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ABSTRACT

In this paper, uniform estimates are considered for oscillatory integrals with some phase functions
depending on small parameters.
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INTRODUCTION

Let f(xq,x,) — beaninfinitely smooth function that has a singularity at the point (0,0), i.e. df(0,0) =
0. Consider a deformation of the phase function of the form
F(x,s) = f(x) + s1£1(x) + s52£2(x),
where £1,%, — smooth functions satisfying the conditions:
£1(0,0) =0, £2(0,0) =0, J(£1,£2) #0 Q)
where ] —jacobian of functions £, ¢,. Let U be a neighborhood of zero and a € Cy°(U). We introduce

an oscillatory integral with phase F (x, s) and amplitude a € Cy°(U):

J(t,s) = || a(x)eltFCes)dy 2
|
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An oscillatory integral with a smooth phase f(x) is said to have an estimate of the type (£, m), at the
point (0,0) if there exists a neighborhood U of zero such that for any function a € €y°(U) the estimate

holds for |t] = 2
ff a(x)eltF&®S)dx < C - |Int|™ - |t|7P.
RZ

The oscillation exponent of a function f at zero is called the supremum of the set {$}.
Theorem. Let f(x) have an estimate of the type (8, m), s = % at the point (0,0), and ¢4, ¢, — are any

fixed functions satisfying conditions (1). Then there exists a neighborhood U of zero in R? and a
positive number € > 0 such that for the amplitude a € C;°(U) and |s| < ¢, the oscillator integral (2)
satisfies the following estimate:

Ut s)I < C-llallgz - |ine|™ - [e|7F.

Let f(xq,x;) — be an infinitely smooth function with a singularity f(0,0) =0, d2f£(0,0) =0,
d3£(0,0) = 0 and h(f) = 2.The concepts of height and the adapted coordinate systems for the
function were introduced by A.N.Varchenko in [2]. In this case d*f(0,0) # 0. Since h(f) = 2, then
either the principal face, up to linear equivalence, has the form f, = x{ + axfx3 + x5 and a® # 4, or

f, is reduced to one of the forms x{x5, x7(xf + x3), (xf + x3)2.

As is known, if the principal face has the form x{ + ax?x% + x5 and a? # 4, then the phase function f
in some neighborhood of zero is reduced by a differomorphism to the form x{ + ax?x% + x3. This
feature is called the X4 type feature [1]. In this case, the phase function F(x, s) is reduced to normal

form and the proof of the theorem follows from Karpushkin's theorem [4].

It remains to consider the cases when f, = +x{x35, f, = x7(x{ £ x5) and f, = (x{ + x5)?. For the

sake of simplicity, we'll assume f, = £x{x3.

Lemma. If a function f at a point (0,0) is diffeomorphically equivalent +x%x3, then there exists a
neighborhood U and a positive number & > 0 such that for any amplitude a € C;°(U) and |s| < ¢ the
oscillator integral J (¢, s) satisfies the estimate:

|.](tls)| < C- ”a”C2 . |lnt| . |t|—1/2.

The USA Journals Volume 03 Issue 11-2021


https://doi.org/10.37547/tajas/Volume03Issue11-04

The American Journal of Applied sciences MPACT FACTOR
(ISSN -2689-0992)

November 15, 2021 | 22-28

https://doi.org/10.37547/tajas/Volumeo3lssue11-04 - 1121105553

2021:5.634

Proof. In this case, we represent the phase function in the form

F(x,5) = x{x3 + 5101 + 01(x1,%2)) + 5202 + 92(x1, X2)),
where ¢, € M, k = 1,2 are smooth functions. In what follows, M will denote the maximal ideal of
the ring of germs of smooth functions.
In this case, (s1,5;) and (x4, x,) are symmetric. Therefore, we will consider only the case (s1,5;) €
{(s1,52): |s2] < |s1]}. The phase function F(x, s) can be represented in the form

F(x,s) = x?x3 +
+51201 [1+ 911001, %2) + E5021 (X1, X2) + 51%5912(x2) + 550 + X502 (x2))]

where @q1,¢021 EM and @q,, @,, are some smooth functions. Consider the one-dimensional
oscillatory integral

. S1
exp {lt?g <x12 + x_le(l + @11(x1, %) + 52(P21(x1,x2))>1 a(xy, xz)dx;
X1 2

Ji(t,s,x2) = f

R

Let |s;] > 6|x22| > 0 where § — is some fixed positive number. Then the oscillator integral J;(t,s, x;)

satisfies the estimate:

Cllallc1
< _—C
ll(tJ S, xz) — 1+|tx%|'
From here we get:
16,5, 2)] dx, < Sl
]1 ) S, X2 X2 = |t|1/2 '
Is1]>68|xZ|

Let |sq]| < 6|x22| where § ~ is a sufficiently small positive number. In this case, according to the van der

Corput lemma [5], the integral J; (¢, s, x,) satisfies the inequality
Cllallc:
t,s, %) £ ———7-
a3l < A7
As aresult, we have

dx; Cllallc:|int|
1+ [txg|/2 7 |t/

U1(t,5,%,)] dx; = Cllallgs f

Is1]s8|x3|<Cy |x2]C

The proof of the lemma follows easily from this.
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This lemma implies the proof of the theorem in the case when f at the point (0,0) is diffeomorphically

equivalent to the function +x%x3.

