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INTRODUCTION 

In the modern era of Information and Technology, 
gadgets and electronic devices are now inevitable 
in our day-to-day life. Technology helps in routine 
activities in a well-organized manner and move 
forward at ease. Activities such as poultry farming 
is not left out. Poultry farming plays a crucial role 
in meeting the growing demand for affordable and 
safe food products (Sarıca et al., 2018). Poultry 
production is cost-effective (Ahmad et al., 2022; de 
Mesquita Souza Saraiva et al., 2022) and offers 
high-quality proteins (Attia et al., 2022; de 
Mesquita Souza Saraiva et al., 2022). Furthermore, 
it contributes to economic and social sustainability 
by creating favourable investment opportunities 
for producers (Rodić et al., 2011). Nevertheless, 
modern poultry farming faces challenges, including 
animal health and welfare, poultry house  

management, production, and human-induced 
issues, which are critical for sustainability in 
poultry farming (Gunnarsson et al., 2020; Hafez 
and Attia, 2020). Poultry farming management is 
transitioning from human labour to smart systems 
facilitated by machines (Ren et al., 2020). The 
application of smart technologies in poultry 
farming is expected to enable faster and more 
effective farm and animal monitoring, leading to 
better-informed decision-making through the 
evaluation of extensive data (Sharma and Patil, 
2018). 

Among the various technological tools, robots are 
emerging as a prominent solution in poultry 
farming, serving diverse functions such as 
phenotyping, monitoring, management, and 
environmental control (Sahoo et al., 2022). 
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Recently, functional robots have been developed in 
poultry farming that can perform specific tasks – 
such as collecting floor eggs and dead birds, thus 
saving labour and facilitating the production (Astill 
et al., 2020; Wu et al., 2022; Zhao, 2021). However, 
research on the impact of robots designed for 
direct contact with animals on animal health and 
welfare is limited (Dennis et al., 2020; Parajuli et al., 
2020). Additionally, robots have shown potential in 
studying collective and social behaviour through 
interaction with animals, with robot-animal 
interaction presenting a promising research area 
(Gribovskiy et al., 2018). Such studies are inspired 
by the rapid social attachment mechanism known 
as filial imprinting observed in young animals 
(Vallortigara and Versace, 2022). Robots 
interacting with animals hold a huge potential in 
the investigation of social behaviour and 
ethological research because they enable highly 
standardized, controlled, replicable and 
reproducible experimental designs. This 
innovative approach allows to explore complex 
social dynamics in various species (Romano et al., 
2019). 

There is growing interest in robotics for poultry 
farming. Previous work has explored the potential 
impact of smart technology in the poultry industry, 
focusing on robotics, advanced sensors, 
automation technology, AI (Artificial Intelligence), 
big data analysis, internet of things, and 
transportation (Abbas, 2022; Park et al., 2022; Ren 
et al., 2020; Wu et al., 2022). Robot-animal social 
interactions and the impact of robots on animal 
welfare and animal behaviour in poultry had 
limited coverage. 

Challenges in Poultry Farming 

Animal health and welfare: Ensuring animal 
health is crucial in poultry farms. Poultry diseases 
pose a significant threat, as some of them have the 
potential to escalate into pandemics with far-
reaching global consequences (Carenzi and Verga, 
2009). To mitigate such risks, continuous 
monitoring of poultry is essential for disease 
prevention, biosecurity measures, early diagnosis, 
and timely treatment (Pearce et al., 2023).  

Upholding animal welfare (Webster et al., 2005) 
and “life worth living” (Mellor et al., 2016) while 

ensuring sustainable production practices (Yang et 
al., 2020) is another challenge. To achieve a 
comprehensive assessment of animal welfare, 
standardized parameters must be established and 
accurately monitored (Wemelsfelder and Mullan, 
2014). The evaluation of animal welfare revolves 
around indicators such as proper nutrition, good 
health, suitable housing, and appropriate 
behaviour (Paul et al., 2022). To evaluate animal 
welfare, it is fundamental to understand the 
natural behaviour of a poultry species (Putyora et 
al., 2023), including social behaviour. 

