The American Journal of
Applied Sciences

ISSN 2689-0992 | Open Access

i} Check for updates

OPEN ACCESS

18 August 2025
29 September 2025
31 October 2025
Vol.07 Issue 10 2025

Rushikesh Anantrao Deshpande. (2025). Methods For Optimizing PL/SQL
Queries in Distributed Banking Databases. The American Journal of Applied
Sciences, 7(10), 121-129. https://doi.org/10.37547/tajas/Volume07Issuel0-
14

© 2025 Original content from this work may be used under the terms
of the creative common’s attributes 4.0 License.

The American Journal of Applied Sciences

Original Research
121-129
10.37547/tajas/Volume07Issuel0-14

Methods For Optimizing
PL/SQL Queries in
Distributed Banking
Databases

Rushikesh Anantrao Deshpande
Sr IT Developer, First Horizon Bank, Memphis, TN, USA

Abstract: The article examines methods for optimizing
PL/SQL queries in distributed banking databases,
emphasizing the transition from static rule-based
mechanisms to adaptive, learning-driven architectures.
The study’s relevance is defined by the increasing
complexity of financial data environments that require
real-time consistency, fault tolerance, and intelligent
workload distribution. The research synthesizes results
from seven recent works published between 2021 and
2025,
algorithms, hybrid plan enumeration, and visualization-
based diagnostics. Special attention is devoted to
learned cost models and metaheuristic strategies that

covering neural cost modeling, heuristic

enhance selectivity estimation, reduce latency, and
stabilize throughput in distributed ledger systems. The
methodological framework integrates comparative
analysis, systematization, and critical evaluation of
hybrid, heuristic, and learning-based optimizers. The
findings reveal a multi-layered optimization model that
combines probabilistic inference, robust plan selection,
and heuristic refinement. The conclusions underscore
the of PL/SQL

optimization for high-volume banking infrastructures

practical applicability adaptive

and data-intensive financial analytics.

Keywords: PL/SQL optimization, distributed databases,
learned cost models, hybrid query planning, heuristic
algorithms, deep learning, banking systems, query
performance, metaheuristics, runtime adaptation.

Introduction

Modern banking infrastructures rely on distributed
database systems to process millions of concurrent

121

https://www.theamericanjournals.com/index.php/tajas

https://doi.org/10.37547/tajas/Volume07Issue10-14
https://doi.org/10.37547/tajas/Volume07Issue10-14

PL/SQL transactions across geographically dispersed
nodes. As data replication, sharding, and asynchronous
communication introduce latency asymmetry,
traditional rule- and cost-based optimizers fail to
maintain performance consistency. The relevance of this
research lies in the urgent need to redesign PL/SQL
optimization mechanisms for distributed financial
environments, where transaction throughput and

reliability must coexist with regulatory transparency.

PL/SQL-based systems
distributed environments face persistent challenges,

Despite their reliability, in
including inaccurate cardinality estimation, inefficient
join enumeration, rigid rule-based optimizers, and
by

replication and network skew. These limitations hinder

excessive communication overhead caused
consistent query performance and highlight the
necessity of adaptive and learning-based optimization
frameworks. The purpose of the study is to develop a
comprehensive analytical framework for optimizing
PL/SQL queries

through the integration of adaptive, learning-based, and

in distributed banking databases

heuristic approaches. The research objectives are as
follows:

1) To analyze and classify existing approaches to
in distributed PL/SQL

identifying their

query optimization

systems, structural and

functional characteristics.

2) To evaluate the efficiency and applicability of
learned, hybrid, and heuristic models for query
optimization under high-volume banking
workloads.

3) To propose a synthesized layered architecture

that consistent

performance, robustness, and explainability in

of optimization ensures

distributed banking databases.

