Articles | Open Access |

Promoting Early Root Architecture in Arabica Coffee via Seed Priming with Silicon Nanoparticles

Rahul Verma , Department of Plant Sciences, Indian Agricultural Research Institute, New Delhi, India
Sara Al-Mutairi , Department of Crop Production, King Saud University, Riyadh, Saudi Arabia
Daniel Osei , Department of Agronomy, University of Ghana, Accra, Ghana
Jingwen Liu , College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China

Abstract

Seed priming has emerged as a promising strategy to enhance seedling establishment and root development in various crops. This study investigates the effects of nanosilicon (SiNPs) priming on root characteristics and seedling growth in Arabica coffee (Coffea arabica) during its early stages. Arabica coffee is particularly sensitive to environmental stressors, and optimizing its early growth stages is crucial for improving overall crop productivity. The application of SiNPs has shown potential in enhancing root growth and alleviating abiotic stress in other crops, but its effects on coffee seedlings remain underexplored. This research assesses the impact of SiNPs on root length, root biomass, and root-to-shoot ratio in Arabica coffee seedlings under controlled nursery conditions. Results show significant improvements in root development, suggesting that nanosilicon priming can promote early seedling vigor, thereby enhancing the establishment of coffee plants under challenging environmental conditions. These findings open avenues for the application of SiNPs in sustainable coffee production.

Keywords

Coffea arabica, seed priming, nanosilicon

References

Abdel-Ghani, A. H., Kumar, B., Reyes-Matamoros, J., Gonzalez-Portilla, P. J., Jansen, C., Martin, J. P., Lee, M., & Lübberstedt, T. (2012). Genotypic variation and relationships between seedling and adult plant traits in maize (Zea mays L.) inbred lines grown under contrasting nitrogen levels. Euphytica, 189(1), 123–133. https://doi.org/10.1007/s10681-012-0759-0

Aiken, R. M., & Smucker, A. J. (1996). Root system regulation of whole plant growth. Annual Review of Phytopathology, 34, 325–346. https://doi.org/10.1146/annurev.phyto.34.1.325

Atkinson, J. A., Wingen, L. U., Griffiths, M., Pound, M. P., Gaju, O., Foulkes, M. J., Le Gouis, J., Griffiths, S., Bennett, M. J., King, J., & Wells, D. M. (2015). Phenotyping pipeline reveals major seedling root growth QTL in hexaploid wheat. Journal of Experimental Botany, 66(8), 2283–2292. https://doi.org/10.1093/jxb/erv006

Bilen, C., Chami, D. E., Mereu, V., Trabucco, A., Marras, S., & Spanò, D. P. (2022). A systematic review on the impacts of climate change on coffee agrosystems. Plants, 12(1), 102. https://doi.org/10.3390/plants12010102

Bláha, L., & Pazderů, K. (2013). Influence of the root and seed traits on tolerance to abiotic stress. In M. Stoytcheva & R. Zlatev (Eds.), Agricultural Chemistry (pp. 89–112). InTech.

Bucciarelli, B., Zhanyou, X., Ao, S., Cao, Y., Monteros, M. J., Topp, C. N., & Samac, D. A. (2021). Phenotyping seedlings for selection of root system architecture in alfalfa (Medicago sativa L.). Plant Methods, 17, Article 98. https://doi.org/10.1186/s13007-021-00825-3

Bunn, C., Läderach, P., Rivera, O. O., & Kirschke, D. (2015). A bitter cup: climate change profile of global production of Arabica and Robusta coffee. Climatic Change, 129, 89–101. https://doi.org/10.1007/s10584-014-1306-x

Calleja-Cabrera, J., Boter, M., Oñate-Sánchez, L., & Pernas, M. (2020). Root growth adaptation to climate change in crops. Frontiers in Plant Science, 11, 544. https://doi.org/10.3389/fpls.2020.00544

Chandrasekaran, U., Luo, X., Wang, Q., & Shu, K. (2020). Are there unidentified factors involved in the germination of nano-primed seeds? Frontiers in Plant Science, 11, 832. https://doi.org/10.3389/fpls.2020.00832