Poultry house management: Among livestock 
systems, poultry systems are considered 
environmentally friendly, because produce low 
greenhouse gas emissions (Leinonen and 
Kyriazakis, 2016; Vries and Boer, 2010) and lower 
water usage (Gerber et al., 2015; Vaarst et al., 
2015). However, they still require special attention 
to their environmental impact, particularly 
concerning issues such as ammonia release and 
nitrate leaching. Environmental impacts on poultry 
farms arise directly from energy use, housing, and 
manure management. To enhance environmental 
sustainability, it is crucial to measure and monitor 
the level of environmental impacts overall. 
Improving poultry housing and developing new 
strategies for manure management have the 
potential to further improve the environmental 
sustainability of the poultry industry (Costantini et 
al., 2021). 

Maintaining optimum environmental conditions 
needs proficient and stable poultry house 
management at every stage of production (Flora et 
al., 2022). Environmental factors, including 
temperature, humidity, ventilation, gas 
concentration, and lighting, profoundly influence 
poultry health and performance (ElZanaty, 2014; 
Sarıca et al., 2018; Zhang et al., 2016).  

Another vital aspect is litter management. 
Contaminants, such as feed residues and faeces, can 
lead to the proliferation of bacteria in the litter. 
Accumulation of waste can result in increased 
ammonia gas levels in the poultry house due to 
microbial decomposition (Sakamoto et al., 2020). 
High humidity in the litter also poses a significant 
problem for flock health and welfare (Sakamoto et 
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al., 2020). Therefore, the litter must be regularly 
monitored and effectively managed throughout the 
production cycle (Sakamoto et al., 2020). 

Production: Challenges in poultry production 
encompass ensuring food safety while maintaining 
low production costs. Expenses related to feed, 
maintenance, and equipment constitute the 
fundamental costs, but production losses also 
significantly impact farming operations (Hafez and 
Attia, 2020). Identifying low-yielding hens in egg 
production and closely monitoring their egg-laying 
behaviour can aid in cost reduction (Aral et al., 
2017; Dogan et al., 2018; Wu et al., 2022). 

Free range systems in poultry farming are a 
method of where hens are provided access to 
outdoor areas for at least part of the day (Miao et 
al., 2005; Petek and Cavusoglu, 2021). These 
systems give hens to areas with nests, perches and 
litter, allowing them greater mobility and 
opportunities for natural behaviour (Hartcher and 
Jones, 2017). However, it’s important to note that 
floor egg problems can arise in these systems, 
leading to reduced production (Oliveira et al., 
2019). Collecting eggs from the floor becomes a 
daily task, which increases labour costs. 
Additionally, eggs left on the floor can be broken or 
eaten by birds. Moreover, if the eggs are not 
collected promptly, they may mix with the litter 
and manure, elevating the risk of contamination 
and adversely affecting food quality and safety (Li 
et al., 2020a; Chai, 2022). 

Human-induced issues: The general duties of 
breeders in the poultry industry encompass daily 
care of the animals, health, and welfare control, and 
monitoring of the poultry house. Additionally, 
breeders are responsible for the daily egg 
collection and dispatch in laying hen breeding. 
However, with the increase in herd size and the 
adoption of different breeding systems, the 
observation and management of the herd have 
become more challenging (Vroegindeweij et al., 
2018). Manual observations are labour-intensive, 
time-consuming, costly, and prone to subjective 
information (Parajuli et al., 2020). Therefore, the 
implementation of automatic monitoring 
equipment and effective use of technology is 
imperative to achieve efficient monitoring and 

informed decision-making (Buijs et al., 2018; Buijs 
et al., 2020; Vroegindeweij et al., 2018). 

Furthermore, breeders' increased activities within 
the poultry house may cause stress in the animals 
and lead to cross-contamination by carrying 
disease factors between the birds. Such situations 
pose risks to occupational health and safety (Ren et 
al., 2020). The robots discussed in Section 3 offer 
potential solutions to overcome human-induced 
problems in poultry houses with their 
functionalities.  

Robots Used in Poultry Farming 

The increasing interest in precision and smart 
agriculture has prompted extensive research into 
the application of AI and robotics in agricultural 
production (Usher et al., 2017). Recent 
advancements in hardware and software, including 
robots, sensors, 5G networks, and cloud 
infrastructures, have facilitated the abundant 
evaluation of data in agriculture. These data are 
invaluable for assessing and enhancing production 
during the control and decision-making phases 
(Park et al., 2022). Robotic systems that operate on 
farms and assist breeders (Sahoo et al., 2022) are 
expected to play a more prominent role in the 
future, equipped with machine capabilities such as 
perception, reasoning, learning, communication, 
task planning, execution (Ren et al., 2020). 

