

Estimates For Oscillator Integrals With A Special Phase

Khasanov G.A.

Associate Professor, Faculty Of Mathematics, Samarkand State University, Uzbekistan

Journal [Website:](https://theamericanjournals.com/index.php/tajas)
<https://theamericanjournals.com/index.php/tajas>

Copyright: Original content from this work may be used under the terms of the creative commons attributes 4.0 licence.

ABSTRACT

In this paper, uniform estimates are considered for oscillatory integrals with some phase functions depending on small parameters.

KEYWORDS

Phase, Amplitude, Height, Deformation, Ideal.

INTRODUCTION

Let $f(x_1, x_2)$ – be an infinitely smooth function that has a singularity at the point $(0,0)$, i.e. $df(0,0) = 0$. Consider a deformation of the phase function of the form

$$F(x, s) = f(x) + s_1 \ell_1(x) + s_2 \ell_2(x),$$

where ℓ_1, ℓ_2 – smooth functions satisfying the conditions:

$$\ell_1(0,0) = 0, \ell_2(0,0) = 0, J(\ell_1, \ell_2) \neq 0 \quad (1)$$

where J – jacobian of functions ℓ_1, ℓ_2 . Let U be a neighborhood of zero and $a \in C_0^\infty(U)$. We introduce an oscillatory integral with phase $F(x, s)$ and amplitude $a \in C_0^\infty(U)$:

$$J(t, s) = \iint_{R^2} a(x) e^{itF(x,s)} dx \quad (2)$$

An oscillatory integral with a smooth phase $f(x)$ is said to have an estimate of the type (β, m) , at the point $(0,0)$ if there exists a neighborhood U of zero such that for any function $a \in C_0^\infty(U)$ the estimate holds for $|t| \geq 2$

$$\iint_{R^2} a(x) e^{itF(x,s)} dx \leq C \cdot |lnt|^m \cdot |t|^{-\beta}.$$

The oscillation exponent of a function f at zero is called the supremum of the set $\{\beta\}$.

Theorem. Let $f(x)$ have an estimate of the type (β, m) , $\beta \geq \frac{1}{2}$ at the point $(0,0)$, and ℓ_1, ℓ_2 – are any fixed functions satisfying conditions (1). Then there exists a neighborhood U of zero in R^2 and a positive number $\varepsilon > 0$ such that for the amplitude $a \in C_0^\infty(U)$ and $|s| < \varepsilon$, the oscillator integral (2) satisfies the following estimate:

$$|J(t,s)| \leq C \cdot \|a\|_{C^2} \cdot |lnt|^m \cdot |t|^{-\beta}.$$

Let $f(x_1, x_2)$ – be an infinitely smooth function with a singularity $f(0,0) = 0$, $d^2f(0,0) = 0$, $d^3f(0,0) = 0$ and $h(f) = 2$. The concepts of height and the adapted coordinate systems for the function were introduced by A.N.Varchenko in [2]. In this case $d^4f(0,0) \neq 0$. Since $h(f) = 2$, then either the principal face, up to linear equivalence, has the form $f_\gamma = x_1^4 + \alpha x_1^2 x_2^2 + x_2^4$ and $\alpha^2 \neq 4$, or f_γ is reduced to one of the forms $x_1^2 x_2^2$, $x_1^2(x_1^2 \pm x_2^2)$, $(x_1^2 + x_2^2)^2$.

As is known, if the principal face has the form $x_1^4 + \alpha x_1^2 x_2^2 + x_2^4$ and $\alpha^2 \neq 4$, then the phase function f in some neighborhood of zero is reduced by a differomorphism to the form $x_1^4 + \alpha x_1^2 x_2^2 + x_2^4$. This feature is called the X_9 type feature [1]. In this case, the phase function $F(x, s)$ is reduced to normal form and the proof of the theorem follows from Karpushkin's theorem [4].

It remains to consider the cases when $f_\gamma = \pm x_1^2 x_2^2$, $f_\gamma = x_1^2(x_1^2 \pm x_2^2)$ and $f_\gamma = (x_1^2 + x_2^2)^2$. For the sake of simplicity, we'll assume $f_\gamma = \pm x_1^2 x_2^2$.