DaMatta, F. M., Rahn, E., Läderach, P., Ghini, R., & Ramalho, J. C. (2019). Why could the coffee crop endure climate change and global warming to a greater extent than previously estimated? Climatic Change, 152(2), 167–178. https://doi.org/10.1007/s10584-018-2346-4

DaMatta, F. M., & Ramalho, J. C. (2006). Impacts of drought and temperature stress on coffee physiology and production: a review. Brazilian Journal of Plant Physiology, 18(1), 55–81. https://doi.org/10.1590/S1677-04202006000100006

Fithriyyah, D., Wulandari, E., & Sendjaja, T. P. (2020). Knowledge level of farmers and the importance of coffee seedling attributes and accessibilities in Bandung Regency, West Java, Indonesia. Pelita Perkebunan (a Coffee and Cocoa Research Journal), 36(3), 249–263. https://doi.org/10.22302/iccri.jur.pelitaperkebunan.v36i3.453

Foxx, A. J., & Kramer, A. T. (2020). Variation in number of root tips influences survival in competition with an invasive grass. Journal of Arid Environments, 179, 104189. https://doi.org/10.1016/j.jaridenv.2020.104189

Hussain, A., Rizwan, M., Ali, Q., & Ali, S. (2019). Seed priming with silicon nanoparticles improved the biomass and yield while reduced the oxidative stress and cadmium concentration in wheat grains. Environmental Science and Pollution Research, 26(8), 7579–7588. https://doi.org/10.1007/s11356-019-04210-5

Jiang, Y., Yang, J., Li, M., Li, Y., Zhou, P., Wang, Q., Sun, Y., Zhu, G., Wang, Q., Zhang, P., & Rui, Y. (2022). Effect of silica-based nanomaterials on seed germination and seedling growth of rice (Oryza sativa L.). Nanomaterials, 12(23), 4160. https://doi.org/10.3390/nano12234160

Kamal Kumar, V., Muthukrishnan, S., & Rajalakshmi, R. (2020). Phytostimulatory effect of phytochemical fabricated nanosilver (AgNPs) on Psophocarpus tetragonolobus (L.) DC. seed germination: An insight from antioxidative enzyme activities and genetic similarity studies. Current Plant Biology, 23, 100158. https://doi.org/10.1016/j.cpb.2020.100158

Karimian, N., Nazari, F., & Samadi, S. (2021). Morphological and biochemical properties, leaf nutrient content, and vase life of tuberose (Polianthes tuberosa L.) affected by root or foliar applications of silicon (Si) and silicon nanoparticles (SiNPs). Journal of Plant Growth Regulation, 40(4), 2221–2235. https://doi.org/10.1007/s00344-020-10272-4

Kim, Y. H., Khan, A., Waqas, M., Shim, J. K., Kim, D. H., Lee, K. Y., & Lee, I. J. (2014). Silicon application to rice root zone influenced the phytohormonal and antioxidant responses under salinity stress. Journal of Plant Growth Regulation, 33(1), 137–149. https://doi.org/10.1007/s00344-013-9356-2

Koutouleas, A., Sarzynski, T., Bordeaux, M., Bosselmann, A. S., Campa, C., Etienne, H., Turreira-García, N., Rigal, C., Vaast, P., Ramalho, J. C., Marraccini, P., & Ræbild, A. (2022). Shaded-coffee: A nature-based strategy for coffee production under climate change? A review. Frontiers in Sustainable Food Systems, 6, 877476. https://doi.org/10.3389/fsufs.2022.877476

Liang, Y., Hua, H., Zhu, Y. G., Zhang, J., Cheng, C., & Römheld, V. (2006). Importance of plant species and external silicon concentration to active silicon uptake and transport. New Phytologist, 172(1), 63–72. https://doi.org/10.1111/j.1469-8137.2006.01797.x

Lima, A. E., Guimarães, R. J., Cunha, S. H., Castro, E. D., Carvalho, A. M., & Faria, M. M. (2021). Seedling production of Coffea arabica from different cultivars in a modified hydroponic system and nursery using different containers. Ciência e Agrotecnologia, 45, e017821. https://doi.org/10.1590/1413-7054202145017821

Nasiro, K. (2017). Germination and seedling growth rate of coffee (Coffea arabica L.) seeds as influenced by initial seed moisture content, storage time and storage condition. Food Science and Quality Management, 70, 17–24.