Robots find application in various agricultural 
sectors, including planting, livestock, aquaculture, 
and poultry farming (Sahoo et al., 2022). In the 
context of poultry farming, both commercial and 
experimental robots have been developed to 
perform diverse tasks aimed at enhancing 
production, reducing the workforce, safeguarding 
animal health, and improving welfare, making 
robots increasingly central in this area (Park et al., 
2022). 

Poultry farming entails several tasks that need 
constant monitoring, such as identifying sick and 
deceased animals, monitoring environmental 
conditions within poultry houses, cleaning, 
disinfecting litter, and collecting floor eggs. These 
tasks are laborious and repetitive (Abbas et al., 
2022). Robots have proven effective in information 
detection and production management (Astill et al., 

https://www.theamericanjournals.com/index.php/tajiir
https://www.theamericanjournals.com/index.php/tajabe


THE USA JOURNALS 

THE AMERICAN JOURNAL OF AGRICULTURE AND BIOMEDICAL ENGINEERING (ISSN – 2689-1018)              
VOLUME 06 ISSUE09 

                                                                                                                    

  

 18 

 

https://www.theamericanjournals.com/index.php/tajabe 

2020). Robots equipped with advanced sensory 
and decision-making technologies have the 
potential to efficiently execute designated tasks, 
enhancing production efficiency (Ren et al., 2020). 

Compared to humans, robots offer the promise of 
superior accuracy, consistency, and efficiency in 
monitoring birds and their environment (Mamun, 
2019; Park et al., 2022). Human observations, in 
fact, can be subjective, depending on the observer's 
experience (Ren et al., 2020; Yang et al., 2020), and 
might be too expensive to be performed constantly. 
On the contrary, robots equipped with sensors 
using artificial intelligence and machine learning 
can continuously gather localized data as they 
navigate through the poultry house. This sustained 
real-time data collection can enable the timely 
detection of diseases, food safety concerns, and 
indoor environmental conditions through a robust 
sensor network (Abbas et al., 2022; Park et al., 
2022). 

Robots can contribute to increased biosecurity and 
reduced human-animal interactions in poultry 
houses, as they reduce the need for frequent 
human intervention (Gittins et al., 2020). Daily 
inspections are essential to ensure the proper 
functioning of systems and the well-being of the 
animals. Breeders must traverse the poultry house 
multiple times a day to observe the animals and 
monitor their behaviour and living conditions 
(Abbas et al., 2022; Parajuli et al., 2020; Park et al., 
2022). However, human breeders may 
inadvertently become disease vectors, transferring 

pathogens and viruses between houses and cross-
infecting flocks, leading to the rapid spread of 
diseases (Park et al., 2022). By replacing human 
labour with robots, the potential for human-
induced issues is diminished, and biosecurity is 
improved by reducing human activities in the 
henhouse.  

Environmental Monitoring: To enhance poultry 
management in both layer and broiler farming, 
constant monitoring of the poultry house and 
animals is essential. Environmental monitoring 
provides valuable data such as farm air quality, 
temperature, humidity, air velocity, and carbon 
dioxide levels for poultry management and 
assessment of animal health and welfare (Park et 
al., 2022). Real-time data acquisition facilitates 
informed decision-making, including the 
maintenance of favourable environmental 
conditions for optimal production and the early 
detection of disease outbreaks. Furthermore, these 
data contribute to improving operational 
productivity (Astill et al., 2020; Kaur et al., 2021; 
Olejnik et al., 2022; Wolfert et al., 2017). Therefore, 
robots equipped with sensors, cameras, and other 
systems can contribute to the development of the 
poultry industry (Astill et al., 2020; Zhang et al., 
2016). 

Scout (2023), (formerly known as ChickenBoy, 
developed by Faromatics, Spain), is a robot that 
works suspended from the ceiling, about half a 
meter above the birds.  

