
The USA Journals Volume 03 Issue 06-2021 134

The American Journal of Engineering and Technology
(ISSN – 2689-0984)
Published: June 30, 2021 | Pages: 134-139

Doi: https://doi.org/10.37547/tajet/Volume03Issue06-24

IMPACT FACTOR

2021: 5. 705

 OCLC - 1121105677

ABSTRACT

Levenshtein Distance is a way to ascribe a numeric distance between two sequences (often

characters in a string or word) by counting the minimum number of insertion, deletion and

substitution operations required to transform one sequence to the other. The following article looks

into the general definition, explanation and application of the theory.

KEYWORDS

Levenshtein distance equation, algorithm, string matching, spelling checking, symbol.

INTRODUCTION

Editorial distance, or Levenshtein distance, is a

metric that allows you to determine the

"similarity" of two strings - the minimum

number of operations to insert one character,

delete one character and replace one

character with another, necessary to turn one

string into another. This article describes a

method for calculating the editorial distance

using a small amount of memory, without

significant loss of speed. This approach can be

applied for large strings (about 105 characters,

that is, in fact, for texts) when obtaining not

only an assessment of "similarity", but also a

sequence of changes to transfer one string to

another.

A little formalization

Let there are two rows S1 and S2. We want to

translate one into another (let the first into

the second, it is easy to show that the

operations are symmetric) using the following

operations:

Understanding The Levenshtein Distance Equation For

Beginners

Abdurakhmanova Umida Rustamovna
Lecturer Of The Department Of Information Technologies, Tashkent State University Of

Uzbek Language And Literature Named After Alisher Navoi, An Independent Seeker Of

TATU, Uzbekistan

Journal Website:

http://theamericanjour

nals.com/index.php/taj

et

Copyright: Original

content from this work

may be used under the

terms of the creative

commons attributes

4.0 licence.

http://theamericanjournals.com/index.php/tajet
http://theamericanjournals.com/index.php/tajet
http://theamericanjournals.com/index.php/tajet

The USA Journals Volume 03 Issue 06-2021 135

The American Journal of Engineering and Technology
(ISSN – 2689-0984)
Published: June 30, 2021 | Pages: 134-139

Doi: https://doi.org/10.37547/tajet/Volume03Issue06-24

IMPACT FACTOR

2021: 5. 705

 OCLC - 1121105677

I: Insert a character at any place;

D: Deleting a character from an arbitrary

position;

R: Replaces a character with another.

Then d (S1, S2) is the minimum number of I / D

/ R operations for transferring S1 to S2, and

the editorial instruction is a listing of

operations for transfer with their parameters.

The problem is easily solved by the Wagner -

Fisher algorithm, but O (| S1 | * | S2 |) memory

cells are required to restore the editorial

instruction. I briefly outline the algorithm

itself, since the "optimization" is based on it.

Wagner - Fisher Algorithm

The desired distance is formed through the

auxiliary function D (M, N), which finds the

editorial distance for substrings S1 [0..M] and

S2 [0..N]. Then the total editorial distance will

be equal to the distance for full-length

substrings: d (S1, S2) = DS1, S2 (M, N).

The self-evident fact is that:

D (0,0) = 0.

Indeed, the empty lines are the same anyway.

Also, the meanings for:

D (i, 0) = i;

D (0, j) = j.

Indeed, any string can turn out to be empty by

adding the required number of required

characters; any other operations will only

increase the score.

In general, it's a little more complicated:

D (i, j) = D (i-1, j-1), if S1 [i] = S2 [j],

otherwise D (i, j) = min (D (i-1, j), D (i, j-1), D (i-1,

j-1)) + 1.

In this case, we choose what is more

profitable: delete the symbol (D (i-1, j)), add (D

(i, j-1)), or replace (D (i-1, j-1)).

It is easy to understand that the estimation

algorithm does not require more than two

columns of memory, the current one (D (i, *))

and the previous one (D (i-1, *)). However, the

full matrix is needed to restore the editorial

order. Starting from the lower right corner of

the matrix (M, N), we go to the upper left, at

each step looking for the minimum of three

values:

If the minimum is (D (i-1, j) + 1), add the

removal of the symbol S1 [i] and go to (i-1, j);

If the minimum is (D (i, j-1) + 1), add the

insertion of the symbol S1 [i] and go to (i, j-1);

If minimal (D (i-1, j-1) + m), where m = 1, if S1 [i]!

= S2 [j], otherwise m = 0; after which we go to

(i-1, j-1) and add a replacement if m = 1.

Here (i, j) is the cell of the matrix in which we

are at this step. If two of the three values are

minimum (or all three are equal), this means

that there are 2 or 3 equivalent editorial

prescriptions.

MATERIALS AND METHODS

As a result, it will take O (| S1 | * | S2 |) time and

O (| S1 | * | S2 |) memory.