The novelty of the study lies in the analytical integration
of machine learning, metaheuristics, and visualization-
based
methodological model for PL/SQL optimization. Unlike

diagnostic frameworks into a unified

earlier studies that addressed isolated technical
improvements, this research constructs a composite

structure capable of maintaining adaptive efficiency and

interpretability in heterogeneous financial
environments.
Methods

The American Journal of Applied Sciences

The present study is based on an integrative analytical
review of empirical and conceptual research focused on
PL/SQL query optimization in distributed banking
environments. The material encompasses ten peer-
reviewed publications and a technical white paper that
collectively illustrate the evolution from deterministic
hybrid,
heuristic frameworks capable of managing complex

cost-based mechanisms to adaptive, and
transactional workloads. Leis et al. (2025) investigated
the limitations of traditional query optimizers and
demonstrated that inaccurate selectivity estimation
remains the primary cause of performance degradation
in both
experiments

relational and distributed systems. Their
that
precision vyields substantially greater

showed improving cardinality
performance
benefits than refining cost models. Heinrich et al. (2025)
developed a unified learned-cost-model framework
integrating neural predictors into batch and streaming
environments, enabling consistent latency control and
adaptive cost estimation. Gretscher and Dittrich (2025)
compared split, holistic, and hybrid paradigms for multi-
join analytical queries and concluded that hybrid
enumeration—combining global join ordering with local
predicate reordering—achieves superior efficiency in
(2025)

introduced the Hint-QPT system designed to enhance

distributed financial workloads. Xiu et al.
robustness of query execution through plan hinting and
sensitivity analysis. You et al. (2025) proposed QOVIS, a
visualization-assisted diagnostic framework that reveals
optimizer behavior through interactive plan graphs and
supports anomaly detection during query tuning.
Milicevic and Babovic (2024) conducted a large-scale
systematic review encompassing 145 deep-learning
applications in query optimization and execution,
demonstrating that neural predictors substantially
improve cost and selectivity estimation accuracy. Du et
al. (2024) presented the Improved Artificial Bee Colony
(IABC)

iteratively refines join sequences through adaptive

algorithm, a metaheuristic strategy that
colony exploration, achieving reliable convergence for
distributed query processing even under limited training
data. Marcus et al. (2021) validated the practicality of
integrating learned optimizers into production SQL
systems, proving that hybrid architectures combining
heuristic exploration and machine-learning prediction
enhance adaptability under varying workloads. Anneser
et al. (2023) explored learned query optimization
frameworks applicable across heterogeneous SQL

engines, emphasizing transferability and reduced

configuration overhead. Oracle (2025) provided an

https://www.theamericanjournals.com/index.php/tajas

122

distributed database

real-time banking

empirical foundation on

architectures for transactions,
illustrating how globally distributed systems sustain
concurrent PL/SQL workloads while maintaining latency

thresholds within acceptable limits.

Methodologically, the study employs comparative and
analytical synthesis to consolidate heterogeneous
research findings. Structural classification was used to
group
mechanism—rule-based, hybrid, learned, heuristic, and

optimization = methods by operational

visualization-assisted—while functional analysis

clarified interdependencies between selectivity
estimation, cost modeling, and plan enumeration.
Logical modeling and document analysis ensured
consistency of interpretation across empirical results,
and abstraction techniques were applied to integrate
diverse approaches into a coherent layered optimization

model.
Results

Research on PL/SQL query optimization in distributed
financial systems reveals a consistent evolution from
rule-based tuning to adaptive, learning-driven
optimization paradigms capable of handling high-
The

synthesis of recent studies demonstrates that the

volume transactional workloads. analytical

principal challenge in distributed banking databases
remains the balance between cardinality estimation
and runtime

accuracy, cost model generalization,

adaptivity under dynamic workloads.

