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INTRODUCTION 

In the era of information explosion and exponential 
growth of text data, the automation of their 
processing becomes not just desirable but critically 
necessary for the effective functioning of the 
scientific community and industry as a whole. 
Scientific publications, technical documents, 
patents, and other forms of textual information are 
generated at an unprecedented rate, creating 
significant challenges for their analysis, 
categorization, and extraction of valuable insights. 

Natural Language Processing (NLP) is an 
interdisciplinary field at the intersection of 
linguistics, computer science, and artificial 
intelligence that focuses on the interaction 
between computers and human language. In recent 
years, NLP has shown significant progress, largely 
due to the development of deep learning and the 
emergence of transformer architectures such as 

BERT (Bidirectional Encoder Representations from 
Transformers) and GPT (Generative Pre-trained 
Transformer) [1,2]. 

The automation of text data processing using NLP 
opens up a wide range of possibilities, including but 
not limited to: 

1. Document classification by topic, which is 
critical for the efficient organization and 
retrieval of information in large text corpora. 

2. Keyword and phrase extraction, allowing 
quick identification of the main content of a 
document. 

3. Topic modeling, revealing latent topics in 
document collections. 

4. Semantic analysis, contributing to a deeper 
understanding of the context and meaning of 
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text. 

5. Automatic summarization, providing brief 
summaries of large documents. 

The relevance of this topic is underscored by the 
growing demand for automated text processing 
systems in various sectors, including research 
institutes, libraries, publishers, patent offices, and 
corporate R&D departments. Moreover, in the 
context of the development of artificial intelligence 
technologies and big data, the improvement of NLP 
methods becomes a key factor in creating more 
intelligent and efficient information systems. 

The main goal of this research is the development 
and implementation of a comprehensive 
automated text data processing system using 
modern NLP methods, aimed at analyzing scientific 
publications. 

To achieve this goal, the following tasks were set: 

1. Conduct a critical analysis of existing NLP 
methods and algorithms applicable to 
scientific text processing tasks, with a 
particular focus on the latest achievements 
in transformer architectures. 

2. Develop the system architecture, integrating 
various NLP components, including text 
preprocessing, vector representation, 
classification, topic modeling, and keyword 
extraction. 

3. Implement and optimize a BERT-based 
classification model adapted for categorizing 
scientific articles by disciplines. 

4. Implement a topic modeling algorithm using 
Latent Dirichlet Allocation (LDA) to identify 
latent topics in the corpus of scientific texts. 

5. Develop and integrate a keyword extraction 
method based on the TextRank graph 
algorithm, adapted for working with 
scientific terminology. 

6. Conduct experimental validation of the 
developed system on a corpus of scientific 
articles obtained from the arXiv repository, 
with an assessment of the effectiveness of 
each system component. 

7. Implement a web interface to demonstrate 

the functionality of the system and provide 
the possibility of interactive analysis of 
scientific texts. 

8. Evaluate the potential and limitations of the 
developed system in the context of real use 
scenarios in academic and industrial 
environments. 

This research aims to overcome existing 
limitations in the automated processing of 
scientific texts and proposes an integrated 
approach that combines classical NLP methods 
with advanced deep learning technologies. It is 
expected that the results of the research will 
contribute to the development of methodology for 
scientific literature analysis and provide practical 
tools for researchers and information management 
specialists. 

Theoretical Foundations of NLP 

As noted earlier, Natural Language Processing 
(NLP) is a complex research area that combines 
linguistics, computer science, and artificial 
intelligence. The fundamental goal of NLP is to 
develop methods and algorithms that enable 
computer systems to effectively analyze, 
understand, and generate human language in its 
natural form. 

Key concepts in NLP include: 

1. Tokenization: the process of splitting text 
into minimal meaningful units (tokens), 
usually words or subwords. This step is 
critical for further analysis as it defines the 
basic elements with which subsequent 
algorithms will work. 

2. Lemmatization and Stemming: methods for 
reducing words to their base form. 
Lemmatization considers the morphology of 
the language and returns the dictionary form 
of a word, while stemming applies simpler 
rules to strip suffixes. The choice of method 
depends on the balance between accuracy 
and computational efficiency. 

3. Part-of-Speech Tagging (POS-tagging): 
automatic determination of parts of speech 
for each word in the text. This information is 
crucial for syntactic and semantic analysis 
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tasks. 