 
 

 

 

 

Fig. 1: Scout (2023), (formerly known as ChickenBoy, developed by Faromatics, Spain) 

This autonomous robot is equipped with thermal 
and light cameras, sensors for temperature, 
humidity, air velocity, CO2, NH3, light, and sound,  

as well as a laser pointer to stimulate the 
movement of birds. As indicated in the product 
specifications, this robot can control the 
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distribution of birds, detect sick and dead birds, 
and identify wet spots on the litter and drinkers 
without direct contact. The robot enables early 
diagnosis of intestinal diseases by monitoring bird 
faces and provides images for the detection of leg 
health. The breeders receive updates from the 
robot via text message or emails. 

Poultry Patrol (2019) is produced by a robotics 

company that designs multi-tasking robots. Per the 
robot's intended application, the robot, equipped 
with autonomous and remote-control capabilities, 
can monitor farms and animals using various types 
of integrated cameras. It provides early warnings 
to breeders by identifying sick and deceased birds 
through remote monitoring and video recording 
features. 

 

 

 

 

 

 
 

Fig. 2: Poultry Patrol (2019) 

Liu et al. (2016) designed a mobile robot equipped 
with an intelligent poultry monitoring system. The 
robot collects environmental parameters and 
obstacle information related to poultry and 
transmits this data to the host wirelessly. 
Subsequently, the host performs data acquisition,  

processing, display, storage, and remote control. 
Octopus XO (2021), developed by Octopus 
Biosafety, is a multi-task robot capable of collecting 
various environmental data, including 
temperature, humidity, CO2, ammonia, sound, and 
light intensity. 

 

 

 

 

 

 
Fig. 3: Octopus XO (2021) 

Disease control: Pathogenic infections are among 
the most critical challenges in poultry farming, as 
they can spread rapidly within the poultry house. 
Researchers have focused on developing robotic 
systems to quickly identify sick animals and 
remove dead birds from the herd (Li, 2016). 
Equipping robots with sensors for early warning 
systems allows the monitoring of disease and food 
safety-related pathogens in birds (Abbas et al., 
2022; Park et al., 2022). 

Nanny robots (Charoen Pokphand Group) are 
designed to monitor the body temperature and 
movements of animals in conventional 3-layer cage 
systems using thermal cameras. The robot can 
detect sick and dead chickens by identifying birds 
with abnormal temperature values and inactivity 
(Chicken Nannies, 2017). Li (2016) designed a 
robot to identify sick and dead birds in cages. The 
robot warns the animals by hitting the cage and 
detects the movements of the birds using image 
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processing methods. However, the manual 
operation and hitting action may cause increased 

stress in birds. 

 

 

  

 

 

 

 

 

 
Fig. 4: Nanny robots 

Liu et al. (2021) designed a robot with two modes 
to remove dead chickens from the poultry house. 
One mode allows for remote control, while the 
other is autonomous, and the system can work 
without human intervention. The robotic system 
includes arms, a conveyor belt, a storage area, and 
a sweep- in device. Dead chickens are identified 
using the YOLO v4 algorithm, an object detection 
network based on deep learning (Bochkovskiy et 
al., 2020; Redmon et al., 2016). The system exhibits 
high reliability, with accuracy, precision, and recall 

rates of 97.5%, 95.24%, and 100%, respectively. 
However, recognizing dead chickens poses a 
challenge because the dead birds' shapes are 
incomplete and look very similar to a healthy 
chicken in a sitting or lying position. This similarity 
can impact the accuracy of image classification. To 
enhance precision and accuracy, the size of the 
training dataset for the model should be increased 
and identification errors should be reduced. Li et al. 
(2022) developed a robot equipped with a camera 
and two grippers mounted at the end of a robotic 
arm, designed to remove dead chickens. 