Finally, consider the case when the “almost” principal face (in the terminology of Karpushkin [4]) has
the form:
fy (1, x5) = x¥x5 + axf, (k= 4).
Note that we always arrive at this case by changing the variables. First, assume that |[s,| < |s1]. We
represent the phase function in the form
F(x,5) = x{x5 + axt + Fi5 (g, %) + 51%5011 (%) +
511 [1+ 911001, %2) + 2021 (X1, X2)] + 525505 (x2).

Without loss of generality, we can assume that a # 0, otherwise either it is reduced to this case, or the
phase function is diffeomorphically equivalent to the function +x#x3. Let x, > 0, consider the one-
dimensional oscillatory integral

J1(ts,x3) = j e®@a(xy, x,)dxy,

Ry,
where
D(x,5) = %745 + axf + Fi5 (01, %) + 5121 [1 4 011(%1, %3) + §,021 (%1, %7)]

here F,- the Maclaurin series of the function consists of the sum of monomials of degree higher than

one with weight r = (i,kz—_kz), ®11, P21 € M.

2

Let's make the change of variables x; + x5~x; and get:

2 2k 2
_ k=2 ,itxk"2d; (x1,x5, k-2
J1(t, s,%3) —f X, “etr2 1(x1xzs)a<x2 xl,x2>dx1,
Ry,
_2(k=1)
where @, (x;,%,,5) = ax¥ + x¥ + s;x, *2 x4

2 2
14 @11 (x57%x1,%2) + &1 (X5 7%x1, x3)

_2(k-1)
First, consider the case |s;x, “* | < M, where M - is a fixed positive number. The set of critical

points of the phase function ®;(x;,x,,s) in x; is contained on some interval [-A, A]. Consider the
covering (—A —1, A+ 1) U (R\[—A, A]) of the set R, and denote the corresponding partition of unity
by {h4, h,}. With this partition of unity, the oscillatory integral J; (¢, s, x,) is represented as the sum of

two integrals
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2k

2 2
2 2 2
Jik(t,s,x5) = xé“zf eltxz P1(x1x25) g <x§‘2x1,x2> hi(x)dx,, k =1,2.
R

Applying van der Corput's lemma for the oscillatory integral /12, we obtain the estimate:

Clla(-, %)l
]12(t' S'xZ) < 2(k-1 1
tx, % |+ |t|k

From the latter we have

1
f Uis (6,5, x2)dxy < C - llallgz - 16172
R

Now consider the estimate for the oscillatory integral /11 (t, s, x5). Note that there is at most one point,
& = & # 0 for which the function ax¥ + x? + &,x; has a degenerate critical point. If k — is even and
a is positive, then there is no such point. Let such a point exist. Then the phase function is a versal
deformation of a singularity of type A,, and for |§; — &,| < & for the oscillatory integral /1 (t, s, x,), the
estimate [3] holds.

C-lla(-,x2)lly
l/1(t, s, x2)| < 7= P1(51,x2, ).
1 _2(k-1) 4
|t12]x, | [s1x, *72 =&

If |&; — &0l > 6, then all critical points of the phase function are nondegenerate and the oscillatory

integral /, (¢, s, x,) satisfies the estimate:

2
C-lxpk=2 - fla(-, %) llv
|]1(t' S, xZ)l < 1 = lpZ(xZ!t)'

2k |2
k-2
txk

1+

Note that the following inequalities hold:

1
PY1(s1,x2,t)dx; < C-lallcz - |Int] - [t] 2,
[§1—80l<8

1
Y1(s1, %2, t)dx, < C - lallgz - €] 2
[§1-801>6

Summing up the estimates obtained, we arrive at the desired estimate in the case | |&| < M. Now

consider the case |§;| > M and M is a sufficiently large positive number. In this case, in the oscillator

1
integral J; (¢, s, x,) we change the variables x; = |s|k-1x; and get:
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1 1 1
165,31 = Iy [ explitlsn [F1 (o)) a Iy Ty ) d,
R
where

1 k k-2
®,06,5) = axt + Fys Iy T2, 2, ) 52 751 o+ [y [Tty 2 +

1 1
+sgnsixq [1 + @11 (|51|k—1x1,x2) + $2021 (|S1|k‘1x1'x2)]-

k-2
Letn, = |s;| k=1x2. Since a # 0, the set of critical points is contained in [-A, A]. Consider the covering

(=A—1,A+ 1) U (R\[—A, A]) and the corresponding partition of the unity {11, 1,}. With the help of

this partition, the unit of the oscillatory integral J; (t, s, x5) is represented as the sum of two integrals

1 . Kk 1
]{{(t, S, x2) = |51|m f eltlsllk—1¢2(x,s) a (lsllmx1'x2> lpk (xl)dxlf k = 112
R

Consider the estimate J7(t, s, x,). According to van der Corput's lemma, for this oscillatory integral we
obtain the estimate:

C-lla(-, x)llv
Vit s x)| < — 2(k—1)

|elk + |ef|xz| k-2

Hence,

1
f J2(t,5,%,)| dxy < C - llallgz - [¢]72.

|x2|<C

Note that if |,| < § and & is a sufficiently small positive number, then the phase function has only
non-degenerate critical points. As a consequence, for the oscillatory integral J1(t, s, x,) we have the

estimate

C-lla(, x)llv
(65, %5)] < g2
|tk + [¢] - |xz]

As aresult, we get:

1
it s,x2)| dx, < C - llallcz - |Int] - |¢] 2.

|x2]<C
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Summing up the obtained inequalities, we have the desired estimate when £, (x1, x;) = x{x5 + ax¥

and |s,| < |sq]. Incase |s1] < [s,| the integrals are estimated in exactly the same way as this estimate.

This completes the proof of the main theorem.
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