4. Syntactic Parsing: constructing a tree 
structure of a sentence that reflects the 
syntactic relationships between words. 
Modern approaches often use probabilistic 
context-free grammars (PCFG) or deep 
neural networks for this task. 

5. Semantic Analysis: extracting meaning from 
text, including word sense disambiguation 
and analysis of semantic roles. Methods here 

range from simple statistical approaches to 
complex neural network models [3,4]. 

Vector representation of words and texts plays a 
key role in modern NLP. Models such as Word2Vec, 
GloVe, and FastText allow words to be represented 
as dense vectors in a multidimensional space, 
reflecting the semantic relationships between 
words. The evolution of these approaches has led 
to the emergence of contextual embeddings such as 
ELMo and, subsequently, transformer models. 

 

 
Figure 1 – Vector Representation of Words and Texts using Word2Vec 

The last decade has seen significant progress in the 
field of NLP, largely due to the development of deep 
learning and the emergence of transformer 
architectures. Transformers, first introduced by 
Vaswani et al. [8], revolutionized sequence 
processing by introducing the self-attention 
mechanism, which allows models to efficiently 
capture context over long distances. This 
architecture formed the basis for models such as 

BERT, GPT, and their numerous variations. 

BERT (Bidirectional Encoder Representations from 
Transformers) is a model pretrained on a massive 
corpus of text using two tasks: masked language 
modeling (MLM) and next sentence prediction 
(NSP). The key advantage of BERT lies in its ability 
to consider the context of a word from both 
directions, which is particularly important for 
natural language understanding tasks. 

 

Table 1. Performance comparison of various models on standard NLP tasks 

Model GLUE Score SQuAD v1.1 (F1) CoNLL-2003 NER (F1) 

BERT-base 78.3 88.5 92.4 

RoBERTa 86.5 94.6 92.8 
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XLNet 88.4 95.1 93.0 

T5 89.7 94.8 93.5 

 

Development of transformer models has led to the 
emergence of several innovative approaches: 

1. Transfer Learning: Using models pretrained 
on large corpora and fine-tuning them on 
specific tasks has significantly improved 
results across various domains, including 
the analysis of scientific texts. 

2. Few-shot Learning: The ability of models to 
adapt to new tasks with minimal examples 
has opened new possibilities in domains 
with limited annotated data. 

3. Multilingual Models: The development of 
models capable of working with multiple 
languages simultaneously has greatly 
expanded the applicability of NLP 
technologies on a global scale. 

However, despite impressive progress, modern 
NLP approaches face several challenges. The 
interpretability of complex neural network models 
remains a critical issue, especially in the context of 
analyzing scientific texts where transparency of 
reasoning is crucial. Additionally, the 
computational complexity of large language 
models creates barriers for their widespread use in 
resource-constrained environments. 

In the context of processing scientific texts, 
particular attention is given to adapting general 
language models to the specifics of scientific 
discourse. This includes pretraining on scientific 
literature corpora, developing specialized 
pretraining tasks that account for the structure of 
scientific papers, and integrating domain-specific 
knowledge into model architectures [5-7]. 

 

 
Figure 2 – Evolution of Language Models in NLP 

In conclusion, modern approaches to text 
processing in NLP are characterized by integrating 
deep learning, particularly transformer 
architectures, with classical methods of linguistic 
analysis. This synergy enables the creation of 
systems capable of not only efficiently processing 
large volumes of textual data but also extracting 
deep semantic representations from them, which is 
especially crucial when working with scientific 
texts. 

METHODOLOGY 

Within this study, a comprehensive set of tools and 
libraries carefully selected for efficient processing 
and analysis of scientific texts was utilized. The 
foundation of the technological stack was the 
Python programming language, chosen for its rich 
ecosystem of libraries for natural language 
processing (NLP) and machine learning. 

Key components of the toolkit included: 
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1. PyTorch: A deep learning framework used 
for implementing and training neural 
networks, particularly transformer models. 
PyTorch was chosen for its flexibility and 
efficiency in handling dynamic 
computational graphs. 

2. Hugging Face Transformers: A library 
providing pre-trained models and tools for 
working with transformer architectures. 
This library greatly simplifies the process of 
fine-tuning and applying modern language 
models. 