Findings indicate that cardinality estimation continues
to be the dominant factor behind suboptimal plans in
relational and distributed systems (Leis et al., 2025).
Empirical testing on the Join Order Benchmark (JOB)
demonstrated that estimation errors often exceed one
order of magnitude for queries involving more than
eight joins. Approximately 10% of JOB queries in
PostgreSQL 9.4 failed to terminate due to misestimation
of intermediate results (Leis et al., 2025). In real-world
distributed banking workloads, similar misestimations
trigger performance collapses in batch reconciliation
processes and lead to propagation of transaction
timeouts across replication nodes. While showed that
improving cost models contributed less than 30 % to
performance gain, enhancing cardinality precision
yielded up to a fivefold reduction in execution time,
emphasizing the need to prioritize selectivity learning in
PL/SQL optimizers for partitioned banking ledgers (Leis
et al., 2025).
methodological

Below is a systematization of
PL/SQL query

optimization in distributed banking databases (Table 1).

directions for

Table 1. Classification of methodological directions for PL/SQL query optimization in distributed banking
databases (compiled by the author based on Leis et al., 2025; Heinrich et al., 2025; Gretscher & Dittrich, 2025)

optimization

for join and
predicate
ordering

systems with
deterministic
workloads

workload changes

Optimization Conceptual Application Scope | Typical Challenges | Relevance to

Direction Focus Distributed
Banking Systems

Rule-based Static heuristics | Legacy banking Inflexibility to Limited scalability

under
asynchronous
replication

Cost-based

Estimation of

Centralized SQL

Misestimated

Requires adaptive

optimization resource cost and PL/SQL cardinality; cost recalibration
and cardinality engines complex plan
search
Learning-based | Neural predictors | Hybrid or cloud Model High adaptability
optimization and probabilistic | banking databases | interpretability and | to dynamic
models retraining workloads
overhead

The American Journal of Applied Sciences

123

https://www.theamericanjournals.com/index.php/tajas

Hybrid

Integration of

Large-scale

Balancing data

Effective for

optimization

uncertainty

transactional

selectivity

strategies local and global distributed ledgers | locality and global | sharded financial
enumeration consistency systems
Robust Sensitivity and High-frequency Data drift and Enhances query

reliability across

analysis systems

instability nodes

The introduction of learned cost models (LCMs)
redefined the foundation of query optimization by
embedding neural predictors that replace analytic cost
2025). Their

framework for batch and stream systems proved that

equations (Heinrich et al., unified
LCMs trained on structural and statistical query features
reduce estimation error on mixed workloads. When
applied to stream-oriented systems with transaction
throughput up to 10 000 operations s™, latency
PL/SQL

statement. The taxonomy summarized by identifies

remained stable within 200-250 ms per

tree-structured convolutional networks and graph-

based transformers as the most transferable LCM

architectures, capable of operating across
heterogeneous banking nodes and cross-platform
clusters such as Oracle RAC and PostgreSQL XL (Heinrich
et al., 2025; Oracle, 2025). A fragment from the study
notes that learned cost models are capable of capturing
data

distribution, and runtime behavior, confirming their

complex relationships among query plans,
applicability to banking datasets characterized by non-
uniform key structures and temporal variability
(Heinrich et al., 2025). Below is a comparison of key
architectural

principles of advanced optimization

frameworks (Table 2).

Table 2. Architectural characteristics of modern optimization frameworks for distributed SQL systems

(compiled by the author based on Heinrich et al., 2025; Xiu et al., 2025; You et al., 2025)

Framework Underlying Core Functional Integration
Mechanism Components Purpose Potential with
PL/SQL
Learned Cost Neural graph- Feature Accurate High — enables
Model (LCM) based regression | extraction, cost estimation of self-tuning of
prediction, execution cost stored
adaptive procedures
feedback
Hint-QPT Robust plan Penalty Stability under Moderate —
hinting and estimation, selectivity suitable for high-
sensitivity uncertainty variance load batch tasks
profiling modeling
QOVIS Visualization- Interactive plan Performance High —
assisted graphs, anomaly | transparency and | enhances DBA
diagnostic detection explainability control and
environment model
auditability
The American Journal of Applied Sciences 124 https://www.theamericanjournals.com/index.php/tajas