 

 

 

 

 

 

 

 
Fig. 5: Li et al. (2022) Robot 

The robotic arm (Gen 3, Kinova Inc., Boisbriand, QC, 
Canada), along with the camera and two grippers 
(Robotiq 2F-85, Kinova Inc., Boisbriand, QC, 
Canada) at the end, was securely mounted on a 
table. The robot underwent testing to assess its 
ability to grasp and lift dead chickens present on  

the table under varying light intensities. The robot 
arm has a maximum payload capacity of 2000 and 
can move with 7 degrees of freedom, allowing for 
versatile motion. The success rate of finding and 
collecting dead chickens was evaluated at different 
light intensities, resulting in rates of 53.3%, 80%, 
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86.7%, 90%, and 90% at 10, 30, 60, 70, and 1000 
light intensities, respectively. The robotic arm in 
question has been specifically engineered for the 
purpose of retrieving deceased chickens from a 
stationary table. It is important to note that this 
robotic arm has not yet undergone testing within 
the dynamic environment of a live poultry house. 
Furthermore, research findings reveal a 
noteworthy observation: a decrease in light 
intensity has been found to significantly impair the 
performance of the deep learning model. 
Specifically, this reduction in illumination 
adversely affects the model's capacity for object 
detection, image processing, orientation 
identification, and, ultimately, its ability to execute 
the final pick-up performance (Li et al., 2022). 
Poultry Patrol (2019) utilizes thermal imaging to 
monitor the body temperatures of chickens as it 
moves through the poultry house, enabling the 
identification of sick and dead birds. Similarly, the 
autonomous robot Scout (2023) employs an 
infrared and visible light camera to detect deceased 
chickens and diseases. Both systems monitor 
temperature and bird movements to identify sick 
and deceased animals in caged and cage-free 
systems. 

Collecting floor eggs: The transition from cage 

system to cage-free systems aim to improve the 
welfare of laying hens (Ochs et al., 2019; 
Vroegindeweij et al., 2016) by providing them 
increased space for movement, perching, 
dustbathing, and nesting. This transition allows 
hens to spread their wings and express natural 
behaviours, ultimately leading to a reduction in 
confinement-related stress (Bhanja and Bhadauria, 
2018; Hartcher and Jones, 2017). However, in cage-
free systems hens may lay eggs in areas outside the 
nest, such as corners of the hen house and dim 
environments (Li et al., 2022). While cage-free 
systems provide hens with various areas such as 
nests, perches, and litter (Hartcher and Jones, 
2017), floor eggs are a common occurrence in these 
systems and reduce production performance 
(Oliveira et al., 2019). Automatic egg collection 
robots have been developed to address this issue. 

Unlike commercial robots, scientific research on 
the use of robots in poultry farming has primarily 
focused on addressing the difficulty of collecting 
floor eggs. These robots can also reduce human-
induced problems mentioned in section 2.4 by 
reducing the need for human labour in egg 
collection. Vroegindeweij et al. (2014) developed 
an autonomous robot, PoultryBot, for collecting 
floor eggs in poultry houses.  

 

 

 

 

 

 

 

 
Fig. 6: PoultryBot 

The robot, equipped with a spiral spring on the 
front for egg collection, successfully collected over 
95% of the eggs (Vroegindeweij et al., 2014b). This 
robot can drive autonomously for more than 3000 
m in a commercial poultry house and collect 46% 
of 300 eggs. A collection failure occurred in 
approximately 37% of eggs (Vroegindeweij et al.,  

2018). The researchers suggested that by 
improving navigation, obstacle handling and 
control algorithms, the robot could be used in 
commercial poultry houses and dense animal 
environments in the future (Vroegindeweij et al., 
2018). 

Chang et al. (2020) designed a mobile egg 
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collection robot using a computer vision-based 
platform that can recognize white and brown eggs 

in free-range farms.  

 

 

 

 

 

 

 
Fig. 7: Mobile egg collection robot 

The robot moves toward the eggs with visual 
tracking, collects them, and stores them in its 
chamber. In experimental tests, the robot collected 
between 60% and 88% of the eggs on flat and 
surrounded floors. Additionally, the robot could 
collect 8 eggs in 10 minutes in a 25 m2 area. For the 
robot to function efficiently, it relies on a flat 
surface free of objects such as egg-shaped stones  

within its operational area (Chang et al., 2020). 
Therefore, performance enhancements are 
necessary when deploying it in a free-range 
system. 

Joffe and Usher (2017) developed GohBot, an 
autonomous egg-collecting robot that uses a 
mechanical arm with a vacuum mirror to collect 
eggs.  

 

 

 

 

 
 

Fig. 8: GohBot 

In tests, the success rate of egg collection was 
91.6%. Li et al. (2021) developed an egg-collecting  

robot consisting of a deep learning-based egg 
detector, arm, gripper, and camera.  

