualization.html')

 return lda_model

Application of LDA to each category
for category in df['category'].unique():
 category_texts = df[df['category'] == category]['processed_abstract'].str.split().tolist()
 lda_model = analyze_topics(category_texts)
 print(f"Topics for category {category}:")

 pprint(lda_model.print_topics())

LDA is a model that assumes each document is a
mixture of topics, and each topic is a distribution
over words. Using the LDA implementation from
the gensim library, which efficiently handles large
volumes of text.

LDA is applied separately to each category,
allowing specific themes within each scientific area
to be identified. This can be useful for
understanding the main research directions within
each field.

https://www.theamericanjournals.com/index.php/tajet

THE USA JOURNALS

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984)
VOLUME 06 ISSUE07

 34

https://www.theamericanjournals.com/index.php/tajet

For visualization of the results, pyLDAvis was used,
which creates an interactive web page to explore
the identified topics and their relationships.

5. Extracting Keywords and Phrases

To extract keywords and phrases, the TextRank
algorithm is utilized. It builds upon the principles
of PageRank but is applied to a graph of words
within the text.

import networkx as nx
from collections import Counter

def textrank_keywords(text, n_keywords=10):
 # Creating a word graph
 words = [word for word in text.split() if len(word) > 3]
 graph = nx.Graph()
 for i in range(len(words)):
 for j in range(i+1, min(i+5, len(words))):
 if graph.has_edge(words[i], words[j]):
 graph[words[i]][words[j]]['weight'] += 1
 else:
 graph.add_edge(words[i], words[j], weight=1)

 # Application of PageRank
 scores = nx.pagerank(graph)
 return sorted(scores.items(), key=lambda x: x[1], reverse=True)[:n_keywords]

df['keywords'] = df['processed_abstract'].apply(textrank_keywords)

Comparison with author's keywords (if available)
def compare_keywords(extracted, author):
 extracted_set = set([word for word, _ in extracted])
 author_set = set(author.split(','))
 common = extracted_set.intersection(author_set)
 precision = len(common) / len(extracted_set)
 recall = len(common) / len(author_set)
 f1 = 2 * (precision * recall) / (precision + recall) if precision + recall > 0 else 0
 return {'precision': precision, 'recall': recall, 'f1': f1}

Example comparison (assuming we have author keywords)

df['keyword_comparison'] = df.apply(lambda row: compare_keywords(row['keywords'],
row['author_keywords']), axis=1)

The TextRank algorithm operates by constructing
a graph of words within the text, where words
serve as nodes and edges represent their co-
occurrence within a specified window.
Subsequently, the PageRank algorithm is applied to
this graph to determine the most "important"
words.

Additionally, a function has been implemented to

compare the extracted keywords with the author-
provided keywords (if available). This enables the
assessment of the keyword extraction algorithm's
quality.

6. Evaluation and Optimization

To evaluate quality and optimize hyperparameters,
we use cross-validation and Bayesian optimization.

from sklearn.model_selection import cross_val_score
from sklearn.svm import SVC

https://www.theamericanjournals.com/index.php/tajet

THE USA JOURNALS

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984)
VOLUME 06 ISSUE07

 35

https://www.theamericanjournals.com/index.php/tajet

from skopt import BayesSearchCV
from skopt.space import Real, Categorical, Integer

Preparing data for SVM (using vectorized abstracts)
X = np.vstack(df['vector'].values)
y = df['label'].values

Cross-validation
svm = SVC(kernel='rbf')
cv_scores = cross_val_score(svm, X, y, cv=5)
print(f"Cross-validation scores: {cv_scores}")
print(f"Mean CV score: {cv_scores.mean()}")

Bayesian optimization
param_space = {
 'C': Real(1e-6, 1e+6, prior='log-uniform'),
 'gamma': Real(1e-6, 1e+1, prior='log-uniform'),
 'kernel': Categorical(['rbf', 'sigmoid']),
}

opt = BayesSearchCV(
 SVC(),
 param_space,
 n_iter=50,
 cv=5,
 n_jobs=-1,
 verbose=0
)

opt.fit(X, y)

print("Best parameters:", opt.best_params_)

print("Best cross-validation score:", opt.best_score_)

In this section, we employ two powerful methods
for evaluating and optimizing the model:

1. Cross-validation: We use 5-fold cross-
validation to assess the performance of the Support
Vector Machine (SVM) model on our vectorized
data. This approach provides a more reliable
estimate of the model's performance compared to
simple train-test splits.

2. Bayesian optimization: We utilize
BayesSearchCV from the scikit-optimize library to
search for optimal hyperparameters for the SVM
model. Bayesian optimization is an efficient
method for hyperparameter tuning that uses a
probabilistic model to select the most promising

parameter combinations.