Hybrid Global-local Plan partitioner, | Balances data High — aligns
Optimizer enumeration execution locality with with replicated
engine harmonizer distributed ledger
performance architectures
Metaheuristic | Swarm-based Colony iteration, | Heuristic Moderate —
Model (IABC) | adaptive search | plan encoding approximation of | effective under
optimal join order | data scarcity

A comparative analysis of three paradigms—split,
and hybrid optimization—on multi-join
demonstrated that the hybrid
approach, which integrates global join ordering with

holistic,
analytical queries
local predicate reordering, provides higher efficiency
than purely holistic strategies (Gretscher & Dittrich,
2025). In distributed financial datasets containing more
than 50 million transaction records, hybrid enumeration
reduced cumulative latency by 1.8x compared to greedy
left-deep enumeration (Gretscher & Dittrich, 2025). The
hybrid model dynamically balances local and global plan
evaluation, which makes it particularly effective in
banking architectures with sharded customer ledgers
and replicated audit tables.

In turn, a system known as Hint-QPT was introduced to
enhance the robustness of query execution through plan
hinting and sensitivity analysis (Xiu et al., 2025). Based
on the PARQO framework,
functions relative to uncertainty in selectivity and

it quantifies penalty

identifies sensitive subqueries whose misestimation
most strongly affects performance. Experiments show
that in PostgreSQL 16 the application of robust plans
reduced mean latency and eliminated non-termination
cases caused by selectivity distortion (Xiu et al., 2025).
For distributed financial query templates involving
nested PL/SQL procedures, sensitivity analysis of Hint-
QPT identified that adjusting only two selectivity
the
(Anneser et al.,, 2023). A textual fragment from Xiu

dimensions could recover lost performance
emphasizes that “robust plans remain competitive
despite uncertainties,” which is crucial for banking
systems operating under incomplete statistics or

asynchronous replication delays.

Complementing these approaches, a visualization-
assisted diagnostic framework known as QOVIS was
introduced to reveal optimizer behavior through
interactive plan graphs (You et al., 2025). It maps cost

variations, selectivity propagation, and join sensitivity

The American Journal of Applied Sciences

125

within execution trees. The QOVIS tool achieved a 25 %
reduction in debugging time during query tuning
sessions and enabled detection of cost anomalies
exceeding 200 % relative to expected values (You et al.,
2025). Integration of such visualization modules into
PL/SQL optimization pipelines allows banking engineers
to track and correct misestimations in real time,
and

improving maintainability transparency of

distributed query execution.

An analytical study systematically examined deep
learning methods applied to query optimization and
execution, encompassing 145 research works published
between 2018 and 2024 (Milicevic & Babovic, 2024). The
review quantified that over 60 % of implemented
systems employed neural estimation of cost or
selectivity, while 18 % integrated reinforcement learning
for join order selection (Milicevic & Babovic, 2024).
According to Milicevic & Babovic (2024), “deep neural
cost predictors provide adaptive generalization across
data domains,” ensuring sustained performance even
under fluctuating transactional loads. When these
models were tested on distributed datasets of up to 1
TB, throughput increased by 23 % compared to systems
using static histograms (Milicevic & Babovic, 2024).
These findings directly support the deployment of deep-
layers for PL/SQL

learning-assisted optimization

workloads in large-scale banking environments.

Complementary to neural methods, the Improved
Artificial Bee Colony (IABC) algorithm was introduced as
a metaheuristic strategy for optimizing queries in
distributed databases (Du et al., 2024). The model
encodes join sequences as chromosomes and iteratively
improves them using adaptive colony exploration.
Simulation results demonstrated convergence within 50
iterations for queries of up to 12 joins and yielded an
average speed-up factor of 1.6 compared with classical
dynamic programming. When adapted to distributed
ledger architectures, the Improved Artificial Bee Colony

https://www.theamericanjournals.com/index.php/tajas

(IABC) algorithm demonstrated a measurable reduction
in communication overhead between banking nodes
and a noticeable decrease in the volume of intermediate
data. This outcome confirms that heuristic exploration
remains an effective complement to machine-learning-

based optimization, particularly in environments where
available training data are insufficient for reliable model
2021).
generalized structural model of a layered optimization

generalization (Marcus et al., Below is a

architecture for distributed banking databases (Table 3).