 

 

 

 

 

 

 

 
Fig. 9: Robotic arm 
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Eggs detected by image processing algorithms are 
collected using the robot arm and grippers. The 
robot collected brown and white eggs with a 
success rate of 92% to 94%. 

Overall, egg collection robots developed for use in 
cage-free systems face general challenges, such as 
1) mobility within the poultry house, including 
localization, navigation, path planning, and 
obstacle avoidance, 2) detecting eggs, 3) collecting 
eggs without breaking them, 4) storing eggs and 
possibly classifying them according to weight and 
shape. 

Disinfection and litter management: The floor of 
the coop can become contaminated with bird 
faeces and food residues, leading to air pollution 
and the proliferation of pathogens. Regular  

 

cleaning and disinfection of the house are 
necessary to maintain animal health (Wu et al., 
2022). Robots can be effectively used for smart 
production and appropriate disinfection in poultry 
houses (Feng et al., 2021). Proper litter 
management is essential for poultry farming, and 
regular litter scraping can help aerate the litter, 
preventing fermentation and reducing litter 
moisture (Tibot, 2021). Robots designed for litter 
scraping can address litter management challenges 
and support animal health. 

Feng et al. (2021) designed an anti-epidemic (Feng 
et al., 2021) and disinfection spray (Feng and 
Wang, 2020) robot for use in poultry houses and 
farms. Comprising a robot, transport vehicle, 
sensors, spraying unit, and controller, it can work 
autonomously and with remote control.  

 

 

 

 

 

 

 

 
Fig. 9: Disinfection Robot 

The researchers proposed the "Magnet-RFID" path 
detection navigation method for autonomous 
movement, which involves the manual installation 
of magnets and RFID (Radio Frequency 
Identification) electronic tags in the work area. The 
robot successfully ensured sufficient drug 
concentration in various parts of the cages to kill 
pathogenic microorganisms (Feng et al., 2021). As 
indicated in the product specifications, Octopus XO  

(2021), a multi-tasking robot, can autonomously 
move within the poultry house to scrape the litter 
and prevent the formation of scabs. It also reduces 
ammonia formation by providing better litter 
drying and performs litter cleaning by spraying a 
disinfectant solution. Spoutnic-NAV, another robot 
developed by Tibot, aerates the litter through the 
forks mounted on the back while moving in the 
poultry house (Tibot, 2021).  
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Fig. 10: Spoutnic-NAV 

Enhancing bird activity: Birds need physical 
activity to maintain their health and well-being. 
Inactive or sedentary behaviour for extended 
periods can lead to health issues in birds (Abbas et 
al., 2022). With the development of production 
systems characterized by rapid growth rates in 
broilers, fast-growing strains are used in 
commercial breeding (Zuidhof et al., 2014). It has 
been reported that faster-growing breeds have 
higher inactivity, behavioural traits are affected by 
the growth rate, and fast-growing breeds sit more, 
feed more, and walk less than slow-growing breeds 
(Dawson et al., 2021; Hartcher and Lum, 2020). As 
higher activity can reduce litter contact, more 

active animals have been evaluated to have better 
feather cleanliness, lower hock burn levels and 
better leg health (Casey-Trott et al., 2017; Dixon, 
2020; Hartcher and Lum, 2020). Robots have been 
shown to be effective in encouraging movement in 
broilers, leading to improved bone quality in 
animals (Hartcher and Jones, 2017; Janczak and 
Riber, 2015). 

The two main approaches used in free-range 
poultry farms to encourage animal movement are 
mobile robots and laser pointers. Mobile ground 
robots that move within the poultry house trigger 
the animals around them to move as well (Li et al., 
2022; Tibot, 2021; T-Moov, 2022).  

 

 

 

 

 

 
Fig. 11: T-Moov 

Alternatively, robots with laser pointers project 
laser lights onto the floor, encouraging the birds to 
move (Scout, 2023). Tibot Technologies claim that 
their commercial autonomous mobile robots, T-
Moov and Spoutnic NAV, increase bird activity in 
the poultry house and mitigate the issue of floor 
eggs in cage-free systems. Additionally, increased 
bird activity resulted in higher feed consumption 
and a natural weight gain of 300 grams per animal. 
Moreover, active birds required fewer antibiotics 
to achieve weight gain naturally (Ren et al., 2020; 
Tibot, 2021; T-Moov, 2022). 