Lemma. If a function f at a point $(0,0)$ is diffeomorphically equivalent $\pm x_1^2 x_2^2$, then there exists a neighborhood U and a positive number $\varepsilon > 0$ such that for any amplitude $a \in C_0^\infty(U)$ and $|s| < \varepsilon$ the oscillator integral $J(t, s)$ satisfies the estimate:

$$|J(t,s)| \leq C \cdot \|a\|_{C^2} \cdot |lnt| \cdot |t|^{-1/2}.$$

Proof. In this case, we represent the phase function in the form

$$F(x, s) = x_1^2 x_2^2 + s_1(x_1 + \varphi_1(x_1, x_2)) + s_2(x_2 + \varphi_2(x_1, x_2)),$$

where $\varphi_k \in \mathcal{M}$, $k = 1, 2$ are smooth functions. In what follows, \mathcal{M} will denote the maximal ideal of the ring of germs of smooth functions.

In this case, (s_1, s_2) and (x_1, x_2) are symmetric. Therefore, we will consider only the case $(s_1, s_2) \in \{(s_1, s_2): |s_2| \leq |s_1|\}$. The phase function $F(x, s)$ can be represented in the form

$$F(x, s) = x_1^2 x_2^2 + s_1 x_1 [1 + \varphi_{11}(x_1, x_2) + \xi_2 \varphi_{21}(x_1, x_2) + s_1 x_2^2 \varphi_{12}(x_2) + s_2(x_2 + x_2^2 \varphi_{22}(x_2))]$$

where $\varphi_{11}, \varphi_{21} \in \mathcal{M}$ and $\varphi_{12}, \varphi_{22}$ are some smooth functions. Consider the one-dimensional oscillatory integral

$$J_1(t, s, x_2) = \int_{R_{x_1}} \exp \left\{ itx_2^2 \left(x_1^2 + \frac{s_1}{x_2^2} x_1 (1 + \varphi_{11}(x_1, x_2) + \xi_2 \varphi_{21}(x_1, x_2)) \right) \right\} a(x_1, x_2) dx_1$$

Let $|s_1| > \delta |x_2^2| > 0$ where δ – is some fixed positive number. Then the oscillator integral $J_1(t, s, x_2)$ satisfies the estimate:

$$J_1(t, s, x_2) \leq \frac{C \|a\|_{C^1}}{1 + |tx_2^2|}.$$

From here we get:

$$\int_{|s_1| > \delta |x_2^2|} |J_1(t, s, x_2)| dx_2 \leq \frac{C \|a\|_{C^1}}{|t|^{1/2}}.$$

Let $|s_1| \leq \delta |x_2^2|$ where δ – is a sufficiently small positive number. In this case, according to the van der Corput lemma [5], the integral $J_1(t, s, x_2)$ satisfies the inequality

$$|J_1(t, s, x_2)| \leq \frac{C \|a\|_{C^1}}{1 + |tx_2^2|^{1/2}}.$$

As a result, we have

$$\int_{|s_1| \leq \delta |x_2^2| \leq C_1} |J_1(t, s, x_2)| dx_2 = C \|a\|_{C^1} \int_{|x_2| \leq C} \frac{dx_2}{1 + |tx_2^2|^{1/2}} \leq \frac{C \|a\|_{C^1} |Int|}{|t|^{1/2}}.$$

The proof of the lemma follows easily from this.

This lemma implies the proof of the theorem in the case when f at the point $(0,0)$ is diffeomorphically equivalent to the function $\pm x_1^2 x_2^2$.

Finally, consider the case when the “almost” principal face (in the terminology of Karpushkin [4]) has the form:

$$f_\gamma(x_1, x_2) = x_1^2 x_2^2 + a x_1^k, \quad (k \geq 4).$$

Note that we always arrive at this case by changing the variables. First, assume that $|s_2| \leq |s_1|$. We represent the phase function in the form

$$\begin{aligned} F(x, s) = & x_1^2 x_2^2 + a x_1^k + F_{1>}(x_1, x_2) + s_1 x_2^2 \varphi_{11}(x_2) + \\ & + s_1 x_1 [1 + \varphi_{11}(x_1, x_2) + \xi_2 \varphi_{21}(x_1, x_2)] + s_2 x_2^2 \varphi_{22}(x_2). \end{aligned}$$

Without loss of generality, we can assume that $a \neq 0$, otherwise either it is reduced to this case, or the phase function is diffeomorphically equivalent to the function $\pm x_1^2 x_2^2$. Let $x_2 > 0$, consider the one-dimensional oscillatory integral

$$J_1(t, s, x_2) = \int_{R_{x_1}} e^{\Phi(x, s)} a(x_1, x_2) dx_1,$$

where

$$\Phi(x, s) = x_1^2 x_2^2 + a x_1^k + F_{1>}(x_1, x_2) + s_1 x_1 [1 + \varphi_{11}(x_1, x_2) + \xi_2 \varphi_{21}(x_1, x_2)]$$

here $F_{1>}$ the Maclaurin series of the function consists of the sum of monomials of degree higher than one with weight $r = \left(\frac{1}{k}, \frac{k-2}{2k}\right)$, $\varphi_{11}, \varphi_{21} \in \mathcal{M}$.