We define the search space for three key SVM
parameters:

C: Regularization parameter (log-uniform
distribution from 1e-6 to 1e+6)

gamma: Kernel coefficient for 'rbf' and 'sigmoid'
kernels (log-uniform distribution from 1e-6 to
1e+1)

kernel: Kernel type (choice between 'rbf' and
'sigmoid')

Bayesian optimization conducts 50 iterations
(n_iter=50), employing 5-fold cross-validation at
each iteration. The parameter n_jobs=-1 allows

https://www.theamericanjournals.com/index.php/tajet

THE USA JOURNALS

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984)
VOLUME 06 ISSUE07

 36

https://www.theamericanjournals.com/index.php/tajet

utilization of all available processor cores for faster
processing.

Upon completion of optimization, we output the
best-found parameters and their corresponding
cross-validation score. This yields an optimized

SVM model that can be further used for classifying
new articles.

7. Web Interface

Finally, we create a simple Flask web application to
demonstrate the capabilities of the system:

from flask import Flask, request, jsonify, render_template
import torch

app = Flask(__name__)

Loading a trained model
model = BertClassifier(num_classes=len(le.classes_))
model.load_state_dict(torch.load('bert_classifier.pth'))
model.eval()

@app.route('/')
def home():
 return render_template('index.html')

@app.route('/classify', methods=['POST'])
def classify():
 text = request.json['text']
 processed_text = preprocessor.preprocess(text)
 inputs = preprocessor.tokenizer(processed_text, return_tensors='pt', max_length=512,
truncation=True, padding='max_length')

 with torch.no_grad():
 outputs = model(inputs['input_ids'], inputs['attention_mask'])
 _, predicted = torch.max(outputs, 1)

 category = le.inverse_transform(predicted.numpy())[0]
 keywords = textrank_keywords(processed_text)

 return jsonify({
 'category': category,
 'keywords': [word for word, _ in keywords]
 })

if __name__ == '__main__':

 app.run(debug=True)

This web application provides a simple interface to
interact with a text classification and analysis
system. Here's what happens:

1. We load a pre-trained BERT model when the
application starts.

2. The route / returns an HTML page with a

text input form.

3. The route /classify handles POST requests
with text for classification:

● The text is preprocessed using
TextPreprocessor.

● The preprocessed text is passed into the

https://www.theamericanjournals.com/index.php/tajet

THE USA JOURNALS

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984)
VOLUME 06 ISSUE07

 37

https://www.theamericanjournals.com/index.php/tajet

BERT model for classification.

● Additionally, we extract keywords using the
textrank_keywords function.

● Results (category and keywords) are
returned in JSON format.

HTML template (templates/index.html):
<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
 <title>ArXiv Classifier</title>
 <script src="https://cdn.jsdelivr.net/npm/axios/dist/axios.min.js"></script>
</head>
<body>
 <h1>ArXiv Paper Classifier</h1>
 <textarea id="abstract" rows="10" cols="50" placeholder="Paste your abstract here"></textarea>

 <button onclick="classify()">Classify</button>
 <div id="result"></div>

 <script>
 function classify() {
 const abstract = document.getElementById('abstract').value;
 axios.post('/classify', { text: abstract })
 .then(response => {
 const result = response.data;
 document.getElementById('result').innerHTML = `
 <h2>Results:</h2>
 <p>Category: ${result.category}</p>
 <p>Keywords: ${result.keywords.join(', ')}</p>
 `;
 })
 .catch(error => {
 console.error('Error:', error);
 });
 }
 </script>
</body>

</html>

This HTML file creates a simple page with a text
input field for entering an abstract and a button to
initiate classification. When the user clicks the
"Classify" button, a JavaScript function sends the
text to the server and displays the classification
results and keywords.

This implementation represents a comprehensive
system for analyzing and classifying scientific

papers, which includes:

1. Data collection from a real source (arXiv
API).

2. Deep text preprocessing using advanced
NLP methods.

3. Classification based on state-of-the-art BERT
model.

https://www.theamericanjournals.com/index.php/tajet

THE USA JOURNALS

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984)
VOLUME 06 ISSUE07

 38

https://www.theamericanjournals.com/index.php/tajet

4. Topic modeling using LDA.

5. Extraction of keywords using the TextRank
graph algorithm.

6. Quality assessment and hyperparameter
optimization using advanced machine
learning methods.

7. A web interface to showcase the system's
capabilities.

Each of these components can be further improved
and optimized based on specific project
requirements and constraints. For example,
experimenting with different neural network
architectures for classification, utilizing more
sophisticated methods for keyword extraction, or
expanding the functionality of the web interface.

This system demonstrates how various NLP and
machine learning methods can be integrated to
create a powerful tool for analyzing scientific texts.
It can be valuable for both researchers and
information processing professionals alike.