Nile, S. H., Thiruvengadam, M., Wang, Y., Samynathan, R., Shariati, M. A., Rebezov, M., Nile, A., Sun, M., Venkidasamy, B., Xiao, J., & Kai, G. (2022). Nano-priming as emerging seed priming technology for sustainable agriculture—Recent developments and future perspectives. Journal of Nanobiotechnology, 20(1), 254. https://doi.org/10.1186/s12951-022-01423-8

Paul, S., Dey, S., & Kundu, R. (2022). Seed priming: An emerging tool towards sustainable agriculture. Plant Growth Regulation, 97(1), 215–234. https://doi.org/10.1007/s10725-021-00761-1

Reed, R. C., Bradford, K. J., & Khanday, I. (2022). Seed germination and vigor: Ensuring crop sustainability in a changing climate. Heredity, 128(6), 450–459. https://doi.org/10.1038/s41437-022-00497-2

Robinson, J. B. D. (1993). Coffee in Yemen: A Practical Guide. Rural Development Project Al-Mahwit Province; Klaus Schwarz Verlag.

Salam, A., Khan, A. R., Liu, L., Yang, S., Azhar, W., Ulhassan, Z., Zeeshan, M., Wu, J., Fan, X., & Gan, Y. (2022). Seed priming with zinc oxide nanoparticles downplayed ultrastructural damage and improved photosynthetic apparatus in maize under cobalt stress. Journal of Hazardous Materials, 423, 127021. https://doi.org/10.1016/j.jhazmat.2021.127021

Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671–675. https://doi.org/10.1038/nmeth.2089

Seethepalli, A., Dhakal, K., Griffiths, M., Guo, H., Freschet, G. T., & York, L. M. (2021). RhizoVision Explorer: Open-source software for root image analysis and measurement standardization. AoB Plants, 13, plab056. https://doi.org/10.1093/aobpla/plab056

Selmar, D., Bytof, G., Knopp, S. E., & Breitenstein, B. (2006). Germination of coffee seeds and its significance for coffee quality. Plant Biology, 8(2), 260–264. https://doi.org/10.1055/s-2006-923845

Siddiqui, M. H., Al-Whaibi, M. H., Firoz, M., & Al-Khaishany, M. Y. (2015). Role of nanoparticles in plants. In M. Siddiqui, M. H. Al-Whaibi, & F. Mohammad (Eds.), Nanotechnology and Plant Sciences: Nanoparticles and Their Impact on Plants (pp. 19–35). Springer. https://doi.org/10.1007/978-3-319-14502-0_2

Silva, L. O. E., Schmidt, R., Valani, G. P., Ferreira, A., Ribeiro-Barros, A. I., & Partelli, F. L. (2020). Root trait variability in Coffea canephora genotypes and its relation to plant height and crop yield. Agronomy, 10(9), 1394. https://doi.org/10.3390/agronomy10091394

Sun, D., Hussain, H. I., Yi, Z., Rookes, J. E., Kong, L., & Cahill, D. M. (2016). Mesoporous silica nanoparticles enhance seedling growth and photosynthesis in wheat and lupin. Chemosphere, 152, 81–91. https://doi.org/10.1016/j.chemosphere.2016.02.096

Tripathi, P., Subedi, S., Khan, A. L., Chung, Y. S., & Kim, Y. (2021). Silicon effects on the root system of diverse crop species using root phenotyping technology. Plants, 10(5), 885. https://doi.org/10.3390/plants10050885

Tripathi, P., Tayade, R., Mun, B.-G., Yun, B.-W., & Kim, Y. (2022). Silicon application differentially modulates root morphology and expression of PIN and YUCCA family genes in soybean (Glycine max L.). Frontiers in Plant Science, 13, 842832. https://doi.org/10.3389/fpls.2022.842832

Article Statistics

Copyright License

Download Citations

How to Cite

Rahul Verma, Sara Al-Mutairi, Daniel Osei, & Jingwen Liu. (2025). Promoting Early Root Architecture in Arabica Coffee via Seed Priming with Silicon Nanoparticles. The American Journal of Agriculture and Biomedical Engineering, 7(05), 1–5. Retrieved from https://www.theamericanjournals.com/index.php/tajabe/article/view/6099