Articles | Open Access | DOI: https://doi.org/10.37547/tajabe/Volume07Issue05-02

Genetic identification of yellow rust disease resistance in soft wheat (Triticum Aestivum l.) Samples using DNA markers

Durdona Shokirova , Uzbek Academy of Sciences, Research Institute of Plant Genetics and Experimental Biology, Tashkent, Uzbekistan
Xurshid To‘raqulov , Uzbek Academy of Sciences, Research Institute of Plant Genetics and Experimental Biology, Tashkent, Uzbekistan
Toxir Bozorov , Uzbek Academy of Sciences, Research Institute of Plant Genetics and Experimental Biology, Tashkent, Uzbekistan
Sodir Meliev , Uzbek Academy of Sciences, Research Institute of Plant Genetics and Experimental Biology, Tashkent, Uzbekistan
Shohida Ibragimova , Uzbek Academy of Sciences, Research Institute of Plant Genetics and Experimental Biology, Tashkent, Uzbekistan
Fazlidin Meliqo‘ziev , Uzbek Academy of Sciences, Research Institute of Plant Genetics and Experimental Biology, Tashkent, Uzbekistan
Abdurauf Dolimov , Uzbek Academy of Sciences, Research Institute of Plant Genetics and Experimental Biology, Tashkent, Uzbekistan
Bexruz Ochilov , Uzbek Academy of Sciences, Research Institute of Plant Genetics and Experimental Biology, Tashkent, Uzbekistan
Sojida Murodova , Uzbek Academy of Sciences, Research Institute of Plant Genetics and Experimental Biology, Tashkent, Uzbekistan
Ilham Aytenov , Uzbek Academy of Sciences, Research Institute of Plant Genetics and Experimental Biology, Tashkent, Uzbekistan

Abstract

This study assessed the genetic polymorphism of wheat samples in relation to yellow rust disease resistance through DNA markers genetically linked to this trait. According to the analysis, the markers Xgwm140 (PIC = 0.72) and Xgwm340 (PIC = 0.53) exhibited the highest levels of polymorphism, playing a significant role in the identification of yellow rust-resistant alleles, with 305 and 220 base pairs, respectively. Phylogenetic analysis revealed genetic diversity among the genotypes and indicated that resistant genotypes tended to cluster into distinct groups. The findings of this study provide a reliable tool for identifying resistant genotypes, which can be effectively utilized in the selection process during wheat breeding programs aimed at enhancing resistance to yellow rust disease. This version reflects a more detailed and formal scientific tone, maintaining the essence of your original text while providing further clarity on the methods and outcomes. Let me know if you need any further adjustments. In 2024 field trials, wheat varieties were tested for yellow rust resistance using molecular markers for Yr genes. Varieties with Yr5 and Yr15 showed full resistance, while those with Yr6, Yr9, Yr7, and Yr27 were susceptible. Yr62 alone was weak but enhanced resistance when combined with other genes. Yr5 and Yr15 were identified as the most effective for breeding resistant varieties.

Keywords

Wheat (Triticum aestivum L.), DNA markers, PCR

References

Schadt, E.E.; Linderman, M.D.; Sorenson, J.; Lawrence Lee, L.; Garry, P.; Nolan, G.P. Computational solutions to large-scale data management and analysis. Nat. Rev. Genet. 2010, 11, -P. 647–657

Wellings C.R. Global status of stripe rust: a review of historical and current threats. Euphytica.2011;179:129–141.

Ali S., Leconte M., Rahman H., Saqib M.S., Gladieux P., Enjalbert J., de Vallavieille-Pope C. A high virulence and pathotype diversity of Puccinia striiformis f.sp. tritici at its centre of diversity, the Himalayan region of Pakistan. Eur J Plant Pathol.2014;140:275–290.

Randhawa, H., Puchalski, B. J., Frick, M., Goyal, A., Despins, T., Graf, R. J., et al. (2012). Stripe rust resistance among western Canadian spring wheat and triticale varieties. Can. J. Plant. Sci. 92 (4), 713–722. doi:10.4141/cjps2011-252

Krattinger, S. G., Sucher, J., Selter, L. L., Chauhan, H., Zhou, B., Tang, M. Z.,et al. (2016). The wheat durable, multipathogen resistance gene Lr34 confers partial blast resistance in rice. Plant Biotechnol. 14, 1261–1268. doi:10.1111/pbi.12491

Sharma-Poudyal, D., Chen, X. M., Wan, A. M., Zhan, G. M., Kang, Z. S., Cao, S.Q., et al. (2013). Virulence characterization of international collections of the wheat stripe rust pathogen, Puccinia striiformis f. sp. tritici. Plant Dis. 97, 379–386. doi:10.1007/s00122-023-04374-2doi:10.1094/PDIS-01-12-0078-RE

Chen X.M. Epidemiology and control of stripe rust [Puccinia striiformis f. sp.tritici] on wheat. Can J Plant Path. 2005;27: 314–337.