Let's make the change of variables $x_1 \mapsto x_2^{\frac{2}{k-2}} x_1$ and get:

$$J_1(t, s, x_2) = \int_{R_{x_1}} x_2^{\frac{2}{k-2}} e^{itx_2^{\frac{2k}{k-2}} \Phi_1(x_1, x_2, s)} a\left(x_2^{\frac{2}{k-2}} x_1, x_2\right) dx_1,$$

$$\text{where } \Phi_1(x_1, x_2, s) = a x_1^k + x_1^2 + s_1 x_2^{-\frac{2(k-1)}{k-2}} x_1 \left[1 + \varphi_{11}(x_2^{\frac{2}{k-2}} x_1, x_2) + \xi_2 \varphi_{21}(x_2^{\frac{2}{k-2}} x_1, x_2)\right]$$

First, consider the case $|s_1 x_2^{-\frac{2(k-1)}{k-2}}| \leq M$, where M – is a fixed positive number. The set of critical points of the phase function $\Phi_1(x_1, x_2, s)$ in x_1 is contained on some interval $[-\Delta, \Delta]$. Consider the covering $(-\Delta - 1, \Delta + 1) \cup (R \setminus [-\Delta, \Delta])$ of the set R , and denote the corresponding partition of unity by $\{h_1, h_2\}$. With this partition of unity, the oscillatory integral $J_1(t, s, x_2)$ is represented as the sum of two integrals

$$J_{1k}(t, s, x_2) = x_2^{\frac{2}{k-2}} \int_R e^{itx_2^{\frac{2k}{k-2}} \Phi_1(x_1, x_2, s)} a\left(x_2^{\frac{2}{k-2}} x_1, x_2\right) h_k(x_1) dx_1, \quad k = 1, 2.$$

Applying van der Corput's lemma for the oscillatory integral J_{12} , we obtain the estimate:

$$J_{12}(t, s, x_2) \leq \frac{C \|a(\cdot, x_2)\|_V}{\left|tx_2^{\frac{2(k-1)}{k-2}}\right| + |t|^{\frac{1}{k}}}.$$

From the latter we have

$$\int_R |J_{12}(t, s, x_2)| dx_2 \leq C \cdot \|a\|_{C^2} \cdot |t|^{-\frac{1}{2}}$$

Now consider the estimate for the oscillatory integral $J_{11}(t, s, x_2)$. Note that there is at most one point, $\xi_1 = \xi_0 \neq 0$ for which the function $ax_1^k + x_1^2 + \xi_0 x_1$ has a degenerate critical point. If k – is even and a is positive, then there is no such point. Let such a point exist. Then the phase function is a versal deformation of a singularity of type A_2 , and for $|\xi_1 - \xi_0| < \delta$ for the oscillatory integral $J_1(t, s, x_2)$, the estimate [3] holds.

$$|J_1(t, s, x_2)| \leq \frac{C \cdot \|a(\cdot, x_2)\|_V}{|t|^{\frac{1}{2}} |x_2| \left|s_1 x_2^{\frac{2(k-1)}{k-2}} - \xi_0\right|^{\frac{1}{4}}} := \psi_1(s_1, x_2, t).$$

If $|\xi_1 - \xi_0| > \delta$, then all critical points of the phase function are nondegenerate and the oscillatory integral $J_1(t, s, x_2)$ satisfies the estimate:

$$|J_1(t, s, x_2)| \leq \frac{C \cdot |x_2|^{\frac{2}{k-2}} \cdot \|a(\cdot, x_2)\|_V}{1 + \left|tx_2^{\frac{2k}{k-2}}\right|^{\frac{1}{2}}} := \psi_2(x_2, t).$$

Note that the following inequalities hold:

$$\int_{|\xi_1 - \xi_0| < \delta} \psi_1(s_1, x_2, t) dx_2 \leq C \cdot \|a\|_{C^2} \cdot |\ln t| \cdot |t|^{-\frac{1}{2}},$$

$$\int_{|\xi_1 - \xi_0| > \delta} \psi_1(s_1, x_2, t) dx_2 \leq C \cdot \|a\|_{C^2} \cdot |t|^{-\frac{1}{2}}$$