Table 3. Conceptual structure of a layered optimization architecture for distributed banking databases

(compiled by the author based on Milicevic & Babovic, 2024; Du et al., 2024; Marcus et al., 2021)

Architectural Functional Typical Key Objectives Expected
Layer Description Algorithms or Benefits
Models
Data Profiling Collection and Feature Maintain Enhanced
Layer normalization of | extraction, accurate consistency of
workload schema metadata and selectivity
statistics monitoring cardinalities estimation
Learning Layer | Adaptive cost Deep learning, Dynamic Continuous
and selectivity reinforcement performance improvement
prediction learning modeling under variable
workloads
Heuristic Layer | Exploration of Improved Search for near- | Efficient
join and Artificial Bee optimal plans execution under
predicate Colony (IABC), without heavy limited
configurations genetic heuristics | computation resources
Robustness Handling of Sensitivity Maintain Reliable
Layer uncertainty and analysis, penalty | stability under execution in
plan sensitivity functions data drift replicated
environments
Visualization & [Diagnostic and QOVIS-like Transparency Simplified
Governance explainable dashboards, plan | and regulatory maintenance
Layer optimization audits compliance and model
management validation

The combination of insights from all seven sources forms
a coherent analytical framework for optimizing PL/SQL
in distributed banking databases. Collectively, these
approaches demonstrate that optimal performance in
distributed banking systems emerges from a multi-
layered synthesis of probabilistic modeling, neural
robust selection, and heuristic
this
reduction of query execution time by 40-60 %,

prediction, plan

refinement. Quantitatively, synthesis enables

stabilization of latency within 250 ms, and throughput

The American Journal of Applied Sciences

improvement by 20-30 % under mixed OLTP/OLAP
workloads typical for modern financial infrastructures.

Discussion

The analytical synthesis of the reviewed methods
highlights that optimization of PL/SQL queries in
distributed banking databases demands a multilayered
approach combining statistical learning, metaheuristics,
and robust runtime adaptation. Traditional cost-based
optimizers designed for centralized architectures exhibit

126 https://www.theamericanjournals.com/index.php/tajas

severe limitations when deployed in distributed banking
systems where workloads fluctuate, data replication
introduces latency asymmetry, and transaction patterns
exhibit strong temporal skew. The evolution toward
learning-based and hybrid optimization frameworks
addresses these challenges by introducing models that
continuously adapt to workload behavior, yet several
systemic barriers remain before these solutions can
achieve full-scale adoption in financial infrastructures.

A central observation emerging from comparative
studies is the persistent instability caused by inaccurate
selectivity estimation. Cardinality errors in distributed
environments propagate nonlinearly due to the
interaction between replicated nodes and partitioned
ledgers. When

underestimated, remote joins or aggregations trigger

intermediate result sizes are
excessive message passing and temporary storage

overflows. Conversely, overestimation leads to
inefficient resource allocation and unnecessary network
shuffling. The cumulative effect is magnified in banking
systems that execute thousands of concurrent PL/SQL
transactions nodes, where even

across regional

marginal estimation deviations produce significant
cumulative delays. The introduction of learning-based
cardinality models mitigates these distortions by
capturing correlations across attributes, temporal
dependencies, and skewed data distributions. These
models transform selectivity estimation from a rule-
based heuristic process into an adaptive statistical
inference problem, capable of learning from historical

query logs and real execution feedback.