General reasons

The USA Journals Volume 03 Issue 06-2021 136

The American Journal of Engineering and Technology
(ISSN – 2689-0984)
Published: June 30, 2021 | Pages: 134-139

Doi: https://doi.org/10.37547/tajet/Volume03Issue06-24

IMPACT FACTOR

2021: 5. 705

 OCLC - 1121105677

The prerequisite for the creation of this

method is a simple fact: in real systems,

memory is more expensive than time. Indeed,

for strings with a length of 216 characters,

about 232 computational operations are

needed (which with modern capacities will fall

within ten seconds of computations) and 232

memory, which in most cases is already more

than the size of the physical memory of the

machine.

The idea of how to use the linear amount of

memory (2 * | S1 |) to estimate the distance

lies on the surface, it remains to competently

transfer it to the calculation of the editorial

prescription. If you think of transforming from

sequence ‘a’ to sequence ‘b’ the first recursion

represents a deletion from the ‘a’ sequence.

The second recursion represents an insertion

into the ‘b’ sequence, and the last recursion is

either a substitution or a match (and skip

over) depending on the equality check. The

length is incremented in all cases except

where there is a match.

When one sequence is exhausted (i.e.

length=0) the length of the remaining

sequence is added to the result (as either

deletions or insertions depending which

sequence is left).

Application

In approximate string matching, the objective

is to find matches for short strings in many

longer texts, in situations where a small

number of differences is to be expected. The

short strings could come from a dictionary, for

instance. Here, one of the strings is typically

short, while the other is arbitrarily long. This

has a wide range of applications; for instance,

spell checkers, correction systems for optical

character recognition, and software to assist

natural language translation based on

translation memory.

The Levenshtein distance can also be

computed between two longer strings, but

the cost to compute it, which is roughly

proportional to the product of the two string

lengths, makes this impractical. Thus, when

used to aid in fuzzy string searching in

applications such as record linkage, the

compared strings are usually short to help

improve speed of comparisons.[citation

needed]

In linguistics, the Levenshtein distance is used

as a metric to quantify the linguistic distance,

or how different two languages are from one

another. It is related to mutual intelligibility,

the higher the linguistic distance, the lower

the mutual intelligibility, and the lower the

linguistic distance, the higher the mutual

intelligibility.

String Matching.

Spelling Checking.

Dynamic Programming Approach

The Levenshtein algorithm calculates the least

number of edit operations that are necessary

to modify one string to obtain another string.

The most common way of calculating this is by

the dynamic programming approach:

A matrix is initialized measuring in the (m, n)

cell the Levenshtein distance between the m-

character prefix of one with the n-prefix of the

other word.

The USA Journals Volume 03 Issue 06-2021 137

The American Journal of Engineering and Technology
(ISSN – 2689-0984)
Published: June 30, 2021 | Pages: 134-139

Doi: https://doi.org/10.37547/tajet/Volume03Issue06-24

IMPACT FACTOR

2021: 5. 705

 OCLC - 1121105677

The matrix can be filled from the upper left to

the lower right corner.

Each jump horizontally or vertically

corresponds to an insert or a delete,

respectively.

The cost is normally set to 1 for each of the

operations.

The diagonal jump can cost either one, if the

two characters in the row and column do not

match else 0, if they match. Each cell always

minimizes the cost locally.

This way the number in the lower right corner

is the Levenshtein distance between both

words.

Use Case

In approximate string matching, the objective

is to find matches for short strings in many

longer texts, in situations where a small

number of differences are to be expected. The

short strings could come from a dictionary, for

instance. Here, one of the strings is typically

short, while the other is arbitrarily long. This

has a wide range of applications, for instance,

spell checkers, correction systems for optical

character recognition and software to assist

natural language translation based on

translation memory.

The Levenshtein distance can also be

computed between two longer strings. But

the cost to compute it, which is roughly

proportional to the product of the two string

lengths, makes this impractical. Thus, when

used to aid in fuzzy string searching in

applications such as record linkage, the

compared strings are usually short to help

improve the speed of comparisons.

There are other popular measures of edit

distance, which are calculated using a

different set of allowable edit operations. For

instance, the Damerau–Levenshtein distance

allows the transposition of two adjacent

characters alongside insertion, deletion,

substitution;

The longest common subsequence (LCS)

distance allows only insertion and deletion,

not substitution;

The Hamming distance allows only

substitution; hence, it only applies to strings

of the same length.

The Jaro distance allows only transposition.

Edit distance is usually defined as a

parameterizable metric calculated with a

specific set of allowed edit operations, and

each operation is assigned a cost (possibly

infinite). This is further generalized by DNA

sequence alignment algorithms such as the

Smith–Waterman algorithm, which make an

operation's cost depend on where it is

applied.