Summing up the estimates obtained, we arrive at the desired estimate in the case $|\xi| \leq M$. Now consider the case $|\xi_1| > M$ and M is a sufficiently large positive number. In this case, in the oscillator integral $J_1(t, s, x_2)$ we change the variables $x_1 \rightarrow |s_1|^{\frac{1}{k-1}} x_1$ and get:

$$|J_1(t, s, x_2)| = |s_1|^{\frac{1}{k-1}} \int_R \exp\{it|s_1|^{\frac{1}{k-1}}\Phi_2(x, s)\} a\left(|s_1|^{\frac{1}{k-1}}x_1, x_2\right) dx_1,$$

where

$$\begin{aligned} \Phi_2(x, s) = ax_1^k + F_{1>} \left(|s_1|^{\frac{1}{k-1}}x_1, x_2 \right) |s_1|^{-\frac{k}{k-1}} + |s_1|^{-\frac{k-2}{k-1}}x_1x_2^2 + \\ + sgn s_1 x_1 \left[1 + \varphi_{11} \left(|s_1|^{\frac{1}{k-1}}x_1, x_2 \right) + \xi_2 \varphi_{21} \left(|s_1|^{\frac{1}{k-1}}x_1, x_2 \right) \right]. \end{aligned}$$

Let $\eta_2 = |s_1|^{-\frac{k-2}{k-1}}x_2^2$. Since $a \neq 0$, the set of critical points is contained in $[-\Delta, \Delta]$. Consider the covering $(-\Delta - 1, \Delta + 1) \cup (R \setminus [-\Delta, \Delta])$ and the corresponding partition of the unity $\{\psi_1, \psi_2\}$. With the help of this partition, the unit of the oscillatory integral $J_1(t, s, x_2)$ is represented as the sum of two integrals

$$J_1^k(t, s, x_2) = |s_1|^{\frac{1}{k-1}} \int_R e^{it|s_1|^{\frac{1}{k-1}}\Phi_2(x, s)} a\left(|s_1|^{\frac{1}{k-1}}x_1, x_2\right) \psi_k(x_1) dx_1, k = 1, 2$$

Consider the estimate $J_1^2(t, s, x_2)$. According to van der Corput's lemma, for this oscillatory integral we obtain the estimate:

$$|J_1^2(t, s, x_2)| \leq \frac{C \cdot \|a(\cdot, x_2)\|_V}{|t|^{\frac{1}{k}} + |t| |x_2|^{\frac{2(k-1)}{k-2}}}$$

Hence,

$$\int_{|x_2| < C} |J_1^2(t, s, x_2)| dx_2 \leq C \cdot \|a\|_{C^2} \cdot |t|^{-\frac{1}{2}}.$$

Note that if $|\eta_2| < \delta$ and δ is a sufficiently small positive number, then the phase function has only non-degenerate critical points. As a consequence, for the oscillatory integral $J_1^1(t, s, x_2)$ we have the estimate

$$|J_1^1(t, s, x_2)| \leq \frac{C \cdot \|a(\cdot, x_2)\|_V}{|t|^{\frac{1}{k}} + |t| \cdot |x_2|}$$

As a result, we get:

$$\int_{|x_2| < C} |J_1^1(t, s, x_2)| dx_2 \leq C \cdot \|a\|_{C^2} \cdot |lnt| \cdot |t|^{-\frac{1}{2}}.$$

Summing up the obtained inequalities, we have the desired estimate when $f_\gamma(x_1, x_2) = x_1^2 x_2^2 + a x_1^k$ and $|s_2| \leq |s_1|$. In case $|s_1| \leq |s_2|$ the integrals are estimated in exactly the same way as this estimate. This completes the proof of the main theorem.

REFERENCES

1. Арнольд В.И., Варченко А.Н., Гесейн-заде С.М. Особенности дифференцируемых отображений. Классификация критических точек, каустик и волновых фронтов. М.Ж Наука, 1982 г.
2. Варченко А.Н. Многогранник Ньютона и оценки осциллирующих интегралов. // Функ. анал. и его прил. 1976, т.10, вып. 5. стр. 13-38.
3. Икромов И.А. Инвариантные оценки двумерных тригонометрических интегралов // Матем. сб., 1989, т.180. № 8. стр.1017-1035.
4. Карпушкин В.Н. Равномерные оценки осциллирующих интегралов с параболической или гиперболической фазой. // Труды сем.им. И.Г.Петровского. М.: МГУ, 1983, т.9. стр. 3-39.
5. Stein E.M. Harmonic Analysis: Real – valued methods, Orthogonality, and Oscillatory integrals. Princeton Univ.Press, 43, 1993.