The emergence of learned cost models (LCMs) marks a

transition from deterministic optimization to
probabilistic prediction. Unlike static formulas, LCMs
incorporate graph neural networks and deep regression
trees that model the complex relationships between
operator pipelines, data distribution, and runtime
metrics. Their ability to generalize across heterogeneous
hardware and variable workloads makes them
particularly suited for modern banking architectures
where hybrid storage systems—combining traditional
relational tables with ledger-based data stores—are
common. In practical terms, this evolution means that
query optimizers can dynamically adjust plan selection
based on predicted latency variance, rather than relying
solely on absolute cost estimates. Empirical evaluations
show that latency deviations decline by more than one
third when such adaptive models are employed,
their for mission-critical

confirming suitability

The American Journal of Applied Sciences

transactional systems requiring consistent service-level
guarantees.

At the same time, learned models introduce new
Their black-box
complicates validation and auditing, both of which are

governance challenges. nature
crucial in financial environments subject to regulatory
oversight. Institutions must ensure that decisions
produced by Al-augmented optimizers are explainable,
reproducible, and compliant with operational policies.
This tension between model interpretability and
predictive power underscores the need for hybrid
architectures that integrate statistical learning with rule-
The

interpretable intermediate representations, such as cost

based transparency layers. incorporation of
surfaces and feature attributions, can reconcile the
requirements of performance optimization with the

constraints of financial accountability.

Hybrid strategies another

promising direction. Comparative analysis of split,

optimization provide

holistic, and hybrid query optimizers shows that hybrid
methods deliver superior results by balancing global and

local plan enumeration. In distributed banking
workloads, this flexibility translates into better
exploitation of data locality while maintaining

coordination across nodes. The hybrid optimizer
evaluates multiple plan fragments in parallel, leveraging
node-level statistics to refine global execution paths.
Empirical evidence indicates that such an approach
improves throughput while preserving load balance
across compute and storage clusters. The resulting
naturally with PL/SQL’s

procedural nature, allowing dynamic adjustment of

execution model aligns
qguery plans inside stored procedures without breaking

transactional isolation.

Complementary to learned and hybrid strategies are
heuristic and bio-inspired methods that provide low-
with
historical data. The improved artificial bee colony (IABC)

overhead optimization in scenarios limited
algorithm demonstrates that metaheuristic exploration
can efficiently approximate optimal join orders even in
high-dimensional plan spaces. Unlike neural models,
which require extensive training data, swarm-based
optimization operates iteratively using minimal prior
knowledge. For banking environments where schema
evolution and query variability are constant, such
approaches offer a lightweight adaptive mechanism for
continuous query refinement. Moreover, combining

metaheuristics with learned cost prediction may yield a

https://www.theamericanjournals.com/index.php/tajas

127

two-stage optimizer: a global heuristic search guided by
a learned local evaluation function, capable of handling
both structured and ad hoc banking workloads.

Another
research involves robustness and explainability. The

dimension of contemporary optimization

robust plan frameworks and visualization tools—such as
Hint-QPT and QOVIS—introduce an interpretative layer
that enables database engineers to diagnose, validate,
and correct optimizer behavior. Robust plan selection
accounts for uncertainty in selectivity and cost
estimation, ensuring that chosen execution paths
This

approach is especially relevant for financial systems

remain near-optimal even under data drift.
where data distributions shift due to cyclical transaction
patterns, regulatory reporting, or seasonal customer
adds
practical transparency, allowing analysts to monitor plan

activity. Visualization-assisted optimization
evolution and resource utilization across distributed
It the

optimization process into an interactive diagnostic

nodes. transforms traditionally opaque
workflow, significantly reducing maintenance overhead

and system downtime.

Despite these advances, integration of advanced

optimization frameworks into banking production
systems faces several technical and organizational
constraints. The distributed nature of financial data,
combined with strict and

consistency recovery

requirements, limits the extent of runtime plan
adaptivity. Any modification to an execution plan in
progress must respect ACID guarantees and auditability,
which restricts the scope of dynamic reoptimization.
Furthermore, machine learning components introduce
dependencies on model lifecycle management, data
versioning, and privacy compliance. Banking institutions
must implement governance pipelines that verify model
behavior under stress conditions, maintain version
control, and ensure traceable execution logs for
regulatory inspection. These constraints do not diminish
the potential of Al-driven optimizers but require that
they be embedded within a broader operational
framework that combines automation with human

oversight.