Wellings C.R. Global status of stripe rust: a review of historical and current threats. Euphytica. 2011;179:129–141.

To‘raqulov X.S., Baboev S.K., Gulmurodov R.A. (2015). Wheat Rust Diseases. Monograph. Navruz Publishing House, Tashkent. 116 pages.

Shokirova, D., Turakulov, Kh., Bozorov, T., Meliev, S., Chinniqulov, B., Meliqoziev, F., Isoqulov, S., Ochilov, B. Influence of Environmental Factors on the Development of Yellow Rust Disease in Soft Wheat. International Journal of Science and Technology ISSN 3030-3443 Volume 1, Issue 25, November 2024. 59-94.

Todorovska E, Christov N, Slavov S, et al. Biotic stress resistance in wheat breeding and genomic selection implications. Biotechnol Biotec Eq. 2009;23(4): -P. 417–1426.

Paterson, A. H., Brubaker, C. L., & Wendel, J. F. A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Molecular Biology Reporter. 1993; 11: 122–127. doi: 10.1007/BF02668079 https://link.springer.com/article/10.1007/BF02668079

Olson, E.L.; Brown-Guedira, G.; Marshall, D.S.; Jin, Y.; Mergoum, M.; Lowe, I.; Dubcovsky, J. Genotyping of US wheat germplasm for presence of stem rust resistance genes Sr24, Sr36 and Sr1RSAmigo. Crop Sci. 2010, 50, 668–675. [CrossRef]

Ullah, N.; Ali, N.; Iqbal, M.; Aziz-ud-Din, K.; Hussain, S.; Inayat, U.R.; Ahmad, H. Markers assisted selection for multiple stripe rust resistance genes in spring bread wheat lines. Int. J. Biol. 2016, 8, 63–74.

Huang, L.; Xiao, X.Z.; Liu, B.; Gao, L.; Gong, G.S.; Chen, W.Q.; Zhang, M.; Liu, T.G. Identification of Stripe Rust Resistance Genes in Common Wheat Cultivars from the Huang-Huai-Hai Region of China. Plant Dis. 2020, 104, 1763–1770. [CrossRef]

Tabassum, S.; Ashraf, M.; Chen, X.M. Evaluation of Pakistan wheat germplasms for stripe rust resistance using molecular markers. Sci. China Life Sci. 2010, 53, 1123–1134. [CrossRef]

Sun, G.L.; Fahima, T.; Korol, A.B.; Turpeinen, T.; Grama, A. Identification of molecular markers linked to the Yr15 stripe rust resistance gene of wheat originated in wild emmer wheat, Triticum dicoccoides. Theor. Appl. Genet. 1997, 95, 622–628. [CrossRef] Plants 2021, 10, 2303 18 of 18

Peng, J.H.; Fahima, T.; Roeder, M.S.; Huang, Q.Y.; Dahan, A.; Li, Y.C.; Grama, A.; Nevo, E. Highdensity molecular map of chromosome region harboring stripe-rust resistance genes YrH52 and Yr15 derived from wild emmer wheat, Triticum dicoccoides. Genetica 2000, 109, 199–210. [CrossRef] [PubMed]

Murphy, L.R.; Santra, D.; Kidwell, K.; Yan, G.P.; Chen, X.M.; Garland Campbell, K. A Linkage maps of wheat stripe rust resistance genes Yr5 and Yr15 for use in marker-assisted selection. Crop Sci. 2009, 49, 1786–790. [CrossRef]

Article Statistics

Copyright License

Download Citations

How to Cite

Durdona Shokirova, Xurshid To‘raqulov, Toxir Bozorov, Sodir Meliev, Shohida Ibragimova, Fazlidin Meliqo‘ziev, Abdurauf Dolimov, Bexruz Ochilov, Sojida Murodova, & Ilham Aytenov. (2025). Genetic identification of yellow rust disease resistance in soft wheat (Triticum Aestivum l.) Samples using DNA markers. The American Journal of Agriculture and Biomedical Engineering, 7(05), 6–16. https://doi.org/10.37547/tajabe/Volume07Issue05-02