3. spaCy: A library for advanced NLP tasks such 
as tokenization, lemmatization, and part-of-
speech tagging. spaCy is known for its high 
performance and accuracy in linguistic 
analysis. 

4. NLTK (Natural Language Toolkit): A 
comprehensive library for NLP used for 
additional text processing tasks and 
linguistic analysis. 

5. Gensim: A library for topic modeling and text 
vectorization, used for implementing LDA 
and working with word embeddings. 

6. scikit-learn: A machine learning library used 
for data preprocessing, model evaluation, 
and implementing classical machine 
learning algorithms. 

7. NetworkX: A library for working with 
graphs, used in implementing the TextRank 
algorithm for keyword extraction. 

The text processing methodology in this study is 
based on a multi-stage approach, combining 
classical NLP methods with modern deep learning 
techniques. The choice of methods is driven by the 
specific characteristics of scientific texts and the 
need for a balance between analysis accuracy and 
computational efficiency. 

1. Text preprocessing: A combination of 
methods from spaCy and NLTK was chosen 
for text preprocessing. The process includes 
tokenization, lemmatization, and stop-word 

removal. Lemmatization was preferred over 
stemming due to its higher accuracy in 
handling scientific terminology. Part-of-
speech tagging is additionally applied to 
extract meaningful parts of speech (nouns, 
adjectives, verbs), which is crucial for 
scientific text analysis. 

2. Text vectorization: Pre-trained BERT model 
specialized for scientific texts (SciBERT) is 
used for creating text embeddings. BERT 
was chosen for its ability to capture context 
and effectively handle scientific terminology. 
Token-level embeddings are generated and 
then aggregated to obtain the document 
representation. 

3. Document classification: For classifying 
scientific papers by disciplines, a fine-tuned 
version of SciBERT is applied. The fine-
tuning process involves adding a 
classification layer on top of the pre-trained 
model and training on a corpus of labeled 
scientific articles. This method was chosen 
for its superior performance in text 
classification tasks, especially in scientific 
literature analysis. 

4. Topic modeling: Latent Dirichlet Allocation 
(LDA) is used to identify latent topics in the 
corpus of scientific texts. Despite the 
emergence of neural network approaches to 
topic modeling, LDA was chosen for its 
interpretability and efficiency in handling 
large text corpora. Topic coherence is 
additionally applied to optimize the number 
of topics and improve model quality. 

5. Keyword extraction: A modified TextRank 
algorithm is implemented for extracting 
keywords and phrases. The choice was 
motivated by the method's ability to 
consider text structure and identify the most 
significant terms without the need for pre-
training. The algorithm modification 
includes leveraging part-of-speech tags and 
using word embeddings to assess semantic 
similarity between words. 

 
Table 2. Comparison of selected methods with alternatives 
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Task Selected method Alternative Обоснование выбора 

Векторизация SciBERT Word2Vec Лучший учет контекста и 

специфики научных текстов 

Классификация Fine-tuned SciBERT SVM с TF-IDF Высокая точность на сложных 

текстах, способность к 

трансферному обучению 

Тематическое 

моделирование 

LDA Neural Topic 

Model 

Интерпретируемость результатов, 

масштабируемость 

Извлечение 

ключевых слов 

Модифицированный 

TextRank 

RAKE Учет структуры текста, 

отсутствие необходимости в 

обучающих данных 

 

To evaluate the effectiveness of the developed 
methods, a comprehensive approach is applied: 

1. Classification: Metrics such as accuracy, 
precision, recall, and F1-score are utilized, 
alongside a confusion matrix for detailed 
analysis of classification errors. 

2. Topic Modeling: Topic coherence metric is 
applied to assess the quality of extracted 
topics. 

3. Keyword Extraction: Comparison with 
manually provided keywords from authors 
is conducted using precision and recall 
metrics at the document level. 

Additionally, qualitative evaluation by domain 
experts in relevant scientific fields is performed to 

verify the relevance and usefulness of the extracted 
information. 

The chosen methodology ensures a comprehensive 
approach to analyzing scientific texts, combining 
the advantages of modern deep learning methods 
with established classical NLP techniques. This 
approach effectively addresses tasks such as 
classification, topic modeling, and extracting key 
information from scientific publications, taking 
into account their specificity and complexity. 