The comparative evidence suggests that the optimal
architecture for PL/SQL optimization in distributed
banking databases should integrate several layers: a
learned cardinality estimation module, a probabilistic
cost predictor, a heuristic plan enumerator, and a robust
plan selector. Each layer addresses a specific limitation

The American Journal of Applied Sciences

the traditional bias,

computational

of optimizer—statistical

cost, search space explosion, and
runtime unpredictability. Together, these layers enable
consistent performance across diverse workloads and
network configurations. In benchmark simulations
mirroring real banking datasets, such composite systems
reduced query response time by nearly half and
achieved throughput stability within a variance of £10 %.
These results imply that efficiency and reliability need
not be mutually exclusive; they can be achieved
simultaneously through intelligent coordination of

complementary optimization techniques.

A further implication concerns the shift in professional
practice. Database administrators and developers
increasingly act not as manual tuners of SQL code but as
curators of adaptive optimization ecosystems. Their
responsibilities extend to monitoring model
performance, retraining predictors, and interpreting
visualization feedback. This paradigm reflects the
convergence of data engineering and applied machine
learning within the financial technology domain. As
optimization logic becomes more autonomous, the
human role transitions toward governance, model
validation, and exception handling—tasks that ensure
the safe and explainable deployment of intelligent

database systems in regulated environments.

Overall, the analytical results and comparative
discussion converge on a consistent conclusion:
optimization of PL/SQL queries in distributed banking
depends

adjustments of static parameters. It evolves toward a

databases no longer on incremental

holistic ~ framework uniting machine learning,

metaheuristics, and human-in-the-loop supervision.
Such query
performance but also transforms optimization into an

integration not only accelerates
adaptive, transparent, and accountable process aligned
with the stringent operational and regulatory demands
of the modern banking ecosystem. Compared to
commercial database systems such as Microsoft SQL
Server, MySQL Cluster, and Google Spanner, where
optimization relies primarily on centralized cost models,
rule-driven plan caching, and limited adaptive feedback,
PL/SQL optimization in distributed banking databases
demands a higher degree of runtime adaptability and
explainability. While these commercial systems achieve
consistency through and

strong synchronization

homogeneous infrastructure, banking workloads

require decentralized coordination, selective

replication, and auditable decision-making, making

https://www.theamericanjournals.com/index.php/tajas

128

conventional optimization strategies insufficient for
maintaining scalable and transparent performance.

Conclusion

The conducted research confirms that optimization of
PL/SQL queries
requires a shift from deterministic cost estimation to

in distributed banking databases

adaptive and multi-layered frameworks integrating
learning, heuristics, and robust execution control. The
analysis demonstrated that learned cost models provide
significant accuracy improvements in cardinality and
latency prediction, while hybrid enumeration ensures
optimal balance between data locality and distributed
coordination. Metaheuristic strategies such as the
Improved Artificial Bee Colony algorithm contribute to
efficient plan exploration in data-scarce environments.
Robust frameworks and visualization tools, including
Hint-QPT and QOVIS, strengthen explainability and
stability of optimization processes under uncertain
workloads.

The proposed layered architecture—encompassing data

profiling, learning, heuristic, robustness, and

visualization layers—achieves consistent performance
across distributed financial networks, maintaining
throughput stability and minimizing latency variations.
The (1)

classification of optimization paradigms, (2) assessment

results achieve the research objectives:

of hybrid, heuristic, and neural models, and (3)
formulation of a coherent optimization framework
adaptable to real banking environments. The findings
are applicable to developers, data engineers, and
financial IT specialists seeking to enhance transactional
efficiency, transparency, and resilience of distributed
banking systems.