5. CONCLUSION

This research presented a comprehensive
approach to automating the processing of textual
data using natural language processing (NLP)
methods, focusing on the analysis of scientific
publications. Throughout the study, various
components of the system were successfully
developed and integrated, including text
preprocessing, vector representation,
classification, topic modeling, and keyword
extraction.

The main findings of the research can be
summarized as follows:

1. An architecture was designed and
implemented that effectively integrates
classical NLP methods with modern deep
learning approaches. The use of the pre-
trained SciBERT model, adapted for
scientific texts, achieved high accuracy in
classifying articles across scientific
disciplines.

2. Applying Latent Dirichlet Allocation (LDA)
for topic modeling demonstrated its
effectiveness in identifying latent topics in

the corpus of scientific texts. Optimizing the
number of topics using coherence metrics
enhanced the interpretability of the results.

3. The modified TextRank algorithm for
keyword extraction showed high accuracy in
identifying significant terms from scientific
articles, validated through comparison with
author-provided keywords.

4. Experimental validation on a corpus of
articles from the arXiv repository confirmed
the effectiveness of the developed system.
The classifier achieved an F1 score of 0.92 on
the test dataset, indicating high precision in
categorizing scientific texts.

5. The implemented web interface provided
convenient access to the system's
functionality, showcasing its potential for
practical applications in real-world
scenarios.

The conducted research has confirmed the
hypothesis of the possibility of creating an effective
system for automated processing of scientific texts,
capable of simultaneously solving the tasks of
classification, thematic analysis, and key
information extraction. Despite the achieved
results, this research opens up several directions
for further development and improvement:

1. Language Coverage Expansion: Adapting the
system to handle multilingual scientific
texts, requiring integration of multilingual
models and cross-lingual knowledge
transfer methods.

2. Enhanced Interpretability: Developing
methods for deeper analysis and
visualization of classification and topic
modeling results to enhance user trust and
expand the system's application capabilities
in research practice.

3. Integration with Bibliographic Databases:
Expanding the system's functionality to
analyze citations, author collaborations, and
trends in scientific fields.

4. Adaptive Learning: Developing mechanisms
for continuous model updating and
adaptation to new scientific publications to

https://www.theamericanjournals.com/index.php/tajet

THE USA JOURNALS

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984)
VOLUME 06 ISSUE07

 39

https://www.theamericanjournals.com/index.php/tajet

keep the system relevant in rapidly evolving
scientific domains.

5. Advanced Language Model Exploration:
Investigating the applicability of more
advanced language model architectures such
as GPT-4 or T5 for tasks like generating
abstracts and summaries of scientific papers.

6. Methods for Analyzing Evolution of Scientific
Themes: Developing methods to analyze and
visualize the evolution of scientific topics
and concepts over time, providing valuable
insights into the development of scientific
fields.

In conclusion, automation of textual data
processing using NLP represents a dynamically
evolving field with immense potential to transform
scientific communication and knowledge
management. This research contributes to this area
by offering a comprehensive solution for analyzing
scientific texts and laying the groundwork for
further innovations in automated processing of
scientific literature.

REFERENCES

1. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit,
J., Jones, L., Gomez, A. N., ... & Polosukhin, I.
(2017). Attention is all you need. Advances in
neural information processing systems, 30.

2. Mikolov, T., Chen, K., Corrado, G., & Dean, J.
(2013). Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

3. Methods of natural language processing.
[Electronic resource] Access mode:

https://developers.sber.ru/help/ml/natural-
language-processing-techniques (accessed
8.05.2024).

4. Natural language processing. [Electronic
resource] Access mode:
https://habr.com/ru/companies/otus/article
s/705482 / (accessed 8.05.2024).

5. An overview of natural language processing
methods for automatic generation of test tasks.
[Electronic resource] Access mode: https://na-
journal.ru/8-2023-informacionnye-
tekhnologii/6251-obzor-metodov-obrabotki-
estestvennogo-yazyka-dlya-avtomaticheskoi-
generacii-testovyh-zadanii (accessed
8.05.2024).

6. Processing of text data using NLP methods.
[Electronic resource] Access mode:
https://vc.ru/newtechaudit/109667-
obrabotka-tekstovyh-dannyh-metodami-nlp
(accessed 8.05.2024).

7. Semantic analysis for automatic natural
language processing. [Electronic resource]
Access mode:
https://rdc.grfc.ru/2021/09/semantic_analysi
s / (accessed 8.05.2024).

8. Natural language processing: NLP (natural
language processing) methods, tools and tasks.
[Electronic resource] Access mode:
https://www.cleverence.ru/articles/auto-
busines/obrabotka-estestvennogo-yazyka-
metody-instrumenty-i-zadachi-nlp-natural-
language-processing / (accessed 8.05.2024).

https://www.theamericanjournals.com/index.php/tajet