The robot Octopus XO serves the dual purpose of 
litter cleaning while stimulating bird activity with 

laser pointers (Octopus XO, 2021). Similarly, the 
robot Scout (2023) has asserted its capability to 
stimulate animal activity through the utilization of 
laser pointers. Li et al. (2022) reported that a 
ground robot designed to reduce floor eggs also 
effectively encouraged bird movement. Another 
study by Yang et al. (2020) found that robots 
significantly increased the activity of broilers. 

Robots use in poultry farming: Challenges and 
Solutions 

Overall, robots for poultry farming are still limited 
in functionality and adaptability, since most robots 
are designed to perform a single, specific task (Ren 
et al., 2020; Wu et al., 2022). Hence, research 
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should expand multi-tasking abilities, via sensor 
integration and advanced technology, including AI 
(Alatise and Hancke, 2020). For instance, in the 
context of collecting floor eggs and managing dead 
birds, robots face several challenges. These include 
difficulties in accessing different locations within 
the poultry house, issues with target identification 
and capture due to factors such as poultry house 
infrastructure, bird movements, changing light 
intensities, and secluded areas. Moreover, robots 
designed to collect floor eggs encounter challenges 
in collecting eggs without breakage, as well as 
sorting and storing them (Chang et al., 2020; Li et 
al., 2022b; Vroegindeweij et al., 2018). To address 
these challenges, robots should be designed to 
operate effectively across various environmental 
conditions and production systems. To this aim, 
reliability of visual and tactile perception, 
combined with flexibility and safety of the 
movements, are particularly important. The 
development of algorithms related to object 
detection, localisation, navigation, path planning, 
and control is essential. Some robots can be 
operated manually and by remote control (Li, 
2016; Yang et al., 2020), however, there is a need 
for autonomous work, reducing the need for 
constant manual or remote control. Visuo-tactile 
perception is crucial for autonomous robotic 
systems, especially if they have to grasp and 
manipulate objects (Navarro-Guerrero et al., 
2023). 

An important issue is the difficulty in avoiding 
obstacles while navigating within the poultry 
house (Dennis et al., 2020; Vroegindeweij et al., 
2018). During the movement of robots, the 
unpredictable actions of the surrounding chickens 
can impact the detection of static obstacles. 
Simultaneously, the robots need to make necessary 
evasive maneuvers with respect to the moving 
chickens. These requirements impose a high 
demand on the robot's environmental perception 
capability and real-time path planning when 
confronting mobility-related challenges (see 
Section 2) including those associated with 
production and human-induced factors. It will be 
crucial to develop obstacle awareness systems to 
improve navigation and guarantee animal welfare. 

Most studies on robotic applications in poultry 

farming have primarily focused on free-range 
systems. However, robots that come into direct 
contact with animals pose a risk of harming 
animals and, as a result, may operate at a slower 
pace (Abbas et al., 2022; Wu et al., 2022). To 
mitigate these risks and challenges, robots should 
be designed with the ability to avoid and regulate 
contact. A current solution is non-contact systems, 
such as those involving robotic arms mounted on 
the ceiling of the farm. However, these systems can 
hardly be implemented in existing farms and would 
require restructuring or building of dedicated 
facilities, complicating the logistics of 
implementation. Hardware solutions to reduce the 
risks of robot harming animals include protective 
equipment, such as robots built with soft materials. 

In some situations, robot-animal contact is 
necessary. In cases where robots are deployed for 
the identification of sick birds, an additional 
capability for capturing and isolating animals has 
been shown to be viable when employed within an 
operational poultry farm in conjunction with the 
detection system (Liu et al., 2021). For enhanced 
welfare and biosecurity, robots should also 
incorporate an early warning system to promptly 
intervene in cases involving sick birds. 

Poultry farms differ in size and organisation (Ren 
et al., 2020). However, most robotic studies are 
conducted in controlled experimental 
environments or within small-scale poultry houses 
(Vroegindeweij et al., 2018; Wu et al., 2022). 
Further tests and development are needed for 
large-capacity poultry houses, including tests on 
the integration of multiple robots to working 
together efficiently, in accordance with the size of 
the poultry house. 