References

1. Anneser, C., Tatbul, N., Cohen, D., Xu, Z., Pandian,
P., Laptev, N., & Marcus, R. (2023). AutoSteer:
Learned query optimization for any SQL database.
Proceedings of the VLDB Endowment, 16, 3515—
3527. https://doi.org/10.14778/3611540.3611544
Du, Y., Cai, Z., & Ding, Z. (2024). Query optimization
in distributed database based on improved artificial

bee colony algorithm. Applied Sciences, 14(2), 846.
https://doi.org/10.3390/app14020846

3. Gretscher, L., & Dittrich, J. (2025). How to optimize
SQL queries? A comparison between split, holistic,

and hybrid approaches. Proceedings of the VLDB
Endowment, 18, 3910-3922.
https://doi.org/10.14778/3749646.3749663

The American Journal of Applied Sciences

10.

129

Heinrich, R., Li, X., Luthra, M., & Kaoudi, Z. (2025).
Learned cost models for query optimization: From
batch to streaming systems. Proceedings of the
VLDB Endowment, 18, 5482-5487.
https://www.vldb.org/pvidb/vol18/p5482-li.pdf
Milicevic, B., & Babovic, Z. (2024). A systematic
review of deep learning applications in database

guery execution. Journal of Big Data, 11, 173.
https://doi.org/10.1186/s40537-024-01025-1
Oracle. (2025). Real-time payments with Oracle

globally distributed database [White paper].
https://www.oracle.com/a/ocom/docs/database/r

eal-time-payments-with-oracle-distributed-
database.pdf

Xiu, H,, Li, Y., Yang, Q., Guo, W,, Liu, Y., Agarwal, P.
K., Roy, S., & Yang, J. (2025). Hint-QPT: Hints for
robust query performance tuning. Proceedings of
the VLDB Endowment, 18, 5327-5330.
https://doi.org/10.14778/3750601.3750663

You, Z., Shen, Q., Yiu, M. L., & Tang, B. (2025).
QOVIS: Understanding and diagnosing query

optimizer via a visualization-assisted approach.
Proceedings of the VLDB Endowment, 18, 1677—
1690. https://doi.org/10.14778/3725688.3725698
Leis, V., Gubichev, A., Mirchev, A., Boncz, P.,
Kemper, A., & Neumann, T. (2025). Still asking: How
good are query optimizers, really? Proceedings of
the VLDB Endowment, 18, 5531-5536.
https://www.vldb.org/pvidb/vol18/p5531-
viktor.pdf

Marcus, R., Negi, P., Mao, H., Tatbul, N., Alizadeh,
M., & Kraska, T. (2021). Bao: Making learned query
optimization practical. In Proceedings of the 2021
ACM SIGMOD International Conference on
Management of Data (pp. 1275-1288).
https://people.csail.mit.edu/tatbul/publications/ba

o _sigmod21.pdf

https://www.theamericanjournals.com/index.php/tajas

https://doi.org/10.14778/3611540.3611544
https://doi.org/10.3390/app14020846
https://doi.org/10.14778/3749646.3749663
https://www.vldb.org/pvldb/vol18/p5482-li.pdf
https://doi.org/10.1186/s40537-024-01025-1
https://www.oracle.com/a/ocom/docs/database/real-time-payments-with-oracle-distributed-database.pdf
https://www.oracle.com/a/ocom/docs/database/real-time-payments-with-oracle-distributed-database.pdf
https://www.oracle.com/a/ocom/docs/database/real-time-payments-with-oracle-distributed-database.pdf
https://doi.org/10.14778/3750601.3750663
https://doi.org/10.14778/3725688.3725698
https://www.vldb.org/pvldb/vol18/p5531-viktor.pdf
https://www.vldb.org/pvldb/vol18/p5531-viktor.pdf
https://people.csail.mit.edu/tatbul/publications/bao_sigmod21.pdf
https://people.csail.mit.edu/tatbul/publications/bao_sigmod21.pdf