The famous Soviet and Russian mathematician

Vladimir Iosifovich Levenshtein (by the way,

who passed away a little over two months

ago) at the beginning of the second half of the

last century introduced the concept of editing

distance, which we still use today in various

fields - from search engines to bioinformatics.

In this article, we will apply its principle for

fuzzy search in MySQL (since MySQL does not

offer a built-in solution at the moment),

calculating the most efficient (i.e. fastest)

The USA Journals Volume 03 Issue 06-2021 138

The American Journal of Engineering and Technology
(ISSN – 2689-0984)
Published: June 30, 2021 | Pages: 134-139

Doi: https://doi.org/10.37547/tajet/Volume03Issue06-24

IMPACT FACTOR

2021: 5. 705

 OCLC - 1121105677

method out of several found on the Internet,

build an algorithm for such a search and

implement it on PHP.

What to use:

Levenshtein distance and Damerau-

Levenshtein distance: both represent the

minimum number of operations for

converting one string to another, differing in

operations - Levenshtein proposed the

operations of insertion, deletion and

replacement of one character, and Damerau

supplemented them with the operation of

transposition, i.e. when two adjacent symbols

are swapped; the following implementations

have been proposed for MySQL:

Levenshtein-style query by Gordon Lesti a

custom function for calculating the

Levenshtein distance, published in Get It Done

With MySQL 5 & Up (ed. by Peter Brawley and

Arthur Fuller), by Jason Rust custom function

for calculating the Damerau-Levenshtein

distance, based on a C function by Linus

Torvalds, by Diego Torres Oliver's algorithm:

calculates the similarity of two strings in PHP

represented by the function similar_text

metaphone: phonetic indexing algorithm,

works only with letters of the English alphabet

in PHP represented by the metaphone

function.

Fuzzy search algorithm

DISCUSSIONS AND RESULTS

Obviously, it makes no sense to calculate the

Levenshtein distance between the entered

word and each word from the dictionary in

the database for each search, since it will take

a lot of time. By the way, a few years ago on

Habré a method was described in which, with

each search, the entire dictionary from the

database was driven into a PHP array,

transliterated, and then similar words were

selected, alternately using the levenshtein

function, the megaphone, the similar text, or

two at once. The decision of preliminary rapid

filtering and subsequent refining of the found

options suggests itself.

Thus, the essence of the fuzzy search

algorithm can be summarized as follows:

Calculate the metaphone of the search term.

Find all words in the dictionary in the database

by metaphone with Levenshtein (or Damerau-

Levenshtein) distance <2 characters.

If nothing was found, the user made too many

mistakes in the word, we stop tormenting the

database and write that the user goes to the

bathhouse, nothing was found.

If 1 word is found, return it.

If> 1 word is found, we refine it: find the

percentage of similarity of the search query

with each found word from the dictionary in

the database; we find the maximum

percentage of similarity; return all words with

this percentage (in case several words have

the same percentage, which will be the

maximum).

Each search will need to calculate the

Levenshtein distance. To do this, you need to

find the fastest implementation of the

algorithm for MySQL.

The fastest was the implementation of the

Damerau-Levenshtein distance, written by

The USA Journals Volume 03 Issue 06-2021 139

The American Journal of Engineering and Technology
(ISSN – 2689-0984)
Published: June 30, 2021 | Pages: 134-139

Doi: https://doi.org/10.37547/tajet/Volume03Issue06-24

IMPACT FACTOR

2021: 5. 705

 OCLC - 1121105677

Linus Torvalds in C and adapted by Diego

Torres for MySQL as a user-defined function.

In second place, with a small time difference,

is a primitive imitation of the Levenshtein

distance in the form of an SQL query with a

large number of LIKE operators, by Gordon

Flattery. In third place, the user-defined

function for MySQL from Jason Rats is far

behind.

CONCLUSION

In conclusion, it can be added that it is

necessary to use the calculation of the

Levenshtein distance in MySQL in production

only in cases where the string to be compared

with is short, and the table with the words to

be compared with the string is small.

Otherwise, a possible solution in the case of a

table with a large vocabulary may be to divide

it into several tables, for example, by the first

letter, or by the length of a word or its

megaphone.

REFERENCES

1. Goday berdieva G.X. Nationality: problem

and solutions.// Monograph. Publishing

house" surkhon-edition " Termez-2019 y.

300 p.

2. Goday berdieva G.X. The basis of the

National Goya.// Brochure. Publishing

house" surkhon-edition " Termez-2016 y.

80 p.

3. Goday berdieva G.X formation and

evolution of classical ideologies.//

Brochure. Publishing house" Tafakkur "

Tashkent-2016 44 p.

4. Godayberdieva G.X traditional education

and youth.// Brochure. Publishing house"

surkhon-edition " Termez-2016 y. 60p.