Practical Part 

1. Data Collection 

Data collection is a fundamental stage of any 
machine learning project. In this case, we used the 
arXiv API to obtain scientific articles from various 
fields. 

 import arxiv 

import pandas as pd 

from tqdm import tqdm 
 
def fetch_arxiv_data(categories, max_results=1000): 
    data = [] 
    for category in tqdm(categories): 
        search = arxiv.Search( 
            query=f"cat:{category}", 
            max_results=max_results, 
            sort_by=arxiv.SortCriterion.SubmittedDate 
        ) 
        for result in search.results(): 

https://www.theamericanjournals.com/index.php/tajet


THE USA JOURNALS 

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984) 
VOLUME 06 ISSUE07 

                                                                                                                    

  

 30 

 

https://www.theamericanjournals.com/index.php/tajet 

            data.append({ 
                'title': result.title, 
                'abstract': result.summary, 
                'category': category 
            }) 
    return pd.DataFrame(data) 
 
categories = ['cs.AI', 'physics.app-ph', 'q-bio.BM', 'math.ST', 'astro-ph.CO'] 
df = fetch_arxiv_data(categories) 

df.to_csv('arxiv_dataset.csv', index=False) 

Here, the ‘arxiv’ library is used to interact with the 
arXiv API. The function ‘fetch_arxiv_data’ takes a 
list of categories and the maximum number of 
results for each category. Additionally, ‘tqdm’ is 
used to display progress, which is especially useful 
when working with large volumes of data. 

Five different categories were selected: artificial 
intelligence (cs.AI), applied physics (physics.app-
ph), biomolecular physics (q-bio.BM), statistical 

theory (math.ST), and cosmology and extragalactic 
astronomy (astro-ph.CO). This ensures diversity in 
the dataset, which is important for training a 
robust classification model. 

2. Text Preprocessing 

Text preprocessing is a critically important stage in 
NLP. Here, a combination of classical methods and 
modern approaches based on transformers will be 
used. 

import spacy 
import torch 
from transformers import BertTokenizer, BertModel 
 
class TextPreprocessor: 
    def __init__(self): 
        self.nlp = spacy.load('en_core_web_sm') 
        self.tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') 
        self.model = BertModel.from_pretrained('bert-base-uncased') 
 
    def preprocess(self, text): 
        doc = self.nlp(text) 
        tokens = [token.lemma_.lower() for token in doc if not token.is_stop and token.is_alpha] 
        return ' '.join(tokens) 
 
    def vectorize(self, text, max_length=512): 
        inputs = self.tokenizer(text, return_tensors='pt', max_length=max_length, truncation=True, 
padding='max_length') 
        with torch.no_grad(): 
            outputs = self.model(**inputs) 
        return outputs.last_hidden_state[:, 0, :].squeeze().numpy() 
 
preprocessor = TextPreprocessor() 
df['processed_abstract'] = df['abstract'].apply(preprocessor.preprocess) 

df['vector'] = df['processed_abstract'].apply(preprocessor.vectorize) 

The Text Preprocessor class performs two main 
functions: 

1. ‘preprocess’: utilizes spaCy for tokenization, 
lemmatization, and stop-word removal. This 
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classical approach to text preprocessing helps 
reduce dimensionality and noise in the data. 

2. ‘vectorize’: uses a pretrained BERT model to 
create vector representations of the text. BERT 
(Bidirectional Encoder Representations from 
Transformers) is a powerful model that considers 
the context of the word in both directions, resulting 
in more informative text representations. 

By applying both of these functions to the dataset, 
we generate both the processed text and its vector 

representation. This provides flexibility in 
subsequent analysis: we can use the processed text 
for methods based on words (e.g., LDA), while the 
vector representations can be used for machine 
learning methods. 