Effective and safe robot-animal interactions 
require knowledge of the species-specific needs in 
terms of social interactions. Research has just 
started to address these areas, with few studies 
that identify social learning mechanisms that can 
improve welfare and health in interactions with 
robots (Gribovskiy et al., 2018; Mostafavi et al., 
2010). Further research is needed to understand 
how robots can be best integrated in commercial 
farms, from the point of view of hardware design 
and functionality. 
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Robot-animal interactions present opportunities 
and challenges. Ground-based robotic systems 
offer a promising avenue for enhancing animal 
mobility, with potential benefits for chicken 
welfare. Such benefits include a reduction in litter 
contact (Dixon, 2020; Hartcher and Lum, 2020), an 
improvement in bone quality (Hartcher and Jones, 
2017; Janczak and Riber, 2015), as well as 
enhancement in foot health and feather condition 
(Yang et al., 2020). 

At the same time, robots increase birds’ energy 
consumption, with effects that have just started to 
be investigated. It has been suggested that this 
activity might o reduce egg nutrient accumulation 
in laying hens and decrease egg weight (Li et al., 
2022b). Future research should target various 
parameters such as food consumption, egg weight 
and food conversion rate to assess the effect of 
robot use on overall yield in commercial poultry 
farming. 

Potential stress arising from interactions between 
robots and animals, and whether robots pose lower 
or higher challenges to animals, are object of 
research. Ground robots, as they move around 
poultry houses, exhibit the potential to reduce the 
incidence of startling behaviour compared to 
human breeders, while simultaneously mitigating 
the risk of disease transmission within the poultry 
house (Park et al., 2022). Differences of responses 
to robots within the life course have not been 
investigated enough (Parajuli et al., 2018). 
Remarkably, research has revealed that chickens 
exhibit a propensity to form attachments to non-
naturalistic agents, such as robots (Gribovski et al., 
2018; Slonina et al., 2021). Furthermore, early 
exposure to robots can effectively mitigate fear 
reactions towards these artificial agents (Dennis et 
al., 2020). 

The use of robots can be costly, especially for small-
scale coops operations (Abbas et al., 2022; Mamun, 
2019). It is crucial to conduct economic analyses to 
assess the viability of using robots in poultry 
houses. Such analyses should consider their 
potential effects on human labour, animal health, 
and production output to make informed decisions 
about investment. 

Creating robots tailored for various functions in 

poultry farming demands a collaborative approach 
that delves into multiple domains, such as 
mechanical engineering, software development, 
data analytics, genetic animal breeding, animal 
behaviour, and animal welfare (Zhou et al., 2022). 
This diverse integration of specialized knowledge 
is essential in designing robotic solutions that 
precisely address the intricate demands of poultry 
farming, ensuring optimal performance, 
operational efficiency and animal well-being. 

CONCLUSION 

The exploration of robotic technology for poultry 
farming has enormous promise awaiting 
realization. The current research landscape, 
though limited, indicates the potential for robots to 
innovate poultry farming, reducing labour 
dependency and significantly enhancing 
management efficiency by aiding in animal and 
environmental monitoring. However, this potential 
has only just begun to be tapped. Further research 
is needed to fully harness the benefits of robotics in 
supporting efficient production and promoting 
animal welfare. 

As the poultry industry delves deeper into the 
integration of robotic technology, the focus must 
emphasize the critical aspect of robot-animal 
interactions. Achieving effective solutions calls for 
the fusion of engineering innovation with a 
comprehensive understanding of animal needs and 
behaviour, as underscored by recent research 
work on imprinting and predispositions in poultry 
chicks (Rosa-Salva et al., 2021; Versace et al., 2018) 
and in adult chickens (Dennis et al., 2020; Nicol, 
2023). One of the challenges ahead involves the 
need for increased data sharing and open-source 
development. Addressing these challenges and 
fostering collaboration is crucial for a 
comprehensive understanding of animal welfare. 

Overall, the integration of robotic technology and 
innovation with a deeper understanding of animal 
needs and societal demands presents a 
transformative opportunity for enhancing both 
productivity and welfare in poultry farming. To 
fully realise this potential, increased research, 
collaboration, and attention to the animal welfare 
within robotic applications are essential. 
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