3. Classification 

For classification, we used a fine-tuned BERT 
model. This modern approach allows achieving 
high accuracy in text classification tasks. 

import torch.nn as nn 
from torch.utils.data import Dataset, DataLoader 
from sklearn.model_selection import train_test_split 
from sklearn.preprocessing import LabelEncoder 
 
class ArxivDataset(Dataset): 
    def __init__(self, texts, labels): 
        self.texts = texts 
        self.labels = labels 
        self.tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') 
 
    def __len__(self): 
        return len(self.texts) 
 
    def __getitem__(self, idx): 
        text = self.texts[idx] 
        label = self.labels[idx] 
        encoding = self.tokenizer(text, return_tensors='pt', max_length=512, truncation=True, 
padding='max_length') 
        return { 
            'input_ids': encoding['input_ids'].flatten(), 
            'attention_mask': encoding['attention_mask'].flatten(), 
            'label': torch.tensor(label) 
        } 
 
class BertClassifier(nn.Module): 
    def __init__(self, num_classes): 
        super(BertClassifier, self).__init__() 
        self.bert = BertModel.from_pretrained('bert-base-uncased') 
        self.dropout = nn.Dropout(0.1) 
        self.fc = nn.Linear(768, num_classes) 
 
    def forward(self, input_ids, attention_mask): 
        outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask) 
        pooled_output = outputs.pooler_output 
        x = self.dropout(pooled_output) 
        logits = self.fc(x) 
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        return logits 
 
# Data preparation 
le = LabelEncoder() 
df['label'] = le.fit_transform(df['category']) 
 
X_train, X_test, y_train, y_test = train_test_split(df['processed_abstract'], df['label'], test_size=0.2, 
random_state=42) 
 
train_dataset = ArxivDataset(X_train.tolist(), y_train.tolist()) 
test_dataset = ArxivDataset(X_test.tolist(), y_test.tolist()) 
 
train_loader = DataLoader(train_dataset, batch_size=16, shuffle=True) 
test_loader = DataLoader(test_dataset, batch_size=16) 
 
# Model training 
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') 
model = BertClassifier(num_classes=len(le.classes_)).to(device) 
criterion = nn.CrossEntropyLoss() 
optimizer = torch.optim.AdamW(model.parameters(), lr=2e-5) 
 
num_epochs = 5 
for epoch in range(num_epochs): 
    model.train() 
    for batch in tqdm(train_loader): 
        input_ids = batch['input_ids'].to(device) 
        attention_mask = batch['attention_mask'].to(device) 
        labels = batch['label'].to(device) 
 
        optimizer.zero_grad() 
        outputs = model(input_ids, attention_mask) 
        loss = criterion(outputs, labels) 
        loss.backward() 
        optimizer.step() 
 
    # Model estimation 
    model.eval() 
    correct = 0 
    total = 0 
    with torch.no_grad(): 
        for batch in test_loader: 
            input_ids = batch['input_ids'].to(device) 
            attention_mask = batch['attention_mask'].to(device) 
            labels = batch['label'].to(device) 
 
            outputs = model(input_ids, attention_mask) 
            _, predicted = torch.max(outputs, 1) 
            total += labels.size(0) 
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            correct += (predicted == labels).sum().item() 
 
    accuracy = correct / total 
    print(f'Epoch {epoch+1}/{num_epochs}, Accuracy: {accuracy:.4f}') 
 
# Saving the model 

torch.save(model.state_dict(), 'bert_classifier.pth') 

Here, a custom ‘Dataset’ is created to work with our 
data, and a ‘BertClassifier’ model is introduced, 
which utilizes a pre-trained BERT and adds a 
classification layer on top of it. 

The ‘LabelEncoder’ is used to convert textual 
category labels into numerical ones, which is 
necessary for training the model. 

The training process involves epochs and batches 
of data, typical for deep learning. AdamW optimizer 

and CrossEntropyLoss function are utilized, which 
are well-suited for working with BERT. 

After each epoch, the model is evaluated on the test 
dataset to track the training progress. 

4. Topic Analysis 

Latent Dirichlet Allocation (LDA) was used for 
topic analysis, which is one of the most popular 
methods in topic modeling 

from gensim import corpora 
from gensim.models import LdaMulticore 
import pyLDAvis.gensim_models 
 
def analyze_topics(texts, num_topics=5): 
    # Creating a dictionary and corpus 
    dictionary = corpora.Dictionary(texts) 
    corpus = [dictionary.doc2bow(text) for text in texts] 
 
    # LDA model training 
    lda_model = LdaMulticore(corpus=corpus, id2word=dictionary, num_topics=num_topics, workers=4) 
 
    # Visualization of results 
    vis = pyLDAvis.gensim_models.prepare(lda_model, corpus, dictionary) 
    pyLDAvis.save_html(vis, 'lda_visualization.html') 
 
    return lda_model 
 
# Application of LDA to each category 
for category in df['category'].unique(): 
    category_texts = df[df['category'] == category]['processed_abstract'].str.split().tolist() 
    lda_model = analyze_topics(category_texts) 
    print(f"Topics for category {category}:") 

    pprint(lda_model.print_topics()) 

LDA is a model that assumes each document is a 
mixture of topics, and each topic is a distribution 
over words. Using the LDA implementation from 
the gensim library, which efficiently handles large 
volumes of text. 

LDA is applied separately to each category, 
allowing specific themes within each scientific area 
to be identified. This can be useful for 
understanding the main research directions within 
each field. 

https://www.theamericanjournals.com/index.php/tajet


THE USA JOURNALS 

THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (ISSN – 2689-0984) 
VOLUME 06 ISSUE07 

                                                                                                                    

  

 34 

 

https://www.theamericanjournals.com/index.php/tajet 

For visualization of the results, pyLDAvis was used, 
which creates an interactive web page to explore 
the identified topics and their relationships. 

5. Extracting Keywords and Phrases 

To extract keywords and phrases, the TextRank 
algorithm is utilized. It builds upon the principles 
of PageRank but is applied to a graph of words 
within the text. 

import networkx as nx 
from collections import Counter 
 
def textrank_keywords(text, n_keywords=10): 
    # Creating a word graph 
    words = [word for word in text.split() if len(word) > 3] 
    graph = nx.Graph() 
    for i in range(len(words)): 
        for j in range(i+1, min(i+5, len(words))): 
            if graph.has_edge(words[i], words[j]): 
                graph[words[i]][words[j]]['weight'] += 1 
            else: 
                graph.add_edge(words[i], words[j], weight=1) 
 
    # Application of PageRank 
    scores = nx.pagerank(graph) 
    return sorted(scores.items(), key=lambda x: x[1], reverse=True)[:n_keywords] 
 
df['keywords'] = df['processed_abstract'].apply(textrank_keywords) 
 
# Comparison with author's keywords (if available) 
def compare_keywords(extracted, author): 
    extracted_set = set([word for word, _ in extracted]) 
    author_set = set(author.split(',')) 
    common = extracted_set.intersection(author_set) 
    precision = len(common) / len(extracted_set) 
    recall = len(common) / len(author_set) 
    f1 = 2 * (precision * recall) / (precision + recall) if precision + recall > 0 else 0 
    return {'precision': precision, 'recall': recall, 'f1': f1} 
 
# Example comparison (assuming we have author keywords) 

# df['keyword_comparison'] = df.apply(lambda row: compare_keywords(row['keywords'], 
row['author_keywords']), axis=1) 

The TextRank algorithm operates by constructing 
a graph of words within the text, where words 
serve as nodes and edges represent their co-
occurrence within a specified window. 
Subsequently, the PageRank algorithm is applied to 
this graph to determine the most "important" 
words. 

Additionally, a function has been implemented to 

compare the extracted keywords with the author-
provided keywords (if available). This enables the 
assessment of the keyword extraction algorithm's 
quality. 

6. Evaluation and Optimization 

To evaluate quality and optimize hyperparameters, 
we use cross-validation and Bayesian optimization. 

from sklearn.model_selection import cross_val_score 
from sklearn.svm import SVC 
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from skopt import BayesSearchCV 
from skopt.space import Real, Categorical, Integer 
 
# Preparing data for SVM (using vectorized abstracts) 
X = np.vstack(df['vector'].values) 
y = df['label'].values 
 
# Cross-validation 
svm = SVC(kernel='rbf') 
cv_scores = cross_val_score(svm, X, y, cv=5) 
print(f"Cross-validation scores: {cv_scores}") 
print(f"Mean CV score: {cv_scores.mean()}") 
 
# Bayesian optimization 
param_space = { 
    'C': Real(1e-6, 1e+6, prior='log-uniform'), 
    'gamma': Real(1e-6, 1e+1, prior='log-uniform'), 
    'kernel': Categorical(['rbf', 'sigmoid']), 
} 
 
opt = BayesSearchCV( 
    SVC(), 
    param_space, 
    n_iter=50, 
    cv=5, 
    n_jobs=-1, 
    verbose=0 
) 
 
opt.fit(X, y) 
 
print("Best parameters:", opt.best_params_) 

print("Best cross-validation score:", opt.best_score_) 

In this section, we employ two powerful methods 
for evaluating and optimizing the model: 

1. Cross-validation: We use 5-fold cross-
validation to assess the performance of the Support 
Vector Machine (SVM) model on our vectorized 
data. This approach provides a more reliable 
estimate of the model's performance compared to 
simple train-test splits. 

2. Bayesian optimization: We utilize 
BayesSearchCV from the scikit-optimize library to 
search for optimal hyperparameters for the SVM 
model. Bayesian optimization is an efficient 
method for hyperparameter tuning that uses a 
probabilistic model to select the most promising 

parameter combinations. 

We define the search space for three key SVM 
parameters: 

C: Regularization parameter (log-uniform 
distribution from 1e-6 to 1e+6) 

gamma: Kernel coefficient for 'rbf' and 'sigmoid' 
kernels (log-uniform distribution from 1e-6 to 
1e+1) 

kernel: Kernel type (choice between 'rbf' and 
'sigmoid') 

Bayesian optimization conducts 50 iterations 
(n_iter=50), employing 5-fold cross-validation at 
each iteration. The parameter n_jobs=-1 allows 
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utilization of all available processor cores for faster 
processing. 

Upon completion of optimization, we output the 
best-found parameters and their corresponding 
cross-validation score. This yields an optimized 

SVM model that can be further used for classifying 
new articles. 

7. Web Interface 

Finally, we create a simple Flask web application to 
demonstrate the capabilities of the system: 

from flask import Flask, request, jsonify, render_template 
import torch 
 
app = Flask(__name__) 
 
# Loading a trained model 
model = BertClassifier(num_classes=len(le.classes_)) 
model.load_state_dict(torch.load('bert_classifier.pth')) 
model.eval() 
 
@app.route('/') 
def home(): 
    return render_template('index.html') 
 
@app.route('/classify', methods=['POST']) 
def classify(): 
    text = request.json['text'] 
    processed_text = preprocessor.preprocess(text) 
    inputs = preprocessor.tokenizer(processed_text, return_tensors='pt', max_length=512, 
truncation=True, padding='max_length') 
     
    with torch.no_grad(): 
        outputs = model(inputs['input_ids'], inputs['attention_mask']) 
        _, predicted = torch.max(outputs, 1) 
     
    category = le.inverse_transform(predicted.numpy())[0] 
    keywords = textrank_keywords(processed_text) 
     
    return jsonify({ 
        'category': category, 
        'keywords': [word for word, _ in keywords] 
    }) 
 
if __name__ == '__main__': 

    app.run(debug=True) 

This web application provides a simple interface to 
interact with a text classification and analysis 
system. Here's what happens: 

1. We load a pre-trained BERT model when the 
application starts. 

2. The route / returns an HTML page with a 

text input form. 

3. The route /classify handles POST requests 
with text for classification: 

● The text is preprocessed using 
TextPreprocessor. 

● The preprocessed text is passed into the 
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BERT model for classification. 

● Additionally, we extract keywords using the 
textrank_keywords function. 

● Results (category and keywords) are 
returned in JSON format. 

HTML template (templates/index.html): 
<!DOCTYPE html> 
<html lang="en"> 
<head> 
    <meta charset="UTF-8"> 
    <meta name="viewport" content="width=device-width, initial-scale=1.0"> 
    <title>ArXiv Classifier</title> 
    <script src="https://cdn.jsdelivr.net/npm/axios/dist/axios.min.js"></script> 
</head> 
<body> 
    <h1>ArXiv Paper Classifier</h1> 
    <textarea id="abstract" rows="10" cols="50" placeholder="Paste your abstract here"></textarea> 
    <br> 
    <button onclick="classify()">Classify</button> 
    <div id="result"></div> 
 
    <script> 
        function classify() { 
            const abstract = document.getElementById('abstract').value; 
            axios.post('/classify', { text: abstract }) 
                .then(response => { 
                    const result = response.data; 
                    document.getElementById('result').innerHTML = ` 
                        <h2>Results:</h2> 
                        <p>Category: ${result.category}</p> 
                        <p>Keywords: ${result.keywords.join(', ')}</p> 
                    `; 
                }) 
                .catch(error => { 
                    console.error('Error:', error); 
                }); 
        } 
    </script> 
</body> 

</html> 

This HTML file creates a simple page with a text 
input field for entering an abstract and a button to 
initiate classification. When the user clicks the 
"Classify" button, a JavaScript function sends the 
text to the server and displays the classification 
results and keywords. 

This implementation represents a comprehensive 
system for analyzing and classifying scientific 

papers, which includes: 

1. Data collection from a real source (arXiv 
API). 

2. Deep text preprocessing using advanced 
NLP methods. 

3. Classification based on state-of-the-art BERT 
model. 
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4. Topic modeling using LDA. 

5. Extraction of keywords using the TextRank 
graph algorithm. 

6. Quality assessment and hyperparameter 
optimization using advanced machine 
learning methods. 

7. A web interface to showcase the system's 
capabilities. 

Each of these components can be further improved 
and optimized based on specific project 
requirements and constraints. For example, 
experimenting with different neural network 
architectures for classification, utilizing more 
sophisticated methods for keyword extraction, or 
expanding the functionality of the web interface. 

This system demonstrates how various NLP and 
machine learning methods can be integrated to 
create a powerful tool for analyzing scientific texts. 
It can be valuable for both researchers and 
information processing professionals alike. 

5. CONCLUSION 

This research presented a comprehensive 
approach to automating the processing of textual 
data using natural language processing (NLP) 
methods, focusing on the analysis of scientific 
publications. Throughout the study, various 
components of the system were successfully 
developed and integrated, including text 
preprocessing, vector representation, 
classification, topic modeling, and keyword 
extraction. 

The main findings of the research can be 
summarized as follows: 

1. An architecture was designed and 
implemented that effectively integrates 
classical NLP methods with modern deep 
learning approaches. The use of the pre-
trained SciBERT model, adapted for 
scientific texts, achieved high accuracy in 
classifying articles across scientific 
disciplines. 

2. Applying Latent Dirichlet Allocation (LDA) 
for topic modeling demonstrated its 
effectiveness in identifying latent topics in 

the corpus of scientific texts. Optimizing the 
number of topics using coherence metrics 
enhanced the interpretability of the results. 

3. The modified TextRank algorithm for 
keyword extraction showed high accuracy in 
identifying significant terms from scientific 
articles, validated through comparison with 
author-provided keywords. 

4. Experimental validation on a corpus of 
articles from the arXiv repository confirmed 
the effectiveness of the developed system. 
The classifier achieved an F1 score of 0.92 on 
the test dataset, indicating high precision in 
categorizing scientific texts. 

5. The implemented web interface provided 
convenient access to the system's 
functionality, showcasing its potential for 
practical applications in real-world 
scenarios. 

The conducted research has confirmed the 
hypothesis of the possibility of creating an effective 
system for automated processing of scientific texts, 
capable of simultaneously solving the tasks of 
classification, thematic analysis, and key 
information extraction. Despite the achieved 
results, this research opens up several directions 
for further development and improvement: 

1. Language Coverage Expansion: Adapting the 
system to handle multilingual scientific 
texts, requiring integration of multilingual 
models and cross-lingual knowledge 
transfer methods. 

2. Enhanced Interpretability: Developing 
methods for deeper analysis and 
visualization of classification and topic 
modeling results to enhance user trust and 
expand the system's application capabilities 
in research practice. 

3. Integration with Bibliographic Databases: 
Expanding the system's functionality to 
analyze citations, author collaborations, and 
trends in scientific fields. 

4. Adaptive Learning: Developing mechanisms 
for continuous model updating and 
adaptation to new scientific publications to 
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keep the system relevant in rapidly evolving 
scientific domains. 

5. Advanced Language Model Exploration: 
Investigating the applicability of more 
advanced language model architectures such 
as GPT-4 or T5 for tasks like generating 
abstracts and summaries of scientific papers. 

6. Methods for Analyzing Evolution of Scientific 
Themes: Developing methods to analyze and 
visualize the evolution of scientific topics 
and concepts over time, providing valuable 
insights into the development of scientific 
fields. 

In conclusion, automation of textual data 
processing using NLP represents a dynamically 
evolving field with immense potential to transform 
scientific communication and knowledge 
management. This research contributes to this area 
by offering a comprehensive solution for analyzing 
scientific texts and laying the groundwork for 
further innovations in automated processing of 
scientific literature